elasticsearch 8.13.0__py3-none-any.whl → 8.13.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. elasticsearch/_async/client/__init__.py +21 -0
  2. elasticsearch/_async/client/ml.py +61 -0
  3. elasticsearch/_async/client/security.py +7 -2
  4. elasticsearch/_sync/client/__init__.py +21 -0
  5. elasticsearch/_sync/client/ml.py +61 -0
  6. elasticsearch/_sync/client/security.py +7 -2
  7. elasticsearch/_version.py +1 -1
  8. elasticsearch/helpers/vectorstore/__init__.py +62 -0
  9. elasticsearch/helpers/vectorstore/_async/__init__.py +16 -0
  10. elasticsearch/helpers/vectorstore/_async/_utils.py +39 -0
  11. elasticsearch/helpers/vectorstore/_async/embedding_service.py +89 -0
  12. elasticsearch/helpers/vectorstore/_async/strategies.py +466 -0
  13. elasticsearch/helpers/vectorstore/_async/vectorstore.py +391 -0
  14. elasticsearch/helpers/vectorstore/_sync/__init__.py +16 -0
  15. elasticsearch/helpers/vectorstore/_sync/_utils.py +39 -0
  16. elasticsearch/helpers/vectorstore/_sync/embedding_service.py +89 -0
  17. elasticsearch/helpers/vectorstore/_sync/strategies.py +466 -0
  18. elasticsearch/helpers/vectorstore/_sync/vectorstore.py +388 -0
  19. elasticsearch/helpers/vectorstore/_utils.py +116 -0
  20. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/METADATA +5 -2
  21. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/RECORD +25 -13
  22. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/LICENSE +0 -0
  23. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/NOTICE +0 -0
  24. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/WHEEL +0 -0
  25. {elasticsearch-8.13.0.dist-info → elasticsearch-8.13.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,388 @@
1
+ # Licensed to Elasticsearch B.V. under one or more contributor
2
+ # license agreements. See the NOTICE file distributed with
3
+ # this work for additional information regarding copyright
4
+ # ownership. Elasticsearch B.V. licenses this file to you under
5
+ # the Apache License, Version 2.0 (the "License"); you may
6
+ # not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ import logging
19
+ import uuid
20
+ from typing import Any, Callable, Dict, List, Optional
21
+
22
+ from elasticsearch import Elasticsearch
23
+ from elasticsearch._version import __versionstr__ as lib_version
24
+ from elasticsearch.helpers import BulkIndexError, bulk
25
+ from elasticsearch.helpers.vectorstore import EmbeddingService, RetrievalStrategy
26
+ from elasticsearch.helpers.vectorstore._utils import maximal_marginal_relevance
27
+
28
+ logger = logging.getLogger(__name__)
29
+
30
+
31
+ class VectorStore:
32
+ """
33
+ VectorStore is a higher-level abstraction of indexing and search.
34
+ Users can pick from available retrieval strategies.
35
+
36
+ Documents have up to 3 fields:
37
+ - text_field: the text to be indexed and searched.
38
+ - metadata: additional information about the document, either schema-free
39
+ or defined by the supplied metadata_mappings.
40
+ - vector_field (usually not filled by the user): the embedding vector of the text.
41
+
42
+ Depending on the strategy, vector embeddings are
43
+ - created by the user beforehand
44
+ - created by this AsyncVectorStore class in Python
45
+ - created in-stack by inference pipelines.
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ client: Elasticsearch,
51
+ *,
52
+ index: str,
53
+ retrieval_strategy: RetrievalStrategy,
54
+ embedding_service: Optional[EmbeddingService] = None,
55
+ num_dimensions: Optional[int] = None,
56
+ text_field: str = "text_field",
57
+ vector_field: str = "vector_field",
58
+ metadata_mappings: Optional[Dict[str, Any]] = None,
59
+ user_agent: str = f"elasticsearch-py-vs/{lib_version}",
60
+ ) -> None:
61
+ """
62
+ :param user_header: user agent header specific to the 3rd party integration.
63
+ Used for usage tracking in Elastic Cloud.
64
+ :param index: The name of the index to query.
65
+ :param retrieval_strategy: how to index and search the data. See the strategies
66
+ module for availble strategies.
67
+ :param text_field: Name of the field with the textual data.
68
+ :param vector_field: For strategies that perform embedding inference in Python,
69
+ the embedding vector goes in this field.
70
+ :param client: Elasticsearch client connection. Alternatively specify the
71
+ Elasticsearch connection with the other es_* parameters.
72
+ """
73
+ # Add integration-specific usage header for tracking usage in Elastic Cloud.
74
+ # client.options preserves existing (non-user-agent) headers.
75
+ client = client.options(headers={"User-Agent": user_agent})
76
+
77
+ if hasattr(retrieval_strategy, "text_field"):
78
+ retrieval_strategy.text_field = text_field
79
+ if hasattr(retrieval_strategy, "vector_field"):
80
+ retrieval_strategy.vector_field = vector_field
81
+
82
+ self.client = client
83
+ self.index = index
84
+ self.retrieval_strategy = retrieval_strategy
85
+ self.embedding_service = embedding_service
86
+ self.num_dimensions = num_dimensions
87
+ self.text_field = text_field
88
+ self.vector_field = vector_field
89
+ self.metadata_mappings = metadata_mappings
90
+
91
+ def close(self) -> None:
92
+ return self.client.close()
93
+
94
+ def add_texts(
95
+ self,
96
+ texts: List[str],
97
+ *,
98
+ metadatas: Optional[List[Dict[str, Any]]] = None,
99
+ vectors: Optional[List[List[float]]] = None,
100
+ ids: Optional[List[str]] = None,
101
+ refresh_indices: bool = True,
102
+ create_index_if_not_exists: bool = True,
103
+ bulk_kwargs: Optional[Dict[str, Any]] = None,
104
+ ) -> List[str]:
105
+ """Add documents to the Elasticsearch index.
106
+
107
+ :param texts: List of text documents.
108
+ :param metadata: Optional list of document metadata. Must be of same length as
109
+ texts.
110
+ :param vectors: Optional list of embedding vectors. Must be of same length as
111
+ texts.
112
+ :param ids: Optional list of ID strings. Must be of same length as texts.
113
+ :param refresh_indices: Whether to refresh the index after deleting documents.
114
+ Defaults to True.
115
+ :param create_index_if_not_exists: Whether to create the index if it does not
116
+ exist. Defaults to True.
117
+ :param bulk_kwargs: Arguments to pass to the bulk function when indexing
118
+ (for example chunk_size).
119
+
120
+ :return: List of IDs of the created documents, either echoing the provided one
121
+ or returning newly created ones.
122
+ """
123
+ bulk_kwargs = bulk_kwargs or {}
124
+ ids = ids or [str(uuid.uuid4()) for _ in texts]
125
+ requests = []
126
+
127
+ if create_index_if_not_exists:
128
+ self._create_index_if_not_exists()
129
+
130
+ if self.embedding_service and not vectors:
131
+ vectors = self.embedding_service.embed_documents(texts)
132
+
133
+ for i, text in enumerate(texts):
134
+ metadata = metadatas[i] if metadatas else {}
135
+
136
+ request: Dict[str, Any] = {
137
+ "_op_type": "index",
138
+ "_index": self.index,
139
+ self.text_field: text,
140
+ "metadata": metadata,
141
+ "_id": ids[i],
142
+ }
143
+
144
+ if vectors:
145
+ request[self.vector_field] = vectors[i]
146
+
147
+ requests.append(request)
148
+
149
+ if len(requests) > 0:
150
+ try:
151
+ success, failed = bulk(
152
+ self.client,
153
+ requests,
154
+ stats_only=True,
155
+ refresh=refresh_indices,
156
+ **bulk_kwargs,
157
+ )
158
+ logger.debug(f"added texts {ids} to index")
159
+ return ids
160
+ except BulkIndexError as e:
161
+ logger.error(f"Error adding texts: {e}")
162
+ firstError = e.errors[0].get("index", {}).get("error", {})
163
+ logger.error(f"First error reason: {firstError.get('reason')}")
164
+ raise e
165
+
166
+ else:
167
+ logger.debug("No texts to add to index")
168
+ return []
169
+
170
+ def delete( # type: ignore[no-untyped-def]
171
+ self,
172
+ *,
173
+ ids: Optional[List[str]] = None,
174
+ query: Optional[Dict[str, Any]] = None,
175
+ refresh_indices: bool = True,
176
+ **delete_kwargs,
177
+ ) -> bool:
178
+ """Delete documents from the Elasticsearch index.
179
+
180
+ :param ids: List of IDs of documents to delete.
181
+ :param refresh_indices: Whether to refresh the index after deleting documents.
182
+ Defaults to True.
183
+
184
+ :return: True if deletion was successful.
185
+ """
186
+ if ids is not None and query is not None:
187
+ raise ValueError("one of ids or query must be specified")
188
+ elif ids is None and query is None:
189
+ raise ValueError("either specify ids or query")
190
+
191
+ try:
192
+ if ids:
193
+ body = [
194
+ {"_op_type": "delete", "_index": self.index, "_id": _id}
195
+ for _id in ids
196
+ ]
197
+ bulk(
198
+ self.client,
199
+ body,
200
+ refresh=refresh_indices,
201
+ ignore_status=404,
202
+ **delete_kwargs,
203
+ )
204
+ logger.debug(f"Deleted {len(body)} texts from index")
205
+
206
+ else:
207
+ self.client.delete_by_query(
208
+ index=self.index,
209
+ query=query,
210
+ refresh=refresh_indices,
211
+ **delete_kwargs,
212
+ )
213
+
214
+ except BulkIndexError as e:
215
+ logger.error(f"Error deleting texts: {e}")
216
+ firstError = e.errors[0].get("index", {}).get("error", {})
217
+ logger.error(f"First error reason: {firstError.get('reason')}")
218
+ raise e
219
+
220
+ return True
221
+
222
+ def search(
223
+ self,
224
+ *,
225
+ query: Optional[str],
226
+ query_vector: Optional[List[float]] = None,
227
+ k: int = 4,
228
+ num_candidates: int = 50,
229
+ fields: Optional[List[str]] = None,
230
+ filter: Optional[List[Dict[str, Any]]] = None,
231
+ custom_query: Optional[
232
+ Callable[[Dict[str, Any], Optional[str]], Dict[str, Any]]
233
+ ] = None,
234
+ ) -> List[Dict[str, Any]]:
235
+ """
236
+ :param query: Input query string.
237
+ :param query_vector: Input embedding vector. If given, input query string is
238
+ ignored.
239
+ :param k: Number of returned results.
240
+ :param num_candidates: Number of candidates to fetch from data nodes in knn.
241
+ :param fields: List of field names to return.
242
+ :param filter: Elasticsearch filters to apply.
243
+ :param custom_query: Function to modify the Elasticsearch query body before it is
244
+ sent to Elasticsearch.
245
+
246
+ :return: List of document hits. Includes _index, _id, _score and _source.
247
+ """
248
+ if fields is None:
249
+ fields = []
250
+ if "metadata" not in fields:
251
+ fields.append("metadata")
252
+ if self.text_field not in fields:
253
+ fields.append(self.text_field)
254
+
255
+ if self.embedding_service and not query_vector:
256
+ if not query:
257
+ raise ValueError("specify a query or a query_vector to search")
258
+ query_vector = self.embedding_service.embed_query(query)
259
+
260
+ query_body = self.retrieval_strategy.es_query(
261
+ query=query,
262
+ query_vector=query_vector,
263
+ text_field=self.text_field,
264
+ vector_field=self.vector_field,
265
+ k=k,
266
+ num_candidates=num_candidates,
267
+ filter=filter or [],
268
+ )
269
+
270
+ if custom_query is not None:
271
+ query_body = custom_query(query_body, query)
272
+ logger.debug(f"Calling custom_query, Query body now: {query_body}")
273
+
274
+ response = self.client.search(
275
+ index=self.index,
276
+ **query_body,
277
+ size=k,
278
+ source=True,
279
+ source_includes=fields,
280
+ )
281
+ hits: List[Dict[str, Any]] = response["hits"]["hits"]
282
+
283
+ return hits
284
+
285
+ def _create_index_if_not_exists(self) -> None:
286
+ exists = self.client.indices.exists(index=self.index)
287
+ if exists.meta.status == 200:
288
+ logger.debug(f"Index {self.index} already exists. Skipping creation.")
289
+ return
290
+
291
+ if self.retrieval_strategy.needs_inference():
292
+ if not self.num_dimensions and not self.embedding_service:
293
+ raise ValueError(
294
+ "retrieval strategy requires embeddings; either embedding_service "
295
+ "or num_dimensions need to be specified"
296
+ )
297
+ if not self.num_dimensions and self.embedding_service:
298
+ vector = self.embedding_service.embed_query("get num dimensions")
299
+ self.num_dimensions = len(vector)
300
+
301
+ mappings, settings = self.retrieval_strategy.es_mappings_settings(
302
+ text_field=self.text_field,
303
+ vector_field=self.vector_field,
304
+ num_dimensions=self.num_dimensions,
305
+ )
306
+ if self.metadata_mappings:
307
+ metadata = mappings["properties"].get("metadata", {"properties": {}})
308
+ for key in self.metadata_mappings.keys():
309
+ if key in metadata:
310
+ raise ValueError(f"metadata key {key} already exists in mappings")
311
+
312
+ metadata = dict(**metadata["properties"], **self.metadata_mappings)
313
+ mappings["properties"]["metadata"] = {"properties": metadata}
314
+
315
+ self.retrieval_strategy.before_index_creation(
316
+ client=self.client,
317
+ text_field=self.text_field,
318
+ vector_field=self.vector_field,
319
+ )
320
+ self.client.indices.create(
321
+ index=self.index, mappings=mappings, settings=settings
322
+ )
323
+
324
+ def max_marginal_relevance_search(
325
+ self,
326
+ *,
327
+ embedding_service: EmbeddingService,
328
+ query: str,
329
+ vector_field: str,
330
+ k: int = 4,
331
+ num_candidates: int = 20,
332
+ lambda_mult: float = 0.5,
333
+ fields: Optional[List[str]] = None,
334
+ custom_query: Optional[
335
+ Callable[[Dict[str, Any], Optional[str]], Dict[str, Any]]
336
+ ] = None,
337
+ ) -> List[Dict[str, Any]]:
338
+ """Return docs selected using the maximal marginal relevance.
339
+
340
+ Maximal marginal relevance optimizes for similarity to query AND diversity
341
+ among selected documents.
342
+
343
+ :param query (str): Text to look up documents similar to.
344
+ :param k (int): Number of Documents to return. Defaults to 4.
345
+ :param fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
346
+ :param lambda_mult (float): Number between 0 and 1 that determines the degree
347
+ of diversity among the results with 0 corresponding
348
+ to maximum diversity and 1 to minimum diversity.
349
+ Defaults to 0.5.
350
+ :param fields: Other fields to get from elasticsearch source. These fields
351
+ will be added to the document metadata.
352
+
353
+ :return: A list of Documents selected by maximal marginal relevance.
354
+ """
355
+ remove_vector_query_field_from_metadata = True
356
+ if fields is None:
357
+ fields = [vector_field]
358
+ elif vector_field not in fields:
359
+ fields.append(vector_field)
360
+ else:
361
+ remove_vector_query_field_from_metadata = False
362
+
363
+ # Embed the query
364
+ query_embedding = embedding_service.embed_query(query)
365
+
366
+ # Fetch the initial documents
367
+ got_hits = self.search(
368
+ query=None,
369
+ query_vector=query_embedding,
370
+ k=num_candidates,
371
+ fields=fields,
372
+ custom_query=custom_query,
373
+ )
374
+
375
+ # Get the embeddings for the fetched documents
376
+ got_embeddings = [hit["_source"][vector_field] for hit in got_hits]
377
+
378
+ # Select documents using maximal marginal relevance
379
+ selected_indices = maximal_marginal_relevance(
380
+ query_embedding, got_embeddings, lambda_mult=lambda_mult, k=k
381
+ )
382
+ selected_hits = [got_hits[i] for i in selected_indices]
383
+
384
+ if remove_vector_query_field_from_metadata:
385
+ for hit in selected_hits:
386
+ del hit["_source"][vector_field]
387
+
388
+ return selected_hits
@@ -0,0 +1,116 @@
1
+ # Licensed to Elasticsearch B.V. under one or more contributor
2
+ # license agreements. See the NOTICE file distributed with
3
+ # this work for additional information regarding copyright
4
+ # ownership. Elasticsearch B.V. licenses this file to you under
5
+ # the Apache License, Version 2.0 (the "License"); you may
6
+ # not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing,
12
+ # software distributed under the License is distributed on an
13
+ # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14
+ # KIND, either express or implied. See the License for the
15
+ # specific language governing permissions and limitations
16
+ # under the License.
17
+
18
+ from enum import Enum
19
+ from typing import TYPE_CHECKING, List, Union
20
+
21
+ if TYPE_CHECKING:
22
+ import numpy as np
23
+ import numpy.typing as npt
24
+
25
+ Matrix = Union[
26
+ List[List[float]], List["npt.NDArray[np.float64]"], "npt.NDArray[np.float64]"
27
+ ]
28
+
29
+
30
+ class DistanceMetric(str, Enum):
31
+ """Enumerator of all Elasticsearch dense vector distance metrics."""
32
+
33
+ COSINE = "COSINE"
34
+ DOT_PRODUCT = "DOT_PRODUCT"
35
+ EUCLIDEAN_DISTANCE = "EUCLIDEAN_DISTANCE"
36
+ MAX_INNER_PRODUCT = "MAX_INNER_PRODUCT"
37
+
38
+
39
+ def maximal_marginal_relevance(
40
+ query_embedding: List[float],
41
+ embedding_list: List[List[float]],
42
+ lambda_mult: float = 0.5,
43
+ k: int = 4,
44
+ ) -> List[int]:
45
+ """Calculate maximal marginal relevance."""
46
+
47
+ try:
48
+ import numpy as np
49
+ except ModuleNotFoundError as e:
50
+ _raise_missing_mmr_deps_error(e)
51
+
52
+ query_embedding_arr = np.array(query_embedding)
53
+
54
+ if min(k, len(embedding_list)) <= 0:
55
+ return []
56
+ if query_embedding_arr.ndim == 1:
57
+ query_embedding_arr = np.expand_dims(query_embedding_arr, axis=0)
58
+ similarity_to_query = _cosine_similarity(query_embedding_arr, embedding_list)[0]
59
+ most_similar = int(np.argmax(similarity_to_query))
60
+ idxs = [most_similar]
61
+ selected = np.array([embedding_list[most_similar]])
62
+ while len(idxs) < min(k, len(embedding_list)):
63
+ best_score = -np.inf
64
+ idx_to_add = -1
65
+ similarity_to_selected = _cosine_similarity(embedding_list, selected)
66
+ for i, query_score in enumerate(similarity_to_query):
67
+ if i in idxs:
68
+ continue
69
+ redundant_score = max(similarity_to_selected[i])
70
+ equation_score = (
71
+ lambda_mult * query_score - (1 - lambda_mult) * redundant_score
72
+ )
73
+ if equation_score > best_score:
74
+ best_score = equation_score
75
+ idx_to_add = i
76
+ idxs.append(idx_to_add)
77
+ selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
78
+ return idxs
79
+
80
+
81
+ def _cosine_similarity(X: Matrix, Y: Matrix) -> "npt.NDArray[np.float64]":
82
+ """Row-wise cosine similarity between two equal-width matrices."""
83
+
84
+ try:
85
+ import numpy as np
86
+ import simsimd as simd
87
+ except ModuleNotFoundError as e:
88
+ _raise_missing_mmr_deps_error(e)
89
+
90
+ if len(X) == 0 or len(Y) == 0:
91
+ return np.array([])
92
+
93
+ X = np.array(X)
94
+ Y = np.array(Y)
95
+ if X.shape[1] != Y.shape[1]:
96
+ raise ValueError(
97
+ f"Number of columns in X and Y must be the same. X has shape {X.shape} "
98
+ f"and Y has shape {Y.shape}."
99
+ )
100
+
101
+ X = np.array(X, dtype=np.float32)
102
+ Y = np.array(Y, dtype=np.float32)
103
+ Z = 1 - np.array(simd.cdist(X, Y, metric="cosine"))
104
+ if isinstance(Z, float):
105
+ return np.array([Z])
106
+ return np.array(Z)
107
+
108
+
109
+ def _raise_missing_mmr_deps_error(parent_error: ModuleNotFoundError) -> None:
110
+ import sys
111
+
112
+ raise ModuleNotFoundError(
113
+ f"Failed to compute maximal marginal relevance because the required "
114
+ f"module '{parent_error.name}' is missing. You can install it by running: "
115
+ f"'{sys.executable} -m pip install elasticsearch[vectorstore_mmr]'"
116
+ ) from parent_error
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: elasticsearch
3
- Version: 8.13.0
3
+ Version: 8.13.2
4
4
  Summary: Python client for Elasticsearch
5
5
  Home-page: https://github.com/elastic/elasticsearch-py
6
6
  Author: Elastic Client Library Maintainers
@@ -33,7 +33,10 @@ Requires-Dist: aiohttp <4,>=3 ; extra == 'async'
33
33
  Provides-Extra: orjson
34
34
  Requires-Dist: orjson >=3 ; extra == 'orjson'
35
35
  Provides-Extra: requests
36
- Requires-Dist: requests <3.0.0,>=2.4.0 ; extra == 'requests'
36
+ Requires-Dist: requests !=2.32.2,<3.0.0,>=2.4.0 ; extra == 'requests'
37
+ Provides-Extra: vectorstore_mmr
38
+ Requires-Dist: numpy >=1 ; extra == 'vectorstore_mmr'
39
+ Requires-Dist: simsimd >=3 ; extra == 'vectorstore_mmr'
37
40
 
38
41
 
39
42
  Elasticsearch Python Client
@@ -1,7 +1,7 @@
1
1
  elasticsearch/__init__.py,sha256=w5YnO16zjOi6loGJ8caUgSXsj3b-Y8OfF0BIddP2BiE,3289
2
2
  elasticsearch/_otel.py,sha256=9nMvDwSz_BephEQmkETCmEdA_6YNtj_CJQyxIwOzEGo,3406
3
3
  elasticsearch/_utils.py,sha256=Vr_aNG5ddxInE1PgDpCXMYpXBTNUFM9nYrgbw-cjeCc,1419
4
- elasticsearch/_version.py,sha256=Lp8EDhh_IQC-4TsKLVoxITi9477dKtzhiHxVnTJDGKw,814
4
+ elasticsearch/_version.py,sha256=0P-o-HdbMQa0vGhTZYE8ZkuZ9v7zXoV3M6M0wUoqfrs,814
5
5
  elasticsearch/client.py,sha256=p4naAgAPs_B9laux-aC-bpZNvbu9fvrpicBvLRlp_yw,5120
6
6
  elasticsearch/compat.py,sha256=hL3mtqVxWwxeiFbNGADva5XruAwK-A6xcu-vrpnDXFs,2657
7
7
  elasticsearch/exceptions.py,sha256=HHqidMTlLXRcNbo4gjsbhHsLfiV4JGg7tx1lXQndG98,4025
@@ -10,7 +10,7 @@ elasticsearch/serializer.py,sha256=hPBqMHweVES7ixgKhe5KMMQGAdDamzW-PAn7jX8uqcs,7
10
10
  elasticsearch/transport.py,sha256=CxKo2USPQ-6q4x8Ckfq_dUFWhA1s98p75ghXc3breJI,2248
11
11
  elasticsearch/_async/__init__.py,sha256=TZps9WjF-TaSNzBvW5wUCgXRcbHnvE_9xAynBHsMtSo,787
12
12
  elasticsearch/_async/helpers.py,sha256=vX2oGiYHO5raZJOnTMEX9hViPNy1YW26IeS60gbhNno,22285
13
- elasticsearch/_async/client/__init__.py,sha256=ediCBxNjK-SfTNNHciBLOPDcsITFz9lfWdDPEWD8PIM,238829
13
+ elasticsearch/_async/client/__init__.py,sha256=0JS0lH4tghGRfN5I2TiUv6f0VsF4et_cCD3lD7vDFao,240323
14
14
  elasticsearch/_async/client/_base.py,sha256=wDJIs-4Z_fDBF0_XvfCmfSuyL6Oh8I2nSGDZyP91XCU,15531
15
15
  elasticsearch/_async/client/async_search.py,sha256=bv2GC_5ZPX3HpOHCJLf7-CzjPxEQSyhWTlbn7K40ODY,29238
16
16
  elasticsearch/_async/client/autoscaling.py,sha256=eV4PGsQc3F-ykw8nRfRZcjD0Xr_0eo1oFbOh5nBBvok,7741
@@ -31,14 +31,14 @@ elasticsearch/_async/client/ingest.py,sha256=5V8fur9z4Vkv4p-3geOfc1ek5N8qJ6CvWbd
31
31
  elasticsearch/_async/client/license.py,sha256=kuqW-yfOVdsDHh5puu7_tD_LN7JU0Axt0AtE5ttx8jc,12100
32
32
  elasticsearch/_async/client/logstash.py,sha256=JrvbrTi9sCO-GzOe3lBWcaIOPkYFqzenCkYw_B6JW7Q,6127
33
33
  elasticsearch/_async/client/migration.py,sha256=It0NTjXaN-UW8keaNURglL4rYbOmAvTbHD7QlFBOJg4,5331
34
- elasticsearch/_async/client/ml.py,sha256=dAgtPql-fTGX-wS2IYbVemSAm2m-CuDxhakNDpHn3pg,238218
34
+ elasticsearch/_async/client/ml.py,sha256=tckls24jxPSOb_OA3f6plc0DDLfKhwddhpAoVfyr0gU,241082
35
35
  elasticsearch/_async/client/monitoring.py,sha256=ZQSiQ8AXfu_8_--cHOpfhjpsQkQZekmBlPiOLAYotpw,3822
36
36
  elasticsearch/_async/client/nodes.py,sha256=xmLfm0cPsQSjH_WKyzGKHI6IhgT9gKhj3XrsJdTXL5w,23723
37
37
  elasticsearch/_async/client/query_ruleset.py,sha256=vBgpKRYL0X7giU05Vw6-pXre10W81zGoALWL_XAnkRM,7606
38
38
  elasticsearch/_async/client/rollup.py,sha256=g_zc1KwIW9Bms2XPO0jkaqhrDGVy05WvA1pYYBfgyLc,20828
39
39
  elasticsearch/_async/client/search_application.py,sha256=2UWgrM69Ai-O6oMbBrUxmW9BBBdTDI_UPGFzW86wIFU,15047
40
40
  elasticsearch/_async/client/searchable_snapshots.py,sha256=WsRPKq-ZjFwt7nj6GPCib1RwR7f5YG-Qo58BgZxJpqc,11694
41
- elasticsearch/_async/client/security.py,sha256=Y0exmFNOQ7k6Yd2iDDyw6Xn8cnEjLPWW27HQ2sYmSrE,128262
41
+ elasticsearch/_async/client/security.py,sha256=OJ7vXLuIja8VGHZIxteLjuEcMaLyfKUGOi75f-N54Eo,129415
42
42
  elasticsearch/_async/client/shutdown.py,sha256=Ckk_YcGy1yO2PuD0LDIulxkFFcmx4t7V3z_thRUWkEw,11364
43
43
  elasticsearch/_async/client/slm.py,sha256=lVnfb9LERioxR9frUwZA6l9UZaQcb3sYzBBLo1fuimE,16150
44
44
  elasticsearch/_async/client/snapshot.py,sha256=c6FSTngRw5PQK1UEFlA_vXPZOmbHMFi9FtT63y_mbbE,37085
@@ -52,7 +52,7 @@ elasticsearch/_async/client/utils.py,sha256=JwFOxo-YrRg4exXlpiUuOG1uNtJKP_VeK0Hg
52
52
  elasticsearch/_async/client/watcher.py,sha256=rp8cX_RgvpPp0Zny0fXPQ6Tx-oik2l3y38z1n8b4h44,25760
53
53
  elasticsearch/_async/client/xpack.py,sha256=yNFQduIcpIfbvY2-spbOOoQWQbKl0yx71mB-tMV9Sic,4490
54
54
  elasticsearch/_sync/__init__.py,sha256=TZps9WjF-TaSNzBvW5wUCgXRcbHnvE_9xAynBHsMtSo,787
55
- elasticsearch/_sync/client/__init__.py,sha256=joiHRd3s53SDrUyGFNfl3KCD_-Tzhr3WbvD6YRzpkG0,238198
55
+ elasticsearch/_sync/client/__init__.py,sha256=WhHCGYW8u7czxp1LTiqC6DMgwzM5DocqP_i8mCkvr3k,239692
56
56
  elasticsearch/_sync/client/_base.py,sha256=LesRKQzvgstEPn-hzoY7PBq_4hAyPCzjGiUggGn-fB8,15461
57
57
  elasticsearch/_sync/client/async_search.py,sha256=miChWFtoXb8UhC4mrfzcM0vXxxOAoHsno1zJVey2vHM,29190
58
58
  elasticsearch/_sync/client/autoscaling.py,sha256=eSNyAXvp7TkYTVthPd8ez5UpCq_UrAYVEWGQw0cjriI,7693
@@ -73,14 +73,14 @@ elasticsearch/_sync/client/ingest.py,sha256=UY-x1MXjnD2LkbX8O2qa5Ag6eD4lzf4LeZO8
73
73
  elasticsearch/_sync/client/license.py,sha256=tEc366OvzPh9OFbgCMAo8dyw7wjajIcNQyfAX-uin3I,12016
74
74
  elasticsearch/_sync/client/logstash.py,sha256=2Mpd3y-wNR3H7wsFW2riiB6bbobctNoMW22VOvDbN2s,6091
75
75
  elasticsearch/_sync/client/migration.py,sha256=dJ27K1SLcJn4XyBvyPFVocjxHtsAyf2vuOQl52uxK64,5295
76
- elasticsearch/_sync/client/ml.py,sha256=5Y5ETcS2mTFZ7he2escEosL634NVWITcB31g9Xhj-9Q,237354
76
+ elasticsearch/_sync/client/ml.py,sha256=7YgW9g5MQ4KUhI05X_mp7zDHwmRhDAXc0UahK_7qmwM,240206
77
77
  elasticsearch/_sync/client/monitoring.py,sha256=Wh2RTfFOOm5ssbdGv0_gSDS2og1L8ATJamLuUuNrBYU,3810
78
78
  elasticsearch/_sync/client/nodes.py,sha256=YloTg5V90lyGeoY_XU_2X2aeLHOpPss1g7Kp0hR2EF4,23639
79
79
  elasticsearch/_sync/client/query_ruleset.py,sha256=dRzaVZVYLtlRi6PJVGQTPXCKCJuuf6fkU6wug-zmmXs,7558
80
80
  elasticsearch/_sync/client/rollup.py,sha256=ow9wty2HE3doDEMcg-krKWmbgDsAD6brZe6IuenlV94,20732
81
81
  elasticsearch/_sync/client/search_application.py,sha256=QWZqLxnaNo7XDg1xQPa0dY2j8LiJn03DDxiygJirqEc,14951
82
82
  elasticsearch/_sync/client/searchable_snapshots.py,sha256=ehDowrZcltn4DJUkswyTOXk16QxVHdnid1fb_SdZ9UY,11646
83
- elasticsearch/_sync/client/security.py,sha256=PyH1zVhnhLzh9CbpqiRPgqiP3sQ_3PVHtSNR33pYwIs,127650
83
+ elasticsearch/_sync/client/security.py,sha256=P8hvujP7dJYA1xsmbcLRQVmR586qRMgIHEn3p-QECs8,128803
84
84
  elasticsearch/_sync/client/shutdown.py,sha256=YWT70DR1u4wBh1kKAtO-9hkJTm8OrYfTuUiLshwxebM,11328
85
85
  elasticsearch/_sync/client/slm.py,sha256=WaMu3iQtftjelmfHyZUExLpzfkwJKS-iR218VZzPOiA,16042
86
86
  elasticsearch/_sync/client/snapshot.py,sha256=pB1Gsv2kmmb-uyLlSRdd0K-g2B7xCFojyk3KgGsu7a0,36953
@@ -96,9 +96,21 @@ elasticsearch/_sync/client/xpack.py,sha256=PzQCp2i4nNzCtV1HGtLYuwqUDGnIe4On7f2Wy
96
96
  elasticsearch/helpers/__init__.py,sha256=7X10XwdP_fP1QTHGcOxGbCvl2oBevkz_DjhjXCh_59I,1470
97
97
  elasticsearch/helpers/actions.py,sha256=oEVAqOjWBn9PLFPpdIEBb5BMKLgN4mi7EozEcOqb4us,30956
98
98
  elasticsearch/helpers/errors.py,sha256=GKtlM2687mbBC8PjwQGClBFE4sD129Ytb6wkHZveFJw,1213
99
- elasticsearch-8.13.0.dist-info/LICENSE,sha256=XfKg2H1sVi8OoRxoisUlMqoo10TKvHmU_wU39ks7MyA,10143
100
- elasticsearch-8.13.0.dist-info/METADATA,sha256=CVwUDGf0Fu641Z7gq3WDx-YN3LjB5V4dYoqOyUcJsak,6313
101
- elasticsearch-8.13.0.dist-info/NOTICE,sha256=t4IjKAJ_G-0hYaL4AH16CVS_xDel8UXrJVK6x7JDaGA,61
102
- elasticsearch-8.13.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
103
- elasticsearch-8.13.0.dist-info/top_level.txt,sha256=Jp2bLWq49skvCN4YCZsg1Hfn_NDLgleC-x-Bn01_HgM,14
104
- elasticsearch-8.13.0.dist-info/RECORD,,
99
+ elasticsearch/helpers/vectorstore/__init__.py,sha256=znQOANiaSZOJco_dkBf06wpFMKwK0OoDcNkkS8NMWKE,2192
100
+ elasticsearch/helpers/vectorstore/_utils.py,sha256=xJwCFq7sqUBeq143tfnfm3i4e-ta88s85wKZmPZwJWg,3985
101
+ elasticsearch/helpers/vectorstore/_async/__init__.py,sha256=TZps9WjF-TaSNzBvW5wUCgXRcbHnvE_9xAynBHsMtSo,787
102
+ elasticsearch/helpers/vectorstore/_async/_utils.py,sha256=wYlPKvAT4bflJjULLB2LMjJroAgX6tjoDGBPT6V1gj8,1608
103
+ elasticsearch/helpers/vectorstore/_async/embedding_service.py,sha256=Qv4HsPC4k6J00K4ajhJPFlET6fOTV-l74iDCr4dpZgc,3655
104
+ elasticsearch/helpers/vectorstore/_async/strategies.py,sha256=nh_wvNfWmZIjbTQ38FGSkUeF4_yDk48zukNuhOkq9bE,15322
105
+ elasticsearch/helpers/vectorstore/_async/vectorstore.py,sha256=YiwiNJsslVPmfrqB5jpkNchHKoGGZLdz_tieHMR0Jpk,15161
106
+ elasticsearch/helpers/vectorstore/_sync/__init__.py,sha256=TZps9WjF-TaSNzBvW5wUCgXRcbHnvE_9xAynBHsMtSo,787
107
+ elasticsearch/helpers/vectorstore/_sync/_utils.py,sha256=5pdvNS5XC3wqShjliW9Njl9tVuyI9WMy0cxc5-97K-c,1569
108
+ elasticsearch/helpers/vectorstore/_sync/embedding_service.py,sha256=sAw_WKUcmyqOOJRqnNesZCzn7ZyA91v4NvvQszHIWJ8,3582
109
+ elasticsearch/helpers/vectorstore/_sync/strategies.py,sha256=0Q1zoOrO51S6HXjXwkAePPVtCUGQz5lKN9NyRCso-GU,15220
110
+ elasticsearch/helpers/vectorstore/_sync/vectorstore.py,sha256=MqTDeHyG4NS9gInxwljh4J0QVvS499SajQ22fe1UpLs,14970
111
+ elasticsearch-8.13.2.dist-info/LICENSE,sha256=XfKg2H1sVi8OoRxoisUlMqoo10TKvHmU_wU39ks7MyA,10143
112
+ elasticsearch-8.13.2.dist-info/METADATA,sha256=Eex24ZRMP8r810PL3irLjbwO0c_KeWgszymGV2Q6k8M,6464
113
+ elasticsearch-8.13.2.dist-info/NOTICE,sha256=t4IjKAJ_G-0hYaL4AH16CVS_xDel8UXrJVK6x7JDaGA,61
114
+ elasticsearch-8.13.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
115
+ elasticsearch-8.13.2.dist-info/top_level.txt,sha256=Jp2bLWq49skvCN4YCZsg1Hfn_NDLgleC-x-Bn01_HgM,14
116
+ elasticsearch-8.13.2.dist-info/RECORD,,