embedding-flow 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
contracts/__init__.py ADDED
File without changes
contracts/contracts.py ADDED
@@ -0,0 +1,14 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Optional
3
+
4
+ class transform_data(ABC):
5
+ @abstractmethod
6
+ def transform_data(self, url: str) -> Optional[str]:
7
+ """Transforma datos y retorna la ruta del archivo procesado, o None si falla"""
8
+ pass
9
+
10
+ class load_data(ABC):
11
+ @abstractmethod
12
+ def load_data(self, url: str) -> bool:
13
+ """Carga datos y retorna True si fue exitoso, False si falló"""
14
+ pass
@@ -0,0 +1,22 @@
1
+ Metadata-Version: 2.4
2
+ Name: embedding-flow
3
+ Version: 0.1.0
4
+ Summary: Pipeline to transform text chunks into embeddings and load to Qdrant
5
+ Author: facuvega
6
+ Classifier: Programming Language :: Python :: 3
7
+ Classifier: Programming Language :: Python :: 3.10
8
+ Classifier: Programming Language :: Python :: 3.11
9
+ Classifier: Programming Language :: Python :: 3.12
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: >=3.10
13
+ License-File: LICENSE
14
+ Requires-Dist: pandas>=2.0.0
15
+ Requires-Dist: pyarrow>=12.0.0
16
+ Requires-Dist: sentence-transformers>=2.2.0
17
+ Requires-Dist: torch>=2.0.0
18
+ Requires-Dist: qdrant-client>=1.7.0
19
+ Provides-Extra: dev
20
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
21
+ Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
22
+ Dynamic: license-file
@@ -0,0 +1,11 @@
1
+ contracts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ contracts/contracts.py,sha256=im3wzTHMxZFVIVyjVVN1u4eZ5J_HxYGrcu3oQ8BXoOk,441
3
+ embedding_flow-0.1.0.dist-info/licenses/LICENSE,sha256=Vi3cItkblr6fZwGbNlp_HnBaMFwXSWYPkrVQLXX3LCs,1057
4
+ load/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ load/load.py,sha256=Y0JbC1x7SfG_EzsSDacDK8fuIcv7K1guQ8AD0birheE,3706
6
+ transform/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ transform/transform.py,sha256=GPeea6D2EbdNwmxdCDtDGgTGIPVLs_Z4VePYQJfzROc,1585
8
+ embedding_flow-0.1.0.dist-info/METADATA,sha256=uFM06vDN-pagU7V_GoZ1wNU6ZPsX8MzdlxNMjV2JoaA,802
9
+ embedding_flow-0.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
10
+ embedding_flow-0.1.0.dist-info/top_level.txt,sha256=VfSCJdxLtTjvyUSe1z1kQgIf0j2zFt3--FivJqWMxxA,25
11
+ embedding_flow-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,22 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
22
+
@@ -0,0 +1,3 @@
1
+ contracts
2
+ load
3
+ transform
load/__init__.py ADDED
File without changes
load/load.py ADDED
@@ -0,0 +1,101 @@
1
+ from contracts.contracts import load_data
2
+ from qdrant_client import QdrantClient
3
+ from qdrant_client.models import Distance, VectorParams, PointStruct
4
+ import pandas as pd
5
+ import logging
6
+ import os
7
+ from typing import List
8
+ import uuid
9
+
10
+ # Configurar logging
11
+ logging.basicConfig(
12
+ level=logging.INFO,
13
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
14
+ )
15
+ logger = logging.getLogger(__name__)
16
+
17
+ class load_embedding(load_data):
18
+ def __init__(self):
19
+ """Inicializa el cliente de Qdrant"""
20
+ self.qdrant_url = os.getenv("QDRANT_URL", "http://localhost:6333")
21
+ self.qdrant_api_key = os.getenv("QDRANT_API_KEY", None)
22
+ self.collection_name = os.getenv("QDRANT_COLLECTION", "embeddings_collection")
23
+ self.vector_size = int(os.getenv("VECTOR_SIZE", "768"))
24
+
25
+ # Inicializar cliente
26
+ self.client = QdrantClient(
27
+ url=self.qdrant_url,
28
+ api_key=self.qdrant_api_key
29
+ )
30
+
31
+ # Crear colección si no existe
32
+ self._ensure_collection_exists()
33
+
34
+ def _ensure_collection_exists(self):
35
+ """Crea la colección en Qdrant si no existe"""
36
+ try:
37
+ collections = self.client.get_collections().collections
38
+ collection_exists = any(col.name == self.collection_name for col in collections)
39
+
40
+ if not collection_exists:
41
+ self.client.create_collection(
42
+ collection_name=self.collection_name,
43
+ vectors_config=VectorParams(
44
+ size=self.vector_size,
45
+ distance=Distance.COSINE
46
+ )
47
+ )
48
+ logger.info(f"✅ Colección '{self.collection_name}' creada en Qdrant")
49
+ else:
50
+ logger.info(f"ℹ️ Colección '{self.collection_name}' ya existe")
51
+ except Exception as e:
52
+ logger.error(f"❌ Error al verificar/crear colección: {e}", exc_info=True)
53
+ raise
54
+
55
+ def load_data(self, parquet_path: str) -> bool:
56
+ """
57
+ Carga los embeddings desde un parquet a Qdrant
58
+
59
+ Args:
60
+ parquet_path: Ruta al archivo parquet con embeddings
61
+
62
+ Returns:
63
+ True si la carga fue exitosa, False si falló
64
+ """
65
+ try:
66
+ # Leer parquet
67
+ df = pd.read_parquet(parquet_path)
68
+
69
+ if "embedding" not in df.columns:
70
+ raise ValueError(f"El parquet {parquet_path} no contiene columna 'embedding'")
71
+
72
+ # Preparar puntos para Qdrant
73
+ points: List[PointStruct] = []
74
+
75
+ for idx, row in df.iterrows():
76
+ # Generar ID único
77
+ point_id = str(uuid.uuid4())
78
+
79
+ # Preparar payload (todos los campos excepto embedding)
80
+ payload = {col: row[col] for col in df.columns if col != "embedding"}
81
+
82
+ # Crear punto
83
+ point = PointStruct(
84
+ id=point_id,
85
+ vector=row["embedding"],
86
+ payload=payload
87
+ )
88
+ points.append(point)
89
+
90
+ # Insertar en Qdrant (en batch)
91
+ self.client.upsert(
92
+ collection_name=self.collection_name,
93
+ points=points
94
+ )
95
+
96
+ logger.info(f"✅ {len(points)} embeddings cargados a Qdrant desde {parquet_path}")
97
+ return True
98
+
99
+ except Exception as e:
100
+ logger.error(f"❌ Error al cargar embeddings a Qdrant desde {parquet_path}: {e}", exc_info=True)
101
+ return False
transform/__init__.py ADDED
File without changes
transform/transform.py ADDED
@@ -0,0 +1,42 @@
1
+ from contracts.contracts import transform_data
2
+ from pathlib import Path
3
+ import pandas as pd
4
+ from sentence_transformers import SentenceTransformer
5
+ import logging
6
+ from typing import Optional
7
+
8
+ # Configurar logging
9
+ logging.basicConfig(
10
+ level=logging.INFO,
11
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
12
+ )
13
+ logger = logging.getLogger(__name__)
14
+
15
+ class transform_embedding(transform_data):
16
+ def transform_data(self, parquet_path: str) -> Optional[str]:
17
+ try:
18
+ # Cargar datos del parquet
19
+ df = pd.read_parquet(parquet_path)
20
+ if "text" not in df.columns:
21
+ raise ValueError("El parquet no contiene una columna 'text' para generar embeddings.")
22
+
23
+ # Inicializar modelo con embeddings de 768 dimensiones
24
+ model = SentenceTransformer("all-mpnet-base-v2")
25
+
26
+ # Generar embeddings
27
+ embeddings = model.encode(df["text"].tolist(), show_progress_bar=True)
28
+ df["embedding"] = embeddings.tolist() # guardar como lista
29
+
30
+ # Guardar parquet procesado
31
+ output_dir = Path("datos_embeddings")
32
+ output_dir.mkdir(parents=True, exist_ok=True)
33
+
34
+ output_file = output_dir / Path(parquet_path).name
35
+ df.to_parquet(output_file, index=False)
36
+
37
+ logger.info(f"✅ Embeddings (768 dim) generados y guardados en: {output_file}")
38
+ return str(output_file)
39
+
40
+ except Exception as e:
41
+ logger.error(f"❌ Error al transformar en embeddings {parquet_path}: {e}", exc_info=True)
42
+ return None