elasticsearch-haystack 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of elasticsearch-haystack might be problematic. Click here for more details.
- {elasticsearch_haystack-0.6.0.dist-info → elasticsearch_haystack-0.7.0.dist-info}/METADATA +1 -1
- {elasticsearch_haystack-0.6.0.dist-info → elasticsearch_haystack-0.7.0.dist-info}/RECORD +6 -6
- {elasticsearch_haystack-0.6.0.dist-info → elasticsearch_haystack-0.7.0.dist-info}/WHEEL +1 -1
- haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py +13 -3
- haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py +13 -3
- {elasticsearch_haystack-0.6.0.dist-info → elasticsearch_haystack-0.7.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: elasticsearch-haystack
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.7.0
|
|
4
4
|
Summary: Haystack 2.x Document Store for ElasticSearch
|
|
5
5
|
Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch#readme
|
|
6
6
|
Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
haystack_integrations/components/retrievers/elasticsearch/__init__.py,sha256=cSJBsYjz_T4kK-M-auAHVUnYIcgUqqwwQe_hsF0_IG4,307
|
|
2
|
-
haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=
|
|
3
|
-
haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256
|
|
2
|
+
haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=ZjTrHctsxjcfbtTrSHiNMO0s3nnZLfXjkEvMbO5Aud4,5683
|
|
3
|
+
haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=-9Cc5Y9UXoxL24FTFXCyCO0ZHUGjYLSdP2BediuQrMQ,5824
|
|
4
4
|
haystack_integrations/document_stores/elasticsearch/__init__.py,sha256=YTfu94dtVUBogbJFr1aJrKuaI6-Bw9VuHfPoyU7M8os,207
|
|
5
5
|
haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=H5aqriF7rFYYpqALqAhvBSL41jzGtOxa-vSIPcLgXGw,18719
|
|
6
6
|
haystack_integrations/document_stores/elasticsearch/filters.py,sha256=L1tN7YCIDuNdhGrBQdPoqXFk37x__2-K038xZ6PRdNQ,9923
|
|
7
|
-
elasticsearch_haystack-0.
|
|
8
|
-
elasticsearch_haystack-0.
|
|
9
|
-
elasticsearch_haystack-0.
|
|
10
|
-
elasticsearch_haystack-0.
|
|
7
|
+
elasticsearch_haystack-0.7.0.dist-info/METADATA,sha256=3oIMm0FLRYdRmzpVmNDz7mbNXpmbJS1N-b_PAUA57OQ,2168
|
|
8
|
+
elasticsearch_haystack-0.7.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
9
|
+
elasticsearch_haystack-0.7.0.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
|
|
10
|
+
elasticsearch_haystack-0.7.0.dist-info/RECORD,,
|
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
# SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
|
|
2
2
|
#
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
-
from typing import Any, Dict, List, Optional
|
|
4
|
+
from typing import Any, Dict, List, Optional, Union
|
|
5
5
|
|
|
6
6
|
from haystack import component, default_from_dict, default_to_dict
|
|
7
7
|
from haystack.dataclasses import Document
|
|
8
|
+
from haystack.document_stores.types import FilterPolicy
|
|
9
|
+
from haystack.document_stores.types.filter_policy import apply_filter_policy
|
|
8
10
|
from haystack_integrations.document_stores.elasticsearch.document_store import ElasticsearchDocumentStore
|
|
9
11
|
|
|
10
12
|
|
|
@@ -48,6 +50,7 @@ class ElasticsearchBM25Retriever:
|
|
|
48
50
|
fuzziness: str = "AUTO",
|
|
49
51
|
top_k: int = 10,
|
|
50
52
|
scale_score: bool = False,
|
|
53
|
+
filter_policy: Union[str, FilterPolicy] = FilterPolicy.REPLACE,
|
|
51
54
|
):
|
|
52
55
|
"""
|
|
53
56
|
Initialize ElasticsearchBM25Retriever with an instance ElasticsearchDocumentStore.
|
|
@@ -60,6 +63,7 @@ class ElasticsearchBM25Retriever:
|
|
|
60
63
|
for more details.
|
|
61
64
|
:param top_k: Maximum number of Documents to return.
|
|
62
65
|
:param scale_score: If `True` scales the Document`s scores between 0 and 1.
|
|
66
|
+
:param filter_policy: Policy to determine how filters are applied.
|
|
63
67
|
:raises ValueError: If `document_store` is not an instance of `ElasticsearchDocumentStore`.
|
|
64
68
|
"""
|
|
65
69
|
|
|
@@ -72,6 +76,7 @@ class ElasticsearchBM25Retriever:
|
|
|
72
76
|
self._fuzziness = fuzziness
|
|
73
77
|
self._top_k = top_k
|
|
74
78
|
self._scale_score = scale_score
|
|
79
|
+
self._filter_policy = FilterPolicy.from_str(filter_policy) if isinstance(filter_policy, str) else filter_policy
|
|
75
80
|
|
|
76
81
|
def to_dict(self) -> Dict[str, Any]:
|
|
77
82
|
"""
|
|
@@ -86,6 +91,7 @@ class ElasticsearchBM25Retriever:
|
|
|
86
91
|
fuzziness=self._fuzziness,
|
|
87
92
|
top_k=self._top_k,
|
|
88
93
|
scale_score=self._scale_score,
|
|
94
|
+
filter_policy=self._filter_policy.value,
|
|
89
95
|
document_store=self._document_store.to_dict(),
|
|
90
96
|
)
|
|
91
97
|
|
|
@@ -102,6 +108,7 @@ class ElasticsearchBM25Retriever:
|
|
|
102
108
|
data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
|
|
103
109
|
data["init_parameters"]["document_store"]
|
|
104
110
|
)
|
|
111
|
+
data["init_parameters"]["filter_policy"] = FilterPolicy.from_str(data["init_parameters"]["filter_policy"])
|
|
105
112
|
return default_from_dict(cls, data)
|
|
106
113
|
|
|
107
114
|
@component.output_types(documents=List[Document])
|
|
@@ -110,14 +117,17 @@ class ElasticsearchBM25Retriever:
|
|
|
110
117
|
Retrieve documents using the BM25 keyword-based algorithm.
|
|
111
118
|
|
|
112
119
|
:param query: String to search in `Document`s' text.
|
|
113
|
-
:param filters: Filters applied to the retrieved
|
|
120
|
+
:param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
|
|
121
|
+
the `filter_policy` chosen at retriever initialization. See init method docstring for more
|
|
122
|
+
details.
|
|
114
123
|
:param top_k: Maximum number of `Document` to return.
|
|
115
124
|
:returns: A dictionary with the following keys:
|
|
116
125
|
- `documents`: List of `Document`s that match the query.
|
|
117
126
|
"""
|
|
127
|
+
filters = apply_filter_policy(self._filter_policy, self._filters, filters)
|
|
118
128
|
docs = self._document_store._bm25_retrieval(
|
|
119
129
|
query=query,
|
|
120
|
-
filters=filters
|
|
130
|
+
filters=filters,
|
|
121
131
|
fuzziness=self._fuzziness,
|
|
122
132
|
top_k=top_k or self._top_k,
|
|
123
133
|
scale_score=self._scale_score,
|
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
# SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
|
|
2
2
|
#
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
-
from typing import Any, Dict, List, Optional
|
|
4
|
+
from typing import Any, Dict, List, Optional, Union
|
|
5
5
|
|
|
6
6
|
from haystack import component, default_from_dict, default_to_dict
|
|
7
7
|
from haystack.dataclasses import Document
|
|
8
|
+
from haystack.document_stores.types import FilterPolicy
|
|
9
|
+
from haystack.document_stores.types.filter_policy import apply_filter_policy
|
|
8
10
|
from haystack_integrations.document_stores.elasticsearch.document_store import ElasticsearchDocumentStore
|
|
9
11
|
|
|
10
12
|
|
|
@@ -49,6 +51,7 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
49
51
|
filters: Optional[Dict[str, Any]] = None,
|
|
50
52
|
top_k: int = 10,
|
|
51
53
|
num_candidates: Optional[int] = None,
|
|
54
|
+
filter_policy: Union[str, FilterPolicy] = FilterPolicy.REPLACE,
|
|
52
55
|
):
|
|
53
56
|
"""
|
|
54
57
|
Create the ElasticsearchEmbeddingRetriever component.
|
|
@@ -61,6 +64,7 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
61
64
|
Increasing this value will improve search accuracy at the cost of slower search speeds.
|
|
62
65
|
You can read more about it in the Elasticsearch
|
|
63
66
|
[documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy)
|
|
67
|
+
:param filter_policy: Policy to determine how filters are applied.
|
|
64
68
|
:raises ValueError: If `document_store` is not an instance of ElasticsearchDocumentStore.
|
|
65
69
|
"""
|
|
66
70
|
if not isinstance(document_store, ElasticsearchDocumentStore):
|
|
@@ -71,6 +75,7 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
71
75
|
self._filters = filters or {}
|
|
72
76
|
self._top_k = top_k
|
|
73
77
|
self._num_candidates = num_candidates
|
|
78
|
+
self._filter_policy = FilterPolicy.from_str(filter_policy) if isinstance(filter_policy, str) else filter_policy
|
|
74
79
|
|
|
75
80
|
def to_dict(self) -> Dict[str, Any]:
|
|
76
81
|
"""
|
|
@@ -84,6 +89,7 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
84
89
|
filters=self._filters,
|
|
85
90
|
top_k=self._top_k,
|
|
86
91
|
num_candidates=self._num_candidates,
|
|
92
|
+
filter_policy=self._filter_policy.value,
|
|
87
93
|
document_store=self._document_store.to_dict(),
|
|
88
94
|
)
|
|
89
95
|
|
|
@@ -100,6 +106,7 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
100
106
|
data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
|
|
101
107
|
data["init_parameters"]["document_store"]
|
|
102
108
|
)
|
|
109
|
+
data["init_parameters"]["filter_policy"] = FilterPolicy.from_str(data["init_parameters"]["filter_policy"])
|
|
103
110
|
return default_from_dict(cls, data)
|
|
104
111
|
|
|
105
112
|
@component.output_types(documents=List[Document])
|
|
@@ -108,14 +115,17 @@ class ElasticsearchEmbeddingRetriever:
|
|
|
108
115
|
Retrieve documents using a vector similarity metric.
|
|
109
116
|
|
|
110
117
|
:param query_embedding: Embedding of the query.
|
|
111
|
-
:param filters: Filters applied to the retrieved
|
|
118
|
+
:param filters: Filters applied to the retrieved Documents. The way runtime filters are applied depends on
|
|
119
|
+
the `filter_policy` chosen at retriever initialization. See init method docstring for more
|
|
120
|
+
details.
|
|
112
121
|
:param top_k: Maximum number of `Document`s to return.
|
|
113
122
|
:returns: A dictionary with the following keys:
|
|
114
123
|
- `documents`: List of `Document`s most similar to the given `query_embedding`
|
|
115
124
|
"""
|
|
125
|
+
filters = apply_filter_policy(self._filter_policy, self._filters, filters)
|
|
116
126
|
docs = self._document_store._embedding_retrieval(
|
|
117
127
|
query_embedding=query_embedding,
|
|
118
|
-
filters=filters
|
|
128
|
+
filters=filters,
|
|
119
129
|
top_k=top_k or self._top_k,
|
|
120
130
|
num_candidates=self._num_candidates,
|
|
121
131
|
)
|
{elasticsearch_haystack-0.6.0.dist-info → elasticsearch_haystack-0.7.0.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|