elasticsearch-haystack 5.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,41 @@
1
+ Metadata-Version: 2.4
2
+ Name: elasticsearch-haystack
3
+ Version: 5.1.0
4
+ Summary: Haystack 2.x Document Store for ElasticSearch
5
+ Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch#readme
6
+ Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
7
+ Project-URL: Source, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch
8
+ Author-email: Silvano Cerza <silvanocerza@gmail.com>
9
+ License-Expression: Apache-2.0
10
+ License-File: LICENSE
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: License :: OSI Approved :: Apache Software License
13
+ Classifier: Programming Language :: Python
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Programming Language :: Python :: 3.13
18
+ Classifier: Programming Language :: Python :: Implementation :: CPython
19
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
20
+ Requires-Python: >=3.10
21
+ Requires-Dist: aiohttp>=3.9.0
22
+ Requires-Dist: elasticsearch<9,>=8
23
+ Requires-Dist: haystack-ai>=2.22.0
24
+ Description-Content-Type: text/markdown
25
+
26
+ # elasticsearch-haystack
27
+
28
+ [![PyPI - Version](https://img.shields.io/pypi/v/elasticsearch-haystack.svg)](https://pypi.org/project/elasticsearch-haystack)
29
+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elasticsearch-haystack.svg)](https://pypi.org/project/elasticsearch-haystack)
30
+
31
+ - [Integration page](https://haystack.deepset.ai/integrations/elasticsearch-document-store)
32
+ - [Changelog](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/elasticsearch/CHANGELOG.md)
33
+
34
+ ---
35
+
36
+ ## Contributing
37
+
38
+ Refer to the general [Contribution Guidelines](https://github.com/deepset-ai/haystack-core-integrations/blob/main/CONTRIBUTING.md).
39
+
40
+ To run integration tests locally, you need a Docker container running ElasticSearch.
41
+ Use the provided `docker-compose.yml` file to start the container: `docker compose up -d`.
@@ -0,0 +1,12 @@
1
+ haystack_integrations/components/retrievers/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ haystack_integrations/components/retrievers/elasticsearch/__init__.py,sha256=cSJBsYjz_T4kK-M-auAHVUnYIcgUqqwwQe_hsF0_IG4,307
3
+ haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=ErMEQjzgg3-I2J8zOM_kDV0Y8UWtfqNHm89_vV-fOSo,7048
4
+ haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=gz5BnSG0u7QimzKJWDYVvrkURMGXnGv4gldyJFTAk5U,7351
5
+ haystack_integrations/document_stores/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ haystack_integrations/document_stores/elasticsearch/__init__.py,sha256=YTfu94dtVUBogbJFr1aJrKuaI6-Bw9VuHfPoyU7M8os,207
7
+ haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=Wzn5kpcag2p75ySN788Uql9Q00RWj1CRXWmmmnuMLNU,65683
8
+ haystack_integrations/document_stores/elasticsearch/filters.py,sha256=UmQ9zbITweR1QQnVbRKCbH46Dcdrj2rhMO90ll_sHT0,9747
9
+ elasticsearch_haystack-5.1.0.dist-info/METADATA,sha256=VKvwAgwRGEqE3vUWFAskVqf9yMQuBQNeMvvRdyZF_D0,2057
10
+ elasticsearch_haystack-5.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
11
+ elasticsearch_haystack-5.1.0.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
12
+ elasticsearch_haystack-5.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.28.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2023 deepset GmbH
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,7 @@
1
+ # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ from .bm25_retriever import ElasticsearchBM25Retriever
5
+ from .embedding_retriever import ElasticsearchEmbeddingRetriever
6
+
7
+ __all__ = ["ElasticsearchBM25Retriever", "ElasticsearchEmbeddingRetriever"]
@@ -0,0 +1,166 @@
1
+ # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ from typing import Any
5
+
6
+ from haystack import component, default_from_dict, default_to_dict
7
+ from haystack.dataclasses import Document
8
+ from haystack.document_stores.types import FilterPolicy
9
+ from haystack.document_stores.types.filter_policy import apply_filter_policy
10
+
11
+ from haystack_integrations.document_stores.elasticsearch.document_store import ElasticsearchDocumentStore
12
+
13
+
14
+ @component
15
+ class ElasticsearchBM25Retriever:
16
+ """
17
+ ElasticsearchBM25Retriever retrieves documents from the ElasticsearchDocumentStore using BM25 algorithm to find the
18
+ most similar documents to a user's query.
19
+
20
+ This retriever is only compatible with ElasticsearchDocumentStore.
21
+
22
+ Usage example:
23
+ ```python
24
+ from haystack import Document
25
+ from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
26
+ from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchBM25Retriever
27
+
28
+ document_store = ElasticsearchDocumentStore(hosts="http://localhost:9200")
29
+ retriever = ElasticsearchBM25Retriever(document_store=document_store)
30
+
31
+ # Add documents to DocumentStore
32
+ documents = [
33
+ Document(text="My name is Carla and I live in Berlin"),
34
+ Document(text="My name is Paul and I live in New York"),
35
+ Document(text="My name is Silvano and I live in Matera"),
36
+ Document(text="My name is Usagi Tsukino and I live in Tokyo"),
37
+ ]
38
+ document_store.write_documents(documents)
39
+
40
+ result = retriever.run(query="Who lives in Berlin?")
41
+ for doc in result["documents"]:
42
+ print(doc.content)
43
+ ```
44
+ """
45
+
46
+ def __init__(
47
+ self,
48
+ *,
49
+ document_store: ElasticsearchDocumentStore,
50
+ filters: dict[str, Any] | None = None,
51
+ fuzziness: str = "AUTO",
52
+ top_k: int = 10,
53
+ scale_score: bool = False,
54
+ filter_policy: str | FilterPolicy = FilterPolicy.REPLACE,
55
+ ):
56
+ """
57
+ Initialize ElasticsearchBM25Retriever with an instance ElasticsearchDocumentStore.
58
+
59
+ :param document_store: An instance of ElasticsearchDocumentStore.
60
+ :param filters: Filters applied to the retrieved Documents, for more info
61
+ see `ElasticsearchDocumentStore.filter_documents`.
62
+ :param fuzziness: Fuzziness parameter passed to Elasticsearch. See the official
63
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness)
64
+ for more details.
65
+ :param top_k: Maximum number of Documents to return.
66
+ :param scale_score: If `True` scales the Document`s scores between 0 and 1.
67
+ :param filter_policy: Policy to determine how filters are applied.
68
+ :raises ValueError: If `document_store` is not an instance of `ElasticsearchDocumentStore`.
69
+ """
70
+
71
+ if not isinstance(document_store, ElasticsearchDocumentStore):
72
+ msg = "document_store must be an instance of ElasticsearchDocumentStore"
73
+ raise ValueError(msg)
74
+
75
+ self._document_store = document_store
76
+ self._filters = filters or {}
77
+ self._fuzziness = fuzziness
78
+ self._top_k = top_k
79
+ self._scale_score = scale_score
80
+ self._filter_policy = FilterPolicy.from_str(filter_policy) if isinstance(filter_policy, str) else filter_policy
81
+
82
+ def to_dict(self) -> dict[str, Any]:
83
+ """
84
+ Serializes the component to a dictionary.
85
+
86
+ :returns:
87
+ Dictionary with serialized data.
88
+ """
89
+ return default_to_dict(
90
+ self,
91
+ filters=self._filters,
92
+ fuzziness=self._fuzziness,
93
+ top_k=self._top_k,
94
+ scale_score=self._scale_score,
95
+ filter_policy=self._filter_policy.value,
96
+ document_store=self._document_store.to_dict(),
97
+ )
98
+
99
+ @classmethod
100
+ def from_dict(cls, data: dict[str, Any]) -> "ElasticsearchBM25Retriever":
101
+ """
102
+ Deserializes the component from a dictionary.
103
+
104
+ :param data:
105
+ Dictionary to deserialize from.
106
+ :returns:
107
+ Deserialized component.
108
+ """
109
+ data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
110
+ data["init_parameters"]["document_store"]
111
+ )
112
+ # Pipelines serialized with old versions of the component might not
113
+ # have the filter_policy field.
114
+ if filter_policy := data["init_parameters"].get("filter_policy"):
115
+ data["init_parameters"]["filter_policy"] = FilterPolicy.from_str(filter_policy)
116
+ return default_from_dict(cls, data)
117
+
118
+ @component.output_types(documents=list[Document])
119
+ def run(
120
+ self, query: str, filters: dict[str, Any] | None = None, top_k: int | None = None
121
+ ) -> dict[str, list[Document]]:
122
+ """
123
+ Retrieve documents using the BM25 keyword-based algorithm.
124
+
125
+ :param query: String to search in the `Document`s text.
126
+ :param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
127
+ the `filter_policy` chosen at retriever initialization. See init method docstring for more
128
+ details.
129
+ :param top_k: Maximum number of `Document` to return.
130
+ :returns: A dictionary with the following keys:
131
+ - `documents`: List of `Document`s that match the query.
132
+ """
133
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
134
+ docs = self._document_store._bm25_retrieval(
135
+ query=query,
136
+ filters=filters,
137
+ fuzziness=self._fuzziness,
138
+ top_k=top_k or self._top_k,
139
+ scale_score=self._scale_score,
140
+ )
141
+ return {"documents": docs}
142
+
143
+ @component.output_types(documents=list[Document])
144
+ async def run_async(
145
+ self, query: str, filters: dict[str, Any] | None = None, top_k: int | None = None
146
+ ) -> dict[str, list[Document]]:
147
+ """
148
+ Asynchronously retrieve documents using the BM25 keyword-based algorithm.
149
+
150
+ :param query: String to search in the `Document` text.
151
+ :param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
152
+ the `filter_policy` chosen at retriever initialization. See init method docstring for more
153
+ details.
154
+ :param top_k: Maximum number of `Document` to return.
155
+ :returns: A dictionary with the following keys:
156
+ - `documents`: List of `Document`s that match the query.
157
+ """
158
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
159
+ docs = await self._document_store._bm25_retrieval_async(
160
+ query=query,
161
+ filters=filters,
162
+ fuzziness=self._fuzziness,
163
+ top_k=top_k or self._top_k,
164
+ scale_score=self._scale_score,
165
+ )
166
+ return {"documents": docs}
@@ -0,0 +1,164 @@
1
+ # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ from typing import Any
5
+
6
+ from haystack import component, default_from_dict, default_to_dict
7
+ from haystack.dataclasses import Document
8
+ from haystack.document_stores.types import FilterPolicy
9
+ from haystack.document_stores.types.filter_policy import apply_filter_policy
10
+
11
+ from haystack_integrations.document_stores.elasticsearch.document_store import ElasticsearchDocumentStore
12
+
13
+
14
+ @component
15
+ class ElasticsearchEmbeddingRetriever:
16
+ """
17
+ ElasticsearchEmbeddingRetriever retrieves documents from the ElasticsearchDocumentStore using vector similarity.
18
+
19
+ Usage example:
20
+ ```python
21
+ from haystack import Document
22
+ from haystack.components.embedders import SentenceTransformersTextEmbedder
23
+ from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
24
+ from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchEmbeddingRetriever
25
+
26
+ document_store = ElasticsearchDocumentStore(hosts="http://localhost:9200")
27
+ retriever = ElasticsearchEmbeddingRetriever(document_store=document_store)
28
+
29
+ # Add documents to DocumentStore
30
+ documents = [
31
+ Document(text="My name is Carla and I live in Berlin"),
32
+ Document(text="My name is Paul and I live in New York"),
33
+ Document(text="My name is Silvano and I live in Matera"),
34
+ Document(text="My name is Usagi Tsukino and I live in Tokyo"),
35
+ ]
36
+ document_store.write_documents(documents)
37
+
38
+ te = SentenceTransformersTextEmbedder()
39
+ te.warm_up()
40
+ query_embeddings = te.run("Who lives in Berlin?")["embedding"]
41
+
42
+ result = retriever.run(query=query_embeddings)
43
+ for doc in result["documents"]:
44
+ print(doc.content)
45
+ ```
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ *,
51
+ document_store: ElasticsearchDocumentStore,
52
+ filters: dict[str, Any] | None = None,
53
+ top_k: int = 10,
54
+ num_candidates: int | None = None,
55
+ filter_policy: str | FilterPolicy = FilterPolicy.REPLACE,
56
+ ):
57
+ """
58
+ Create the ElasticsearchEmbeddingRetriever component.
59
+
60
+ :param document_store: An instance of ElasticsearchDocumentStore.
61
+ :param filters: Filters applied to the retrieved Documents.
62
+ Filters are applied during the approximate KNN search to ensure that top_k matching documents are returned.
63
+ :param top_k: Maximum number of Documents to return.
64
+ :param num_candidates: Number of approximate nearest neighbor candidates on each shard. Defaults to top_k * 10.
65
+ Increasing this value will improve search accuracy at the cost of slower search speeds.
66
+ You can read more about it in the Elasticsearch
67
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy)
68
+ :param filter_policy: Policy to determine how filters are applied.
69
+ :raises ValueError: If `document_store` is not an instance of ElasticsearchDocumentStore.
70
+ """
71
+ if not isinstance(document_store, ElasticsearchDocumentStore):
72
+ msg = "document_store must be an instance of ElasticsearchDocumentStore"
73
+ raise ValueError(msg)
74
+
75
+ self._document_store = document_store
76
+ self._filters = filters or {}
77
+ self._top_k = top_k
78
+ self._num_candidates = num_candidates
79
+ self._filter_policy = FilterPolicy.from_str(filter_policy) if isinstance(filter_policy, str) else filter_policy
80
+
81
+ def to_dict(self) -> dict[str, Any]:
82
+ """
83
+ Serializes the component to a dictionary.
84
+
85
+ :returns:
86
+ Dictionary with serialized data.
87
+ """
88
+ return default_to_dict(
89
+ self,
90
+ filters=self._filters,
91
+ top_k=self._top_k,
92
+ num_candidates=self._num_candidates,
93
+ filter_policy=self._filter_policy.value,
94
+ document_store=self._document_store.to_dict(),
95
+ )
96
+
97
+ @classmethod
98
+ def from_dict(cls, data: dict[str, Any]) -> "ElasticsearchEmbeddingRetriever":
99
+ """
100
+ Deserializes the component from a dictionary.
101
+
102
+ :param data:
103
+ Dictionary to deserialize from.
104
+ :returns:
105
+ Deserialized component.
106
+ """
107
+ data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
108
+ data["init_parameters"]["document_store"]
109
+ )
110
+ # Pipelines serialized with old versions of the component might not
111
+ # have the filter_policy field.
112
+ if filter_policy := data["init_parameters"].get("filter_policy"):
113
+ data["init_parameters"]["filter_policy"] = FilterPolicy.from_str(filter_policy)
114
+ return default_from_dict(cls, data)
115
+
116
+ @component.output_types(documents=list[Document])
117
+ def run(
118
+ self, query_embedding: list[float], filters: dict[str, Any] | None = None, top_k: int | None = None
119
+ ) -> dict[str, list[Document]]:
120
+ """
121
+ Retrieve documents using a vector similarity metric.
122
+
123
+ :param query_embedding: Embedding of the query.
124
+ :param filters: Filters applied when fetching documents from the Document Store.
125
+ Filters are applied during the approximate kNN search to ensure the Retriever returns
126
+ `top_k` matching documents.
127
+ The way runtime filters are applied depends on the `filter_policy` selected when initializing the Retriever.
128
+ :param top_k: Maximum number of documents to return.
129
+ :returns: A dictionary with the following keys:
130
+ - `documents`: List of `Document`s most similar to the given `query_embedding`
131
+ """
132
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
133
+ docs = self._document_store._embedding_retrieval(
134
+ query_embedding=query_embedding,
135
+ filters=filters,
136
+ top_k=top_k or self._top_k,
137
+ num_candidates=self._num_candidates,
138
+ )
139
+ return {"documents": docs}
140
+
141
+ @component.output_types(documents=list[Document])
142
+ async def run_async(
143
+ self, query_embedding: list[float], filters: dict[str, Any] | None = None, top_k: int | None = None
144
+ ) -> dict[str, list[Document]]:
145
+ """
146
+ Asynchronously retrieve documents using a vector similarity metric.
147
+
148
+ :param query_embedding: Embedding of the query.
149
+ :param filters: Filters applied when fetching documents from the Document Store.
150
+ Filters are applied during the approximate kNN search to ensure the Retriever returns
151
+ `top_k` matching documents.
152
+ The way runtime filters are applied depends on the `filter_policy` selected when initializing the Retriever.
153
+ :param top_k: Maximum number of documents to return.
154
+ :returns: A dictionary with the following keys:
155
+ - `documents`: List of `Document`s that match the query.
156
+ """
157
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
158
+ docs = await self._document_store._embedding_retrieval_async(
159
+ query_embedding=query_embedding,
160
+ filters=filters,
161
+ top_k=top_k or self._top_k,
162
+ num_candidates=self._num_candidates,
163
+ )
164
+ return {"documents": docs}
File without changes
@@ -0,0 +1,6 @@
1
+ # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ from .document_store import ElasticsearchDocumentStore
5
+
6
+ __all__ = ["ElasticsearchDocumentStore"]