emhass 0.8.0__py3-none-any.whl → 0.8.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: emhass
3
- Version: 0.8.0
3
+ Version: 0.8.2
4
4
  Summary: An Energy Management System for Home Assistant
5
5
  Home-page: https://github.com/davidusb-geek/emhass
6
6
  Author: David HERNANDEZ
@@ -16,8 +16,8 @@ Requires-Python: >=3.9, <3.12
16
16
  Description-Content-Type: text/markdown
17
17
  License-File: LICENSE
18
18
  Requires-Dist: wheel
19
- Requires-Dist: numpy <=1.26
20
- Requires-Dist: scipy <=1.11.3
19
+ Requires-Dist: numpy ==1.26.4
20
+ Requires-Dist: scipy ==1.12.0
21
21
  Requires-Dist: pandas <=2.0.3
22
22
  Requires-Dist: pvlib >=0.10.2
23
23
  Requires-Dist: protobuf >=3.0.0
@@ -132,38 +132,44 @@ These architectures are supported: `amd64`, `armv7`, `armhf` and `aarch64`.
132
132
  ### Method 2) Using Docker in standalone mode
133
133
 
134
134
  You can also install EMHASS using docker. This can be in the same machine as Home Assistant (if using the supervised install method) or in a different distant machine. To install first pull the latest image from docker hub:
135
- ```
135
+ ```bash
136
136
  docker pull davidusb/emhass-docker-standalone
137
137
  ```
138
138
 
139
139
  You can also build your image locally. For this clone this repository, setup your `config_emhass.yaml` file and use the provided make file with this command:
140
- ```
140
+ ```bash
141
141
  make -f deploy_docker.mk clean_deploy
142
142
  ```
143
143
  Then load the image in the .tar file:
144
- ```
144
+ ```bash
145
145
  docker load -i <TarFileName>.tar
146
146
  ```
147
147
  Finally check your image tag with `docker images` and launch the docker itself:
148
- ```
148
+ ```bash
149
149
  docker run -it --restart always -p 5000:5000 -e "LOCAL_COSTFUN=profit" -v $(pwd)/config_emhass.yaml:/app/config_emhass.yaml -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml --name DockerEMHASS <REPOSITORY:TAG>
150
150
  ```
151
+ - If you wish to keep a local, persistent copy of the EMHASS generated data, create a local folder on your device, then mount said folder inside the container.
152
+ ```bash
153
+ mkdir -p $(pwd)/data #linux: create data folder on local device
154
+
155
+ docker run -it --restart always -p 5000:5000 -e "LOCAL_COSTFUN=profit" -v $(pwd)/config_emhass.yaml:/app/config_emhass.yaml -v $(pwd)/data:/app/data -v $(pwd)/secrets_emhass.yaml:/app/secrets_emhass.yaml --name DockerEMHASS <REPOSITORY:TAG>
156
+ ```
151
157
 
152
158
  ### Method 3) Legacy method using a Python virtual environment
153
159
 
154
160
  With this method it is recommended to install on a virtual environment.
155
161
  For this you will need `virtualenv`, install it using:
156
- ```
162
+ ```bash
157
163
  sudo apt install python3-virtualenv
158
164
  ```
159
165
  Then create and activate the virtual environment:
160
- ```
166
+ ```bash
161
167
  virtualenv -p /usr/bin/python3 emhassenv
162
168
  cd emhassenv
163
169
  source bin/activate
164
170
  ```
165
171
  Install using the distribution files:
166
- ```
172
+ ```bash
167
173
  python3 -m pip install emhass
168
174
  ```
169
175
  Clone this repository to obtain the example configuration files.
@@ -174,7 +180,7 @@ We will suppose that this repository is cloned to:
174
180
  This will be the root path containing the yaml configuration files (`config_emhass.yaml` and `secrets_emhass.yaml`) and the different needed folders (a `data` folder to store the optimizations results and a `scripts` folder containing the bash scripts described further below).
175
181
 
176
182
  To upgrade the installation in the future just use:
177
- ```
183
+ ```bash
178
184
  python3 -m pip install --upgrade emhass
179
185
  ```
180
186
 
@@ -210,7 +216,7 @@ The available arguments are:
210
216
  - `--version`: Show the current version of EMHASS.
211
217
 
212
218
  For example, the following line command can be used to perform a day-ahead optimization task:
213
- ```
219
+ ```bash
214
220
  emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --costfun 'profit'
215
221
  ```
216
222
  Before running any valuable command you need to modify the `config_emhass.yaml` and `secrets_emhass.yaml` files. These files should contain the information adapted to your own system. To do this take a look at the special section for this in the [documentation](https://emhass.readthedocs.io/en/latest/config.html).
@@ -224,7 +230,7 @@ Then additional optimization strategies were developed, that can be used in comb
224
230
  ### Dayahead Optimization - Method 1) Add-on and docker standalone
225
231
 
226
232
  In `configuration.yaml`:
227
- ```
233
+ ```yaml
228
234
  shell_command:
229
235
  dayahead_optim: "curl -i -H \"Content-Type:application/json\" -X POST -d '{}' http://localhost:5000/action/dayahead-optim"
230
236
  publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{}' http://localhost:5000/action/publish-data"
@@ -232,25 +238,25 @@ shell_command:
232
238
  ### Dayahead Optimization - Method 2) Legacy method using a Python virtual environment
233
239
 
234
240
  In `configuration.yaml`:
235
- ```
241
+ ```yaml
236
242
  shell_command:
237
243
  dayahead_optim: /home/user/emhass/scripts/dayahead_optim.sh
238
244
  publish_data: /home/user/emhass/scripts/publish_data.sh
239
245
  ```
240
246
  Create the file `dayahead_optim.sh` with the following content:
241
- ```
247
+ ```bash
242
248
  #!/bin/bash
243
249
  . /home/user/emhassenv/bin/activate
244
250
  emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml'
245
251
  ```
246
252
  And the file `publish_data.sh` with the following content:
247
- ```
253
+ ```bash
248
254
  #!/bin/bash
249
255
  . /home/user/emhassenv/bin/activate
250
256
  emhass --action 'publish-data' --config '/home/user/emhass/config_emhass.yaml'
251
257
  ```
252
258
  Then specify user rights and make the files executables:
253
- ```
259
+ ```bash
254
260
  sudo chmod -R 755 /home/user/emhass/scripts/dayahead_optim.sh
255
261
  sudo chmod -R 755 /home/user/emhass/scripts/publish_data.sh
256
262
  sudo chmod +x /home/user/emhass/scripts/dayahead_optim.sh
@@ -259,7 +265,7 @@ sudo chmod +x /home/user/emhass/scripts/publish_data.sh
259
265
  ### Common for any installation method
260
266
 
261
267
  In `automations.yaml`:
262
- ```
268
+ ```yaml
263
269
  - alias: EMHASS day-ahead optimization
264
270
  trigger:
265
271
  platform: time
@@ -276,7 +282,7 @@ In `automations.yaml`:
276
282
  In these automations the day-ahead optimization is performed everyday at 5:30am and the data is published every 5 minutes.
277
283
 
278
284
  The final action will be to link a sensor value in Home Assistant to control the switch of a desired controllable load. For example imagine that I want to control my water heater and that the `publish-data` action is publishing the optimized value of a deferrable load that I want to be linked to my water heater desired behavior. In this case we could use an automation like this one below to control the desired real switch:
279
- ```
285
+ ```yaml
280
286
  automation:
281
287
  - alias: Water Heater Optimized ON
282
288
  trigger:
@@ -291,7 +297,7 @@ automation:
291
297
  entity_id: switch.water_heater_switch
292
298
  ```
293
299
  A second automation should be used to turn off the switch:
294
- ```
300
+ ```yaml
295
301
  automation:
296
302
  - alias: Water Heater Optimized OFF
297
303
  trigger:
@@ -313,7 +319,7 @@ The `publish-data` command will push to Home Assistant the optimization results
313
319
  The `publish-data` command will also publish PV and load forecast data on sensors `p_pv_forecast` and `p_load_forecast`. If using a battery, then the battery optimized power and the SOC will be published on sensors `p_batt_forecast` and `soc_batt_forecast`. On these sensors the future values are passed as nested attributes.
314
320
 
315
321
  It is possible to provide custm sensor names for all the data exported by the `publish-data` command. For this, when using the `publish-data` endpoint just add some runtime parameters as dictionaries like this:
316
- ```
322
+ ```yaml
317
323
  shell_command:
318
324
  publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"custom_load_forecast_id\": {\"entity_id\": \"sensor.p_load_forecast\", \"unit_of_measurement\": \"W\", \"friendly_name\": \"Load Power Forecast\"}}' http://localhost:5000/action/publish-data"
319
325
  ```
@@ -321,7 +327,7 @@ shell_command:
321
327
  These keys are available to modify: `custom_pv_forecast_id`, `custom_load_forecast_id`, `custom_batt_forecast_id`, `custom_batt_soc_forecast_id`, `custom_grid_forecast_id`, `custom_cost_fun_id`, `custom_deferrable_forecast_id`, `custom_unit_load_cost_id` and `custom_unit_prod_price_id`.
322
328
 
323
329
  If you provide the `custom_deferrable_forecast_id` then the passed data should be a list of dictionaries, like this:
324
- ```
330
+ ```yaml
325
331
  shell_command:
326
332
  publish_data: "curl -i -H \"Content-Type:application/json\" -X POST -d '{\"custom_deferrable_forecast_id\": [{\"entity_id\": \"sensor.p_deferrable0\",\"unit_of_measurement\": \"W\", \"friendly_name\": \"Deferrable Load 0\"},{\"entity_id\": \"sensor.p_deferrable1\",\"unit_of_measurement\": \"W\", \"friendly_name\": \"Deferrable Load 1\"}]}' http://localhost:5000/action/publish-data"
327
333
  ```
@@ -371,11 +377,11 @@ The valid values to pass for both forecast data and MPC related data are explain
371
377
  It is possible to provide EMHASS with your own forecast data. For this just add the data as list of values to a data dictionary during the call to `emhass` using the `runtimeparams` option.
372
378
 
373
379
  For example if using the add-on or the standalone docker installation you can pass this data as list of values to the data dictionary during the `curl` POST:
374
- ```
380
+ ```bash
375
381
  curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93, 1164.33, 1046.68, 1559.1, 2091.26, 1556.76, 1166.73, 1516.63, 1391.13, 1720.13, 820.75, 804.41, 251.63, 79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}' http://localhost:5000/action/dayahead-optim
376
382
  ```
377
383
  Or if using the legacy method using a Python virtual environment:
378
- ```
384
+ ```bash
379
385
  emhass --action 'dayahead-optim' --config '/home/user/emhass/config_emhass.yaml' --runtimeparams '{"pv_power_forecast":[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93, 1164.33, 1046.68, 1559.1, 2091.26, 1556.76, 1166.73, 1516.63, 1391.13, 1720.13, 820.75, 804.41, 251.63, 79.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}'
380
386
  ```
381
387
 
@@ -448,10 +454,16 @@ When applying this controller, the following `runtimeparams` should be defined:
448
454
 
449
455
  A correct call for a MPC optimization should look like:
450
456
 
457
+ ```bash
458
+ curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10, "soc_init":0.5,"soc_final":0.6}' http://192.168.3.159:5000/action/naive-mpc-optim
451
459
  ```
452
- curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10, "soc_init":0.5,"soc_final":0.6,"def_total_hours":[1,3],"def_start_timestep":[0,3],"def_end_timestep":[0,6],}' http://localhost:5000/action/naive-mpc-optim
460
+ *Example with :`def_total_hours`, `def_start_timestep`, `def_end_timestep`.*
461
+ ```bash
462
+ curl -i -H 'Content-Type:application/json' -X POST -d '{"pv_power_forecast":[0, 70, 141.22, 246.18, 513.5, 753.27, 1049.89, 1797.93, 1697.3, 3078.93], "prediction_horizon":10, "soc_init":0.5,"soc_final":0.6,"def_total_hours":[1,3],"def_start_timestep":[0,3],"def_end_timestep":[0,6]}' http://localhost:5000/action/naive-mpc-optim
453
463
  ```
454
464
 
465
+
466
+
455
467
  ## A machine learning forecaster
456
468
 
457
469
  Starting in v0.4.0 a new machine learning forecaster class was introduced.
@@ -0,0 +1,23 @@
1
+ emhass/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ emhass/command_line.py,sha256=f8u1gNo5NhXF1dYMTFPDc3En34yH0sW4lFu3dqTJNf0,37424
3
+ emhass/forecast.py,sha256=2_Dm03_XyEVPYnKnJzA5TABYgt3tCe9_zRDGOOfFtEM,43555
4
+ emhass/machine_learning_forecaster.py,sha256=8Rm0-pltsjIYqLv01zCeO_Ij_n2HKC62dv_kCno7UsU,15640
5
+ emhass/optimization.py,sha256=M9BlbJ4f38APoIsHKLY_pfKszVWA61cPv_QnmtazkRA,37181
6
+ emhass/retrieve_hass.py,sha256=0v-CRFvhJgtT27AlDh0QL8f3PlZYNNMfw1fxGVwobg4,18356
7
+ emhass/utils.py,sha256=Slme0gYyXE9LwWO-8yOALZua7civhdhCoiv0h89ivdA,46114
8
+ emhass/web_server.py,sha256=u5UEAI4EsrZg35_M2pctwPMOK2SPblBZX8l0zjLWp5A,21300
9
+ emhass/static/advanced.html,sha256=AsT3lMD0AjvAqzAYvUPmslyOYk2C3LA-VfoSB2PwnYA,1747
10
+ emhass/static/basic.html,sha256=hJ4EgCXVNHL5nMQWkIHWjsTm_bJb0N_ZN4zFUjhxEzU,608
11
+ emhass/static/script.js,sha256=k3srZCNWLAduZzHzEjSyS2qttjKXpiI1WAh8CrJpQKY,17512
12
+ emhass/static/style.css,sha256=2sGD6OF33tx3-sAoZQvDvVcF67RkGNf3Xi0PMoRB34A,14952
13
+ emhass/static/img/emhass_icon.png,sha256=Kyx6hXQ1huJLHAq2CaBfjYXR25H9j99PSWHI0lShkaQ,19030
14
+ emhass/static/img/emhass_logo_short.svg,sha256=yzMcqtBRCV8rH84-MwnigZh45_f9Eoqwho9P8nCodJA,66736
15
+ emhass/static/img/feather-sprite.svg,sha256=VHjMJQg88wXa9CaeYrKGhNtyK0xdd47zCqwSIa-hxo8,60319
16
+ emhass/templates/index.html,sha256=OwmgZW8a4Powuzz9KOL-F3XAwSK5i0oi8RF4vJ8ptnQ,2652
17
+ emhass/templates/template.html,sha256=MXQsd1a1UcrwBUXEly7bq0jlS7Yj4kzvrLYEtjKhwtQ,237
18
+ emhass-0.8.2.dist-info/LICENSE,sha256=1X3-S1yvOCBDBeox1aK3dq00m7dA8NDtcPrpKPISzbE,1077
19
+ emhass-0.8.2.dist-info/METADATA,sha256=5CAGAS2Gb9Im0iuxfh_QMaVNyA44faS4gq43nify0PQ,34393
20
+ emhass-0.8.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
21
+ emhass-0.8.2.dist-info/entry_points.txt,sha256=6Bp1NFOGNv_fSTxYl1ke3K3h3aqAcBxI-bgq5yq-i1M,52
22
+ emhass-0.8.2.dist-info/top_level.txt,sha256=L7fIX4awfmxQbAePtSdVg2e6x_HhghfReHfsKSpKr9I,7
23
+ emhass-0.8.2.dist-info/RECORD,,
@@ -1,19 +0,0 @@
1
- emhass/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- emhass/command_line.py,sha256=f8u1gNo5NhXF1dYMTFPDc3En34yH0sW4lFu3dqTJNf0,37424
3
- emhass/forecast.py,sha256=5g-UIzYZAr91KRhjUaUeat1zkhluTIeqaMLmKCRtGkI,43428
4
- emhass/machine_learning_forecaster.py,sha256=8Rm0-pltsjIYqLv01zCeO_Ij_n2HKC62dv_kCno7UsU,15640
5
- emhass/optimization.py,sha256=7CM5_oA16ai40RSBk_izwOPxnq-GPyGQDUjTffIp0lI,36887
6
- emhass/retrieve_hass.py,sha256=i9kPsrIRLsl985wZERGdYbGcB79KV-NQYSmrs-_cZAk,18314
7
- emhass/utils.py,sha256=Slme0gYyXE9LwWO-8yOALZua7civhdhCoiv0h89ivdA,46114
8
- emhass/web_server.py,sha256=qGfkjlMr5UDD-UsuWpTPiJG-yyGm8cONsokws5qzB8s,18177
9
- emhass/static/style.css,sha256=E1whggyNxv7U8nF-KSJMic6ZBuakjkJm_wIEXvaWcFI,13293
10
- emhass/static/img/emhass_icon.png,sha256=Kyx6hXQ1huJLHAq2CaBfjYXR25H9j99PSWHI0lShkaQ,19030
11
- emhass/static/img/emhass_logo_short.svg,sha256=yzMcqtBRCV8rH84-MwnigZh45_f9Eoqwho9P8nCodJA,66736
12
- emhass/templates/index.html,sha256=1TNIX34_Z92RGBan-8M_dF5ptO4b-D9V40KCpjdJzgc,17939
13
- emhass/templates/template.html,sha256=TkGgMecQEbFUZA4ymPwMUzNjKHsENvCgroUWbPt7G4Y,158
14
- emhass-0.8.0.dist-info/LICENSE,sha256=1X3-S1yvOCBDBeox1aK3dq00m7dA8NDtcPrpKPISzbE,1077
15
- emhass-0.8.0.dist-info/METADATA,sha256=-06Yn_Uyb32Etf0U375lePGY9h3VQUiUiLfjPVSezuo,33456
16
- emhass-0.8.0.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
17
- emhass-0.8.0.dist-info/entry_points.txt,sha256=6Bp1NFOGNv_fSTxYl1ke3K3h3aqAcBxI-bgq5yq-i1M,52
18
- emhass-0.8.0.dist-info/top_level.txt,sha256=L7fIX4awfmxQbAePtSdVg2e6x_HhghfReHfsKSpKr9I,7
19
- emhass-0.8.0.dist-info/RECORD,,
File without changes