elasticsearch-haystack 1.0.1__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of elasticsearch-haystack might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.3
1
+ Metadata-Version: 2.4
2
2
  Name: elasticsearch-haystack
3
- Version: 1.0.1
3
+ Version: 2.1.0
4
4
  Summary: Haystack 2.x Document Store for ElasticSearch
5
5
  Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch#readme
6
6
  Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
@@ -11,13 +11,12 @@ License-File: LICENSE
11
11
  Classifier: Development Status :: 4 - Beta
12
12
  Classifier: License :: OSI Approved :: Apache Software License
13
13
  Classifier: Programming Language :: Python
14
- Classifier: Programming Language :: Python :: 3.8
15
14
  Classifier: Programming Language :: Python :: 3.9
16
15
  Classifier: Programming Language :: Python :: 3.10
17
16
  Classifier: Programming Language :: Python :: 3.11
18
17
  Classifier: Programming Language :: Python :: Implementation :: CPython
19
18
  Classifier: Programming Language :: Python :: Implementation :: PyPy
20
- Requires-Python: >=3.8
19
+ Requires-Python: >=3.9
21
20
  Requires-Dist: elasticsearch<9,>=8
22
21
  Requires-Dist: haystack-ai
23
22
  Description-Content-Type: text/markdown
@@ -0,0 +1,10 @@
1
+ haystack_integrations/components/retrievers/elasticsearch/__init__.py,sha256=cSJBsYjz_T4kK-M-auAHVUnYIcgUqqwwQe_hsF0_IG4,307
2
+ haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=ISHc6elYXoDXDvC62_3bMMCk_Dv67jvZIgQBCZ1ZHdw,7012
3
+ haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=jHDLMeecpf-DhvbRM1AAq2kIJn7xMNTR9vkm-FhHH7k,7332
4
+ haystack_integrations/document_stores/elasticsearch/__init__.py,sha256=YTfu94dtVUBogbJFr1aJrKuaI6-Bw9VuHfPoyU7M8os,207
5
+ haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=xzMcKhWfVBZUxzzpchcsAf8qWjux-PfZ4zqa8kd4Hcg,28825
6
+ haystack_integrations/document_stores/elasticsearch/filters.py,sha256=Umip-PP4uFjuWeB1JWkKhaKClQ0VpiykoDlDu99wIV0,9759
7
+ elasticsearch_haystack-2.1.0.dist-info/METADATA,sha256=nemE4-8L0_hMZTDkLk6ubi2p4kT1ESaX_OLHD_8QQnQ,2118
8
+ elasticsearch_haystack-2.1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
9
+ elasticsearch_haystack-2.1.0.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
10
+ elasticsearch_haystack-2.1.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.25.0
2
+ Generator: hatchling 1.27.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -120,7 +120,7 @@ class ElasticsearchBM25Retriever:
120
120
  """
121
121
  Retrieve documents using the BM25 keyword-based algorithm.
122
122
 
123
- :param query: String to search in `Document`s' text.
123
+ :param query: String to search in the `Document`s text.
124
124
  :param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
125
125
  the `filter_policy` chosen at retriever initialization. See init method docstring for more
126
126
  details.
@@ -137,3 +137,26 @@ class ElasticsearchBM25Retriever:
137
137
  scale_score=self._scale_score,
138
138
  )
139
139
  return {"documents": docs}
140
+
141
+ @component.output_types(documents=List[Document])
142
+ async def run_async(self, query: str, filters: Optional[Dict[str, Any]] = None, top_k: Optional[int] = None):
143
+ """
144
+ Asynchronously retrieve documents using the BM25 keyword-based algorithm.
145
+
146
+ :param query: String to search in the `Document` text.
147
+ :param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
148
+ the `filter_policy` chosen at retriever initialization. See init method docstring for more
149
+ details.
150
+ :param top_k: Maximum number of `Document` to return.
151
+ :returns: A dictionary with the following keys:
152
+ - `documents`: List of `Document`s that match the query.
153
+ """
154
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
155
+ docs = await self._document_store._bm25_retrieval_async(
156
+ query=query,
157
+ filters=filters,
158
+ fuzziness=self._fuzziness,
159
+ top_k=top_k or self._top_k,
160
+ scale_score=self._scale_score,
161
+ )
162
+ return {"documents": docs}
@@ -119,10 +119,11 @@ class ElasticsearchEmbeddingRetriever:
119
119
  Retrieve documents using a vector similarity metric.
120
120
 
121
121
  :param query_embedding: Embedding of the query.
122
- :param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
123
- the `filter_policy` chosen at retriever initialization. See init method docstring for more
124
- details.
125
- :param top_k: Maximum number of `Document`s to return.
122
+ :param filters: Filters applied when fetching documents from the Document Store.
123
+ Filters are applied during the approximate kNN search to ensure the Retriever returns
124
+ `top_k` matching documents.
125
+ The way runtime filters are applied depends on the `filter_policy` selected when initializing the Retriever.
126
+ :param top_k: Maximum number of documents to return.
126
127
  :returns: A dictionary with the following keys:
127
128
  - `documents`: List of `Document`s most similar to the given `query_embedding`
128
129
  """
@@ -134,3 +135,28 @@ class ElasticsearchEmbeddingRetriever:
134
135
  num_candidates=self._num_candidates,
135
136
  )
136
137
  return {"documents": docs}
138
+
139
+ @component.output_types(documents=List[Document])
140
+ async def run_async(
141
+ self, query_embedding: List[float], filters: Optional[Dict[str, Any]] = None, top_k: Optional[int] = None
142
+ ):
143
+ """
144
+ Asynchronously retrieve documents using a vector similarity metric.
145
+
146
+ :param query_embedding: Embedding of the query.
147
+ :param filters: Filters applied when fetching documents from the Document Store.
148
+ Filters are applied during the approximate kNN search to ensure the Retriever returns
149
+ `top_k` matching documents.
150
+ The way runtime filters are applied depends on the `filter_policy` selected when initializing the Retriever.
151
+ :param top_k: Maximum number of documents to return.
152
+ :returns: A dictionary with the following keys:
153
+ - `documents`: List of `Document`s that match the query.
154
+ """
155
+ filters = apply_filter_policy(self._filter_policy, self._filters, filters)
156
+ docs = await self._document_store._embedding_retrieval_async(
157
+ query_embedding=query_embedding,
158
+ filters=filters,
159
+ top_k=top_k or self._top_k,
160
+ num_candidates=self._num_candidates,
161
+ )
162
+ return {"documents": docs}
@@ -2,7 +2,8 @@
2
2
  #
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  import logging
5
- from typing import Any, Dict, List, Literal, Mapping, Optional, Union
5
+ from collections.abc import Mapping
6
+ from typing import Any, Dict, List, Literal, Optional, Union
6
7
 
7
8
  import numpy as np
8
9
 
@@ -14,7 +15,7 @@ from haystack.document_stores.errors import DocumentStoreError, DuplicateDocumen
14
15
  from haystack.document_stores.types import DuplicatePolicy
15
16
  from haystack.version import __version__ as haystack_version
16
17
 
17
- from elasticsearch import Elasticsearch, helpers # type: ignore[import-not-found]
18
+ from elasticsearch import AsyncElasticsearch, Elasticsearch, helpers # type: ignore[import-not-found]
18
19
 
19
20
  from .filters import _normalize_filters
20
21
 
@@ -30,6 +31,7 @@ Hosts = Union[str, List[Union[str, Mapping[str, Union[str, int]], NodeConfig]]]
30
31
  # Increase the default if most unscaled scores are larger than expected (>30) and otherwise would incorrectly
31
32
  # all be mapped to scores ~1.
32
33
  BM25_SCALING_FACTOR = 8
34
+ DOC_ALREADY_EXISTS = 409
33
35
 
34
36
 
35
37
  class ElasticsearchDocumentStore:
@@ -93,28 +95,39 @@ class ElasticsearchDocumentStore:
93
95
  """
94
96
  self._hosts = hosts
95
97
  self._client = None
98
+ self._async_client = None
96
99
  self._index = index
97
100
  self._embedding_similarity_function = embedding_similarity_function
98
101
  self._custom_mapping = custom_mapping
99
102
  self._kwargs = kwargs
103
+ self._initialized = False
100
104
 
101
105
  if self._custom_mapping and not isinstance(self._custom_mapping, Dict):
102
106
  msg = "custom_mapping must be a dictionary"
103
107
  raise ValueError(msg)
104
108
 
105
- @property
106
- def client(self) -> Elasticsearch:
107
- if self._client is None:
109
+ def _ensure_initialized(self):
110
+ """
111
+ Ensures both sync and async clients are initialized and the index exists.
112
+ """
113
+ if not self._initialized:
108
114
  headers = self._kwargs.pop("headers", {})
109
115
  headers["user-agent"] = f"haystack-py-ds/{haystack_version}"
110
116
 
111
- client = Elasticsearch(
117
+ # Initialize both sync and async clients
118
+ self._client = Elasticsearch(
112
119
  self._hosts,
113
120
  headers=headers,
114
121
  **self._kwargs,
115
122
  )
123
+ self._async_client = AsyncElasticsearch(
124
+ self._hosts,
125
+ headers=headers,
126
+ **self._kwargs,
127
+ )
128
+
116
129
  # Check client connection, this will raise if not connected
117
- client.info()
130
+ self._client.info()
118
131
 
119
132
  if self._custom_mapping:
120
133
  mappings = self._custom_mapping
@@ -143,13 +156,27 @@ class ElasticsearchDocumentStore:
143
156
  }
144
157
 
145
158
  # Create the index if it doesn't exist
146
- if not client.indices.exists(index=self._index):
147
- client.indices.create(index=self._index, mappings=mappings)
159
+ if not self._client.indices.exists(index=self._index):
160
+ self._client.indices.create(index=self._index, mappings=mappings)
148
161
 
149
- self._client = client
162
+ self._initialized = True
150
163
 
164
+ @property
165
+ def client(self) -> Elasticsearch:
166
+ """
167
+ Returns the synchronous Elasticsearch client, initializing it if necessary.
168
+ """
169
+ self._ensure_initialized()
151
170
  return self._client
152
171
 
172
+ @property
173
+ def async_client(self) -> AsyncElasticsearch:
174
+ """
175
+ Returns the asynchronous Elasticsearch client, initializing it if necessary.
176
+ """
177
+ self._ensure_initialized()
178
+ return self._async_client
179
+
153
180
  def to_dict(self) -> Dict[str, Any]:
154
181
  """
155
182
  Serializes the component to a dictionary.
@@ -184,15 +211,26 @@ class ElasticsearchDocumentStore:
184
211
  def count_documents(self) -> int:
185
212
  """
186
213
  Returns how many documents are present in the document store.
187
- :returns: Number of documents in the document store.
214
+
215
+ :returns:
216
+ Number of documents in the document store.
188
217
  """
218
+ self._ensure_initialized()
189
219
  return self.client.count(index=self._index)["count"]
190
220
 
221
+ async def count_documents_async(self) -> int:
222
+ """
223
+ Asynchronously returns how many documents are present in the document store.
224
+ :returns: Number of documents in the document store.
225
+ """
226
+ self._ensure_initialized()
227
+ result = await self._async_client.count(index=self._index) # type: ignore
228
+ return result["count"]
229
+
191
230
  def _search_documents(self, **kwargs) -> List[Document]:
192
231
  """
193
232
  Calls the Elasticsearch client's search method and handles pagination.
194
233
  """
195
-
196
234
  top_k = kwargs.get("size")
197
235
  if top_k is None and "knn" in kwargs and "k" in kwargs["knn"]:
198
236
  top_k = kwargs["knn"]["k"]
@@ -207,13 +245,38 @@ class ElasticsearchDocumentStore:
207
245
  **kwargs,
208
246
  )
209
247
 
210
- documents.extend(self._deserialize_document(hit) for hit in res["hits"]["hits"])
248
+ documents.extend(self._deserialize_document(hit) for hit in res["hits"]["hits"]) # type: ignore
249
+ from_ = len(documents)
250
+
251
+ if top_k is not None and from_ >= top_k:
252
+ break
253
+ if from_ >= res["hits"]["total"]["value"]:
254
+ break
255
+ return documents
256
+
257
+ async def _search_documents_async(self, **kwargs) -> List[Document]:
258
+ """
259
+ Asynchronously calls the Elasticsearch client's search method and handles pagination.
260
+ """
261
+ top_k = kwargs.get("size")
262
+ if top_k is None and "knn" in kwargs and "k" in kwargs["knn"]:
263
+ top_k = kwargs["knn"]["k"]
264
+
265
+ documents: List[Document] = []
266
+ from_ = 0
267
+
268
+ # handle pagination
269
+ while True:
270
+ res = await self._async_client.search(index=self._index, from_=from_, **kwargs) # type: ignore
271
+ documents.extend(self._deserialize_document(hit) for hit in res["hits"]["hits"]) # type: ignore
211
272
  from_ = len(documents)
212
273
 
213
274
  if top_k is not None and from_ >= top_k:
214
275
  break
276
+
215
277
  if from_ >= res["hits"]["total"]["value"]:
216
278
  break
279
+
217
280
  return documents
218
281
 
219
282
  def filter_documents(self, filters: Optional[Dict[str, Any]] = None) -> List[Document]:
@@ -229,10 +292,54 @@ class ElasticsearchDocumentStore:
229
292
  msg = "Invalid filter syntax. See https://docs.haystack.deepset.ai/docs/metadata-filtering for details."
230
293
  raise ValueError(msg)
231
294
 
295
+ self._ensure_initialized()
232
296
  query = {"bool": {"filter": _normalize_filters(filters)}} if filters else None
233
297
  documents = self._search_documents(query=query)
234
298
  return documents
235
299
 
300
+ async def filter_documents_async(self, filters: Optional[Dict[str, Any]] = None) -> List[Document]:
301
+ """
302
+ Asynchronously retrieves all documents that match the filters.
303
+
304
+ :param filters: A dictionary of filters to apply. For more information on the structure of the filters,
305
+ see the official Elasticsearch
306
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html)
307
+ :returns: List of `Document`s that match the filters.
308
+ """
309
+ if filters and "operator" not in filters and "conditions" not in filters:
310
+ msg = "Invalid filter syntax. See https://docs.haystack.deepset.ai/docs/metadata-filtering for details."
311
+ raise ValueError(msg)
312
+
313
+ self._ensure_initialized()
314
+ query = {"bool": {"filter": _normalize_filters(filters)}} if filters else None
315
+ documents = await self._search_documents_async(query=query)
316
+ return documents
317
+
318
+ @staticmethod
319
+ def _deserialize_document(hit: Dict[str, Any]) -> Document:
320
+ """
321
+ Creates a `Document` from the search hit provided.
322
+ This is mostly useful in self.filter_documents().
323
+ :param hit: A search hit from Elasticsearch.
324
+ :returns: `Document` created from the search hit.
325
+ """
326
+ data = hit["_source"]
327
+
328
+ if "highlight" in hit:
329
+ data["metadata"]["highlighted"] = hit["highlight"]
330
+ data["score"] = hit["_score"]
331
+
332
+ if "dataframe" in data:
333
+ dataframe = data.pop("dataframe")
334
+ if dataframe:
335
+ logger.warning(
336
+ "Document %s has the `dataframe` field set,"
337
+ "ElasticsearchDocumentStore no longer supports dataframes and this field will be ignored. "
338
+ "The `dataframe` field will soon be removed from Haystack Document.",
339
+ data["id"],
340
+ )
341
+ return Document.from_dict(data)
342
+
236
343
  def write_documents(self, documents: List[Document], policy: DuplicatePolicy = DuplicatePolicy.NONE) -> int:
237
344
  """
238
345
  Writes `Document`s to Elasticsearch.
@@ -258,6 +365,15 @@ class ElasticsearchDocumentStore:
258
365
  elasticsearch_actions = []
259
366
  for doc in documents:
260
367
  doc_dict = doc.to_dict()
368
+ if "dataframe" in doc_dict:
369
+ dataframe = doc_dict.pop("dataframe")
370
+ if dataframe:
371
+ logger.warning(
372
+ "Document %s has the `dataframe` field set,"
373
+ "ElasticsearchDocumentStore no longer supports dataframes and this field will be ignored. "
374
+ "The `dataframe` field will soon be removed from Haystack Document.",
375
+ doc.id,
376
+ )
261
377
  if "sparse_embedding" in doc_dict:
262
378
  sparse_embedding = doc_dict.pop("sparse_embedding", None)
263
379
  if sparse_embedding:
@@ -306,31 +422,86 @@ class ElasticsearchDocumentStore:
306
422
 
307
423
  return documents_written
308
424
 
309
- @staticmethod
310
- def _deserialize_document(hit: Dict[str, Any]) -> Document:
425
+ async def write_documents_async(
426
+ self, documents: List[Document], policy: DuplicatePolicy = DuplicatePolicy.NONE
427
+ ) -> int:
311
428
  """
312
- Creates a `Document` from the search hit provided.
429
+ Asynchronously writes `Document`s to Elasticsearch.
313
430
 
314
- This is mostly useful in self.filter_documents().
315
-
316
- :param hit: A search hit from Elasticsearch.
317
- :returns: `Document` created from the search hit.
431
+ :param documents: List of Documents to write to the document store.
432
+ :param policy: DuplicatePolicy to apply when a document with the same ID already exists in the document store.
433
+ :raises ValueError: If `documents` is not a list of `Document`s.
434
+ :raises DuplicateDocumentError: If a document with the same ID already exists in the document store and
435
+ `policy` is set to `DuplicatePolicy.FAIL` or `DuplicatePolicy.NONE`.
436
+ :raises DocumentStoreError: If an error occurs while writing the documents to the document store.
437
+ :returns: Number of documents written to the document store.
318
438
  """
319
- data = hit["_source"]
439
+ self._ensure_initialized()
320
440
 
321
- if "highlight" in hit:
322
- data["metadata"]["highlighted"] = hit["highlight"]
323
- data["score"] = hit["_score"]
441
+ if len(documents) > 0:
442
+ if not isinstance(documents[0], Document):
443
+ msg = "param 'documents' must contain a list of objects of type Document"
444
+ raise ValueError(msg)
324
445
 
325
- return Document.from_dict(data)
446
+ if policy == DuplicatePolicy.NONE:
447
+ policy = DuplicatePolicy.FAIL
448
+
449
+ actions = []
450
+ for doc in documents:
451
+ doc_dict = doc.to_dict()
452
+ if "dataframe" in doc_dict:
453
+ dataframe = doc_dict.pop("dataframe")
454
+ if dataframe:
455
+ logger.warning(
456
+ "Document {id} has the `dataframe` field set,"
457
+ "ElasticsearchDocumentStore no longer supports dataframes and this field will be ignored. "
458
+ "The `dataframe` field will soon be removed from Haystack Document.",
459
+ )
460
+
461
+ if "sparse_embedding" in doc_dict:
462
+ sparse_embedding = doc_dict.pop("sparse_embedding", None)
463
+ if sparse_embedding:
464
+ logger.warning(
465
+ "Document %s has the `sparse_embedding` field set,"
466
+ "but storing sparse embeddings in Elasticsearch is not currently supported."
467
+ "The `sparse_embedding` field will be ignored.",
468
+ doc.id,
469
+ )
470
+
471
+ action = {
472
+ "_op_type": "create" if policy == DuplicatePolicy.FAIL else "index",
473
+ "_id": doc.id,
474
+ "_source": doc_dict,
475
+ }
476
+ actions.append(action)
477
+
478
+ try:
479
+ success, failed = await helpers.async_bulk(
480
+ client=self._async_client,
481
+ actions=actions,
482
+ index=self._index,
483
+ refresh=True,
484
+ raise_on_error=False,
485
+ )
486
+ if failed:
487
+ if policy == DuplicatePolicy.FAIL:
488
+ for error in failed:
489
+ if "create" in error and error["create"]["status"] == DOC_ALREADY_EXISTS:
490
+ msg = f"ID '{error['create']['_id']}' already exists in the document store"
491
+ raise DuplicateDocumentError(msg)
492
+ msg = f"Failed to write documents to Elasticsearch. Errors:\n{failed}"
493
+ raise DocumentStoreError(msg)
494
+ return success
495
+ except Exception as e:
496
+ msg = f"Failed to write documents to Elasticsearch: {e!s}"
497
+ raise DocumentStoreError(msg) from e
326
498
 
327
499
  def delete_documents(self, document_ids: List[str]) -> None:
328
500
  """
329
- Deletes all `Document`s with a matching `document_ids` from the document store.
501
+ Deletes all documents with a matching document_ids from the document store.
330
502
 
331
- :param document_ids: the object IDs to delete
503
+ :param document_ids: the document ids to delete
332
504
  """
333
-
334
505
  helpers.bulk(
335
506
  client=self.client,
336
507
  actions=({"_op_type": "delete", "_id": id_} for id_ in document_ids),
@@ -339,6 +510,25 @@ class ElasticsearchDocumentStore:
339
510
  raise_on_error=False,
340
511
  )
341
512
 
513
+ async def delete_documents_async(self, document_ids: List[str]) -> None:
514
+ """
515
+ Asynchronously deletes all documents with a matching document_ids from the document store.
516
+
517
+ :param document_ids: the document ids to delete
518
+ """
519
+ self._ensure_initialized()
520
+
521
+ try:
522
+ await helpers.async_bulk(
523
+ client=self._async_client,
524
+ actions=({"_op_type": "delete", "_id": id_} for id_ in document_ids),
525
+ index=self._index,
526
+ refresh=True,
527
+ )
528
+ except Exception as e:
529
+ msg = f"Failed to delete documents from Elasticsearch: {e!s}"
530
+ raise DocumentStoreError(msg) from e
531
+
342
532
  def _bm25_retrieval(
343
533
  self,
344
534
  query: str,
@@ -349,27 +539,15 @@ class ElasticsearchDocumentStore:
349
539
  scale_score: bool = False,
350
540
  ) -> List[Document]:
351
541
  """
352
- Retrieves `Document`s from Elasticsearch using the BM25 search algorithm.
353
-
354
- Even though this method is called `bm25_retrieval` it searches for `query`
355
- using the search algorithm `_client` was configured with.
356
-
357
- This method is not meant to be part of the public interface of
358
- `ElasticsearchDocumentStore` nor called directly.
359
- `ElasticsearchBM25Retriever` uses this method directly and is the public interface for it.
360
-
361
- :param query: String to search in saved `Document`s' text.
362
- :param filters: Filters applied to the retrieved `Document`s, for more info
363
- see `ElasticsearchDocumentStore.filter_documents`.
364
- :param fuzziness: Fuzziness parameter passed to Elasticsearch. See the official
365
- [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness)
366
- for valid values.
367
- :param top_k: Maximum number of `Document`s to return.
368
- :param scale_score: If `True` scales the `Document``s scores between 0 and 1.
369
- :raises ValueError: If `query` is an empty string
370
- :returns: List of `Document` that match `query`
542
+ Retrieves documents using BM25 retrieval.
543
+
544
+ :param query: The query string to search for
545
+ :param filters: Optional filters to narrow down the search space
546
+ :param fuzziness: Fuzziness parameter for the search query
547
+ :param top_k: Maximum number of documents to return
548
+ :param scale_score: Whether to scale the similarity score to the range [0,1]
549
+ :returns: List of Documents that match the query
371
550
  """
372
-
373
551
  if not query:
374
552
  msg = "query must be a non empty string"
375
553
  raise ValueError(msg)
@@ -403,35 +581,79 @@ class ElasticsearchDocumentStore:
403
581
 
404
582
  return documents
405
583
 
406
- def _embedding_retrieval(
584
+ async def _bm25_retrieval_async(
407
585
  self,
408
- query_embedding: List[float],
586
+ query: str,
409
587
  *,
410
588
  filters: Optional[Dict[str, Any]] = None,
589
+ fuzziness: str = "AUTO",
411
590
  top_k: int = 10,
412
- num_candidates: Optional[int] = None,
591
+ scale_score: bool = False,
413
592
  ) -> List[Document]:
414
593
  """
415
- Retrieves documents that are most similar to the query embedding using a vector similarity metric.
594
+ Asynchronously retrieves documents using BM25 retrieval.
595
+
596
+ :param query: The query string to search for
597
+ :param filters: Optional filters to narrow down the search space
598
+ :param fuzziness: Fuzziness parameter for the search query
599
+ :param top_k: Maximum number of documents to return
600
+ :param scale_score: Whether to scale the similarity score to the range [0,1]
601
+ :returns: List of Documents that match the query
602
+ """
603
+ self._ensure_initialized()
604
+
605
+ if not query:
606
+ msg = "query must be a non empty string"
607
+ raise ValueError(msg)
608
+
609
+ # Prepare the search body
610
+ search_body = {
611
+ "size": top_k,
612
+ "query": {
613
+ "bool": {
614
+ "must": [
615
+ {
616
+ "multi_match": {
617
+ "query": query,
618
+ "type": "most_fields",
619
+ "operator": "OR",
620
+ "fuzziness": fuzziness,
621
+ }
622
+ }
623
+ ]
624
+ }
625
+ },
626
+ }
627
+
628
+ if filters:
629
+ search_body["query"]["bool"]["filter"] = _normalize_filters(filters) # type:ignore
416
630
 
417
- It uses the Elasticsearch's Approximate k-Nearest Neighbors search algorithm.
631
+ documents = await self._search_documents_async(**search_body)
632
+
633
+ if scale_score:
634
+ for doc in documents:
635
+ if doc.score is not None:
636
+ doc.score = float(1 / (1 + np.exp(-(doc.score / float(BM25_SCALING_FACTOR)))))
418
637
 
419
- This method is not meant to be part of the public interface of
420
- `ElasticsearchDocumentStore` nor called directly.
421
- `ElasticsearchEmbeddingRetriever` uses this method directly and is the public interface for it.
638
+ return documents
422
639
 
423
- :param query_embedding: Embedding of the query.
424
- :param filters: Filters applied to the retrieved `Document`s.
425
- Filters are applied during the approximate kNN search to ensure that top_k matching documents are returned.
426
- :param top_k: Maximum number of `Document`s to return.
427
- :param num_candidates: Number of approximate nearest neighbor candidates on each shard. Defaults to top_k * 10.
428
- Increasing this value will improve search accuracy at the cost of slower search speeds.
429
- You can read more about it in the Elasticsearch
430
- [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy)
431
- :raises ValueError: If `query_embedding` is an empty list.
432
- :returns: List of `Document` that are most similar to `query_embedding`.
640
+ def _embedding_retrieval(
641
+ self,
642
+ query_embedding: List[float],
643
+ *,
644
+ filters: Optional[Dict[str, Any]] = None,
645
+ top_k: int = 10,
646
+ num_candidates: Optional[int] = None,
647
+ ) -> List[Document]:
433
648
  """
649
+ Retrieves documents using dense vector similarity search.
434
650
 
651
+ :param query_embedding: Embedding vector to search for
652
+ :param filters: Optional filters to narrow down the search space
653
+ :param top_k: Maximum number of documents to return
654
+ :param num_candidates: Number of candidates to consider in the search
655
+ :returns: List of Documents most similar to query_embedding
656
+ """
435
657
  if not query_embedding:
436
658
  msg = "query_embedding must be a non-empty list of floats"
437
659
  raise ValueError(msg)
@@ -453,3 +675,45 @@ class ElasticsearchDocumentStore:
453
675
 
454
676
  docs = self._search_documents(**body)
455
677
  return docs
678
+
679
+ async def _embedding_retrieval_async(
680
+ self,
681
+ query_embedding: List[float],
682
+ *,
683
+ filters: Optional[Dict[str, Any]] = None,
684
+ top_k: int = 10,
685
+ num_candidates: Optional[int] = None,
686
+ ) -> List[Document]:
687
+ """
688
+ Asynchronously retrieves documents using dense vector similarity search.
689
+
690
+ :param query_embedding: Embedding vector to search for
691
+ :param filters: Optional filters to narrow down the search space
692
+ :param top_k: Maximum number of documents to return
693
+ :param num_candidates: Number of candidates to consider in the search
694
+ :returns: List of Documents most similar to query_embedding
695
+ """
696
+ self._ensure_initialized()
697
+
698
+ if not query_embedding:
699
+ msg = "query_embedding must be a non-empty list of floats"
700
+ raise ValueError(msg)
701
+
702
+ # If num_candidates is not set, use top_k * 10 as default
703
+ if num_candidates is None:
704
+ num_candidates = top_k * 10
705
+
706
+ # Prepare the search body
707
+ search_body = {
708
+ "knn": {
709
+ "field": "embedding",
710
+ "query_vector": query_embedding,
711
+ "k": top_k,
712
+ "num_candidates": num_candidates,
713
+ },
714
+ }
715
+
716
+ if filters:
717
+ search_body["knn"]["filter"] = _normalize_filters(filters)
718
+
719
+ return await self._search_documents_async(**search_body)
@@ -5,7 +5,6 @@ from datetime import datetime
5
5
  from typing import Any, Dict, List
6
6
 
7
7
  from haystack.errors import FilterError
8
- from pandas import DataFrame
9
8
 
10
9
 
11
10
  def _normalize_filters(filters: Dict[str, Any]) -> Dict[str, Any]:
@@ -57,7 +56,7 @@ def _equal(field: str, value: Any) -> Dict[str, Any]:
57
56
  }
58
57
  }
59
58
  }
60
- if field in ["text", "dataframe"]:
59
+ if field == "text":
61
60
  # We want to fully match the text field.
62
61
  return {"match": {field: {"query": value, "minimum_should_match": "100%"}}}
63
62
  return {"term": {field: value}}
@@ -69,7 +68,7 @@ def _not_equal(field: str, value: Any) -> Dict[str, Any]:
69
68
 
70
69
  if isinstance(value, list):
71
70
  return {"bool": {"must_not": {"terms": {field: value}}}}
72
- if field in ["text", "dataframe"]:
71
+ if field == "text":
73
72
  # We want to fully match the text field.
74
73
  return {"bool": {"must_not": {"match": {field: {"query": value, "minimum_should_match": "100%"}}}}}
75
74
 
@@ -92,7 +91,7 @@ def _greater_than(field: str, value: Any) -> Dict[str, Any]:
92
91
  "Strings are only comparable if they are ISO formatted dates."
93
92
  )
94
93
  raise FilterError(msg) from exc
95
- if type(value) in [list, DataFrame]:
94
+ if isinstance(value, list):
96
95
  msg = f"Filter value can't be of type {type(value)} using operators '>', '>=', '<', '<='"
97
96
  raise FilterError(msg)
98
97
  return {"range": {field: {"gt": value}}}
@@ -114,7 +113,7 @@ def _greater_than_equal(field: str, value: Any) -> Dict[str, Any]:
114
113
  "Strings are only comparable if they are ISO formatted dates."
115
114
  )
116
115
  raise FilterError(msg) from exc
117
- if type(value) in [list, DataFrame]:
116
+ if isinstance(value, list):
118
117
  msg = f"Filter value can't be of type {type(value)} using operators '>', '>=', '<', '<='"
119
118
  raise FilterError(msg)
120
119
  return {"range": {field: {"gte": value}}}
@@ -136,7 +135,7 @@ def _less_than(field: str, value: Any) -> Dict[str, Any]:
136
135
  "Strings are only comparable if they are ISO formatted dates."
137
136
  )
138
137
  raise FilterError(msg) from exc
139
- if type(value) in [list, DataFrame]:
138
+ if isinstance(value, list):
140
139
  msg = f"Filter value can't be of type {type(value)} using operators '>', '>=', '<', '<='"
141
140
  raise FilterError(msg)
142
141
  return {"range": {field: {"lt": value}}}
@@ -158,7 +157,7 @@ def _less_than_equal(field: str, value: Any) -> Dict[str, Any]:
158
157
  "Strings are only comparable if they are ISO formatted dates."
159
158
  )
160
159
  raise FilterError(msg) from exc
161
- if type(value) in [list, DataFrame]:
160
+ if isinstance(value, list):
162
161
  msg = f"Filter value can't be of type {type(value)} using operators '>', '>=', '<', '<='"
163
162
  raise FilterError(msg)
164
163
  return {"range": {field: {"lte": value}}}
@@ -212,8 +211,6 @@ def _parse_comparison_condition(condition: Dict[str, Any]) -> Dict[str, Any]:
212
211
  raise FilterError(msg)
213
212
  operator: str = condition["operator"]
214
213
  value: Any = condition["value"]
215
- if isinstance(value, DataFrame):
216
- value = value.to_json()
217
214
 
218
215
  return COMPARISON_OPERATORS[operator](field, value)
219
216
 
@@ -1,10 +0,0 @@
1
- haystack_integrations/components/retrievers/elasticsearch/__init__.py,sha256=cSJBsYjz_T4kK-M-auAHVUnYIcgUqqwwQe_hsF0_IG4,307
2
- haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=XA6UiNFb59CMM5LSoPmNDe3IzZ7ty7HViSaU2ZT4--w,5851
3
- haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=ZL9kHi6tCzks1_GXoOIRVLcN4BWnaMqN6t-JcwdTfao,5992
4
- haystack_integrations/document_stores/elasticsearch/__init__.py,sha256=YTfu94dtVUBogbJFr1aJrKuaI6-Bw9VuHfPoyU7M8os,207
5
- haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=B2B0F2AHsoP1-BykF_xqfRAYeQPmsiBn0QCIfTqk-pc,18871
6
- haystack_integrations/document_stores/elasticsearch/filters.py,sha256=L1tN7YCIDuNdhGrBQdPoqXFk37x__2-K038xZ6PRdNQ,9923
7
- elasticsearch_haystack-1.0.1.dist-info/METADATA,sha256=hTImF5-zddncU9m31MLAS4eDtlShxI_gb5lgQFMlCbI,2168
8
- elasticsearch_haystack-1.0.1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
9
- elasticsearch_haystack-1.0.1.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
10
- elasticsearch_haystack-1.0.1.dist-info/RECORD,,