elasticsearch-haystack 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of elasticsearch-haystack might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: elasticsearch-haystack
3
- Version: 0.3.0
3
+ Version: 0.5.0
4
4
  Summary: Haystack 2.x Document Store for ElasticSearch
5
5
  Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch#readme
6
6
  Project-URL: Issues, https://github.com/deepset-ai/haystack-core-integrations/issues
@@ -9,6 +9,7 @@ Author-email: Silvano Cerza <silvanocerza@gmail.com>
9
9
  License-Expression: Apache-2.0
10
10
  License-File: LICENSE
11
11
  Classifier: Development Status :: 4 - Beta
12
+ Classifier: License :: OSI Approved :: Apache Software License
12
13
  Classifier: Programming Language :: Python
13
14
  Classifier: Programming Language :: Python :: 3.8
14
15
  Classifier: Programming Language :: Python :: 3.9
@@ -1,10 +1,10 @@
1
1
  haystack_integrations/components/retrievers/elasticsearch/__init__.py,sha256=cSJBsYjz_T4kK-M-auAHVUnYIcgUqqwwQe_hsF0_IG4,307
2
- haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=qu67WxyTjh1DbEEqg1_IcOkNl0BHtedLFjQVDC0bONE,4398
3
- haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=6HhfAzOjec9R2PnjWT2hLcIWVEe6-bZuWhULu18gJCE,3513
2
+ haystack_integrations/components/retrievers/elasticsearch/bm25_retriever.py,sha256=fFx554MTcUHnQZa2SgC0PzIR85YVbqAdMNOiXKkVSu8,4849
3
+ haystack_integrations/components/retrievers/elasticsearch/embedding_retriever.py,sha256=RcIbSMELiKIJsD-8F_u76J33YRt5bLr6lHnoX-hVQ1M,4990
4
4
  haystack_integrations/document_stores/elasticsearch/__init__.py,sha256=YTfu94dtVUBogbJFr1aJrKuaI6-Bw9VuHfPoyU7M8os,207
5
- haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=qFe9BmXaT6vNOF5EYZ8PNhC6Z1bZVzBoAZ5J2agwcZI,15586
5
+ haystack_integrations/document_stores/elasticsearch/document_store.py,sha256=XMbrn-dsRw0HS8mPMreGCO3cRQnwwU_UA3OzWb3pi_4,18304
6
6
  haystack_integrations/document_stores/elasticsearch/filters.py,sha256=L1tN7YCIDuNdhGrBQdPoqXFk37x__2-K038xZ6PRdNQ,9923
7
- elasticsearch_haystack-0.3.0.dist-info/METADATA,sha256=P5KpaBuMowYSFu5pf88YxHfyZI0oHJZ-4Z5-tdj7AwE,2105
8
- elasticsearch_haystack-0.3.0.dist-info/WHEEL,sha256=TJPnKdtrSue7xZ_AVGkp9YXcvDrobsjBds1du3Nx6dc,87
9
- elasticsearch_haystack-0.3.0.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
10
- elasticsearch_haystack-0.3.0.dist-info/RECORD,,
7
+ elasticsearch_haystack-0.5.0.dist-info/METADATA,sha256=bKt2Am26Ey5iq0ZQw7JOeBSu_Em7-e9iDdl1eHqCt08,2168
8
+ elasticsearch_haystack-0.5.0.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
9
+ elasticsearch_haystack-0.5.0.dist-info/licenses/LICENSE,sha256=_M2kulivnaiTHiW-5CRlZrPmH47tt04pBgAgeDvfYi4,11342
10
+ elasticsearch_haystack-0.5.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.21.1
2
+ Generator: hatchling 1.24.2
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -11,8 +11,9 @@ from haystack_integrations.document_stores.elasticsearch.document_store import E
11
11
  @component
12
12
  class ElasticsearchBM25Retriever:
13
13
  """
14
- ElasticsearchBM25Retriever is a keyword-based retriever that uses BM25 to find the most
15
- similar documents to a user's query.
14
+ ElasticsearchBM25Retriever retrieves documents from the ElasticsearchDocumentStore using BM25 algorithm to find the
15
+ most similar documents to a user's query.
16
+
16
17
  This retriever is only compatible with ElasticsearchDocumentStore.
17
18
 
18
19
  Usage example:
@@ -35,7 +36,7 @@ class ElasticsearchBM25Retriever:
35
36
 
36
37
  result = retriever.run(query="Who lives in Berlin?")
37
38
  for doc in result["documents"]:
38
- print(doc.text)
39
+ print(doc.content)
39
40
  ```
40
41
  """
41
42
 
@@ -53,12 +54,13 @@ class ElasticsearchBM25Retriever:
53
54
 
54
55
  :param document_store: An instance of ElasticsearchDocumentStore.
55
56
  :param filters: Filters applied to the retrieved Documents, for more info
56
- see `ElasticsearchDocumentStore.filter_documents`, defaults to None
57
- :param fuzziness: Fuzziness parameter passed to Elasticsearch, defaults to "AUTO".
58
- see the official documentation for valid values:
59
- https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness
60
- :param top_k: Maximum number of Documents to return, defaults to 10
61
- :param scale_score: If `True` scales the Document`s scores between 0 and 1, defaults to False
57
+ see `ElasticsearchDocumentStore.filter_documents`.
58
+ :param fuzziness: Fuzziness parameter passed to Elasticsearch. See the official
59
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness)
60
+ for more details.
61
+ :param top_k: Maximum number of Documents to return.
62
+ :param scale_score: If `True` scales the Document`s scores between 0 and 1.
63
+ :raises ValueError: If `document_store` is not an instance of `ElasticsearchDocumentStore`.
62
64
  """
63
65
 
64
66
  if not isinstance(document_store, ElasticsearchDocumentStore):
@@ -72,6 +74,12 @@ class ElasticsearchBM25Retriever:
72
74
  self._scale_score = scale_score
73
75
 
74
76
  def to_dict(self) -> Dict[str, Any]:
77
+ """
78
+ Serializes the component to a dictionary.
79
+
80
+ :returns:
81
+ Dictionary with serialized data.
82
+ """
75
83
  return default_to_dict(
76
84
  self,
77
85
  filters=self._filters,
@@ -83,6 +91,14 @@ class ElasticsearchBM25Retriever:
83
91
 
84
92
  @classmethod
85
93
  def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchBM25Retriever":
94
+ """
95
+ Deserializes the component from a dictionary.
96
+
97
+ :param data:
98
+ Dictionary to deserialize from.
99
+ :returns:
100
+ Deserialized component.
101
+ """
86
102
  data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
87
103
  data["init_parameters"]["document_store"]
88
104
  )
@@ -93,10 +109,11 @@ class ElasticsearchBM25Retriever:
93
109
  """
94
110
  Retrieve documents using the BM25 keyword-based algorithm.
95
111
 
96
- :param query: String to search in Documents' text.
97
- :param filters: Filters applied to the retrieved Documents.
98
- :param top_k: Maximum number of Documents to return.
99
- :return: List of Documents that match the query.
112
+ :param query: String to search in `Document`s' text.
113
+ :param filters: Filters applied to the retrieved `Document`s.
114
+ :param top_k: Maximum number of `Document` to return.
115
+ :returns: A dictionary with the following keys:
116
+ - `documents`: List of `Document`s that match the query.
100
117
  """
101
118
  docs = self._document_store._bm25_retrieval(
102
119
  query=query,
@@ -11,9 +11,35 @@ from haystack_integrations.document_stores.elasticsearch.document_store import E
11
11
  @component
12
12
  class ElasticsearchEmbeddingRetriever:
13
13
  """
14
- Uses a vector similarity metric to retrieve documents from the ElasticsearchDocumentStore.
14
+ ElasticsearchEmbeddingRetriever retrieves documents from the ElasticsearchDocumentStore using vector similarity.
15
15
 
16
- Needs to be connected to the ElasticsearchDocumentStore to run.
16
+ Usage example:
17
+ ```python
18
+ from haystack import Document
19
+ from haystack.components.embedders import SentenceTransformersTextEmbedder
20
+ from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
21
+ from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchEmbeddingRetriever
22
+
23
+ document_store = ElasticsearchDocumentStore(hosts="http://localhost:9200")
24
+ retriever = ElasticsearchEmbeddingRetriever(document_store=document_store)
25
+
26
+ # Add documents to DocumentStore
27
+ documents = [
28
+ Document(text="My name is Carla and I live in Berlin"),
29
+ Document(text="My name is Paul and I live in New York"),
30
+ Document(text="My name is Silvano and I live in Matera"),
31
+ Document(text="My name is Usagi Tsukino and I live in Tokyo"),
32
+ ]
33
+ document_store.write_documents(documents)
34
+
35
+ te = SentenceTransformersTextEmbedder()
36
+ te.warm_up()
37
+ query_embeddings = te.run("Who lives in Berlin?")["embedding"]
38
+
39
+ result = retriever.run(query=query_embeddings)
40
+ for doc in result["documents"]:
41
+ print(doc.content)
42
+ ```
17
43
  """
18
44
 
19
45
  def __init__(
@@ -28,13 +54,13 @@ class ElasticsearchEmbeddingRetriever:
28
54
  Create the ElasticsearchEmbeddingRetriever component.
29
55
 
30
56
  :param document_store: An instance of ElasticsearchDocumentStore.
31
- :param filters: Filters applied to the retrieved Documents. Defaults to None.
32
- Filters are applied during the approximate kNN search to ensure that top_k matching documents are returned.
33
- :param top_k: Maximum number of Documents to return, defaults to 10
57
+ :param filters: Filters applied to the retrieved Documents.
58
+ Filters are applied during the approximate KNN search to ensure that top_k matching documents are returned.
59
+ :param top_k: Maximum number of Documents to return.
34
60
  :param num_candidates: Number of approximate nearest neighbor candidates on each shard. Defaults to top_k * 10.
35
61
  Increasing this value will improve search accuracy at the cost of slower search speeds.
36
- You can read more about it in the Elasticsearch documentation:
37
- https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy
62
+ You can read more about it in the Elasticsearch
63
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy)
38
64
  :raises ValueError: If `document_store` is not an instance of ElasticsearchDocumentStore.
39
65
  """
40
66
  if not isinstance(document_store, ElasticsearchDocumentStore):
@@ -47,6 +73,12 @@ class ElasticsearchEmbeddingRetriever:
47
73
  self._num_candidates = num_candidates
48
74
 
49
75
  def to_dict(self) -> Dict[str, Any]:
76
+ """
77
+ Serializes the component to a dictionary.
78
+
79
+ :returns:
80
+ Dictionary with serialized data.
81
+ """
50
82
  return default_to_dict(
51
83
  self,
52
84
  filters=self._filters,
@@ -57,6 +89,14 @@ class ElasticsearchEmbeddingRetriever:
57
89
 
58
90
  @classmethod
59
91
  def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchEmbeddingRetriever":
92
+ """
93
+ Deserializes the component from a dictionary.
94
+
95
+ :param data:
96
+ Dictionary to deserialize from.
97
+ :returns:
98
+ Deserialized component.
99
+ """
60
100
  data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict(
61
101
  data["init_parameters"]["document_store"]
62
102
  )
@@ -68,9 +108,10 @@ class ElasticsearchEmbeddingRetriever:
68
108
  Retrieve documents using a vector similarity metric.
69
109
 
70
110
  :param query_embedding: Embedding of the query.
71
- :param filters: Filters applied to the retrieved Documents.
72
- :param top_k: Maximum number of Documents to return.
73
- :return: List of Documents similar to `query_embedding`.
111
+ :param filters: Filters applied to the retrieved `Document`s.
112
+ :param top_k: Maximum number of `Document`s to return.
113
+ :returns: A dictionary with the following keys:
114
+ - `documents`: List of `Document`s most similar to the given `query_embedding`
74
115
  """
75
116
  docs = self._document_store._embedding_retrieval(
76
117
  query_embedding=query_embedding,
@@ -35,16 +35,16 @@ BM25_SCALING_FACTOR = 8
35
35
 
36
36
  class ElasticsearchDocumentStore:
37
37
  """
38
- ElasticsearchDocumentStore is a Document Store for Elasticsearch.
39
- It can be used with Elastic Cloud or your own Elasticsearch cluster.
38
+ ElasticsearchDocumentStore is a Document Store for Elasticsearch. It can be used with Elastic Cloud or your own
39
+ Elasticsearch cluster.
40
40
 
41
- Simple usage with Elastic Cloud:
41
+ Usage example (Elastic Cloud):
42
42
  ```python
43
43
  from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
44
44
  document_store = ElasticsearchDocumentStore(cloud_id="YOUR_CLOUD_ID", api_key="YOUR_API_KEY")
45
45
  ```
46
46
 
47
- One can also connect to a self-hosted Elasticsearch instance:
47
+ Usage example (self-hosted Elasticsearch instance):
48
48
  ```python
49
49
  from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
50
50
  document_store = ElasticsearchDocumentStore(hosts="http://localhost:9200")
@@ -53,8 +53,8 @@ class ElasticsearchDocumentStore:
53
53
  We strongly recommend to enable security so that only authorized users can access your data.
54
54
 
55
55
  For more details on how to connect to Elasticsearch and configure security,
56
- see the official Elasticsearch documentation:
57
- https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/connecting.html
56
+ see the official Elasticsearch
57
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/connecting.html)
58
58
 
59
59
  All extra keyword arguments will be passed to the Elasticsearch client.
60
60
  """
@@ -63,32 +63,34 @@ class ElasticsearchDocumentStore:
63
63
  self,
64
64
  *,
65
65
  hosts: Optional[Hosts] = None,
66
+ custom_mapping: Optional[Dict[str, Any]] = None,
66
67
  index: str = "default",
67
68
  embedding_similarity_function: Literal["cosine", "dot_product", "l2_norm", "max_inner_product"] = "cosine",
68
69
  **kwargs,
69
70
  ):
70
71
  """
71
72
  Creates a new ElasticsearchDocumentStore instance.
72
- When no index is explicitly specified, it will use the default index "default".
73
- It will also try to create that index if it doesn't exist yet. Otherwise it will use the existing one.
73
+
74
+ It will also try to create that index if it doesn't exist yet. Otherwise, it will use the existing one.
74
75
 
75
76
  One can also set the similarity function used to compare Documents embeddings. This is mostly useful
76
77
  when using the `ElasticsearchDocumentStore` in a Pipeline with an `ElasticsearchEmbeddingRetriever`.
77
78
 
78
- For more information on connection parameters, see the official Elasticsearch documentation:
79
- https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/connecting.html
79
+ For more information on connection parameters, see the official Elasticsearch
80
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/connecting.html)
80
81
 
81
- For the full list of supported kwargs, see the official Elasticsearch reference:
82
- https://elasticsearch-py.readthedocs.io/en/stable/api.html#module-elasticsearch
82
+ For the full list of supported kwargs, see the official Elasticsearch
83
+ [reference](https://elasticsearch-py.readthedocs.io/en/stable/api.html#module-elasticsearch)
83
84
 
84
- :param hosts: List of hosts running the Elasticsearch client. Defaults to None
85
- :param index: Name of index in Elasticsearch, if it doesn't exist it will be created. Defaults to "default"
85
+ :param hosts: List of hosts running the Elasticsearch client.
86
+ :param custom_mapping: Custom mapping for the index. If not provided, a default mapping will be used.
87
+ :param index: Name of index in Elasticsearch.
86
88
  :param embedding_similarity_function: The similarity function used to compare Documents embeddings.
87
- Defaults to "cosine". This parameter only takes effect if the index does not yet exist and is created.
89
+ This parameter only takes effect if the index does not yet exist and is created.
88
90
  To choose the most appropriate function, look for information about your embedding model.
89
- To understand how document scores are computed, see the Elasticsearch documentation:
90
- https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params
91
- :param **kwargs: Optional arguments that ``Elasticsearch`` takes.
91
+ To understand how document scores are computed, see the Elasticsearch
92
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)
93
+ :param **kwargs: Optional arguments that `Elasticsearch` takes.
92
94
  """
93
95
  self._hosts = hosts
94
96
  self._client = Elasticsearch(
@@ -98,29 +100,56 @@ class ElasticsearchDocumentStore:
98
100
  )
99
101
  self._index = index
100
102
  self._embedding_similarity_function = embedding_similarity_function
103
+ self._custom_mapping = custom_mapping
101
104
  self._kwargs = kwargs
102
105
 
103
106
  # Check client connection, this will raise if not connected
104
107
  self._client.info()
105
108
 
106
- # configure mapping for the embedding field
107
- mappings = {
108
- "properties": {
109
- "embedding": {"type": "dense_vector", "index": True, "similarity": embedding_similarity_function}
109
+ if self._custom_mapping and not isinstance(self._custom_mapping, Dict):
110
+ msg = "custom_mapping must be a dictionary"
111
+ raise ValueError(msg)
112
+
113
+ if self._custom_mapping:
114
+ mappings = self._custom_mapping
115
+ else:
116
+ # Configure mapping for the embedding field if none is provided
117
+ mappings = {
118
+ "properties": {
119
+ "embedding": {"type": "dense_vector", "index": True, "similarity": embedding_similarity_function},
120
+ "content": {"type": "text"},
121
+ },
122
+ "dynamic_templates": [
123
+ {
124
+ "strings": {
125
+ "path_match": "*",
126
+ "match_mapping_type": "string",
127
+ "mapping": {
128
+ "type": "keyword",
129
+ },
130
+ }
131
+ }
132
+ ],
110
133
  }
111
- }
112
134
 
113
135
  # Create the index if it doesn't exist
114
136
  if not self._client.indices.exists(index=index):
115
137
  self._client.indices.create(index=index, mappings=mappings)
116
138
 
117
139
  def to_dict(self) -> Dict[str, Any]:
140
+ """
141
+ Serializes the component to a dictionary.
142
+
143
+ :returns:
144
+ Dictionary with serialized data.
145
+ """
118
146
  # This is not the best solution to serialise this class but is the fastest to implement.
119
147
  # Not all kwargs types can be serialised to text so this can fail. We must serialise each
120
148
  # type explicitly to handle this properly.
121
149
  return default_to_dict(
122
150
  self,
123
151
  hosts=self._hosts,
152
+ custom_mapping=self._custom_mapping,
124
153
  index=self._index,
125
154
  embedding_similarity_function=self._embedding_similarity_function,
126
155
  **self._kwargs,
@@ -128,11 +157,20 @@ class ElasticsearchDocumentStore:
128
157
 
129
158
  @classmethod
130
159
  def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchDocumentStore":
160
+ """
161
+ Deserializes the component from a dictionary.
162
+
163
+ :param data:
164
+ Dictionary to deserialize from.
165
+ :returns:
166
+ Deserialized component.
167
+ """
131
168
  return default_from_dict(cls, data)
132
169
 
133
170
  def count_documents(self) -> int:
134
171
  """
135
172
  Returns how many documents are present in the document store.
173
+ :returns: Number of documents in the document store.
136
174
  """
137
175
  return self._client.count(index=self._index)["count"]
138
176
 
@@ -165,6 +203,14 @@ class ElasticsearchDocumentStore:
165
203
  return documents
166
204
 
167
205
  def filter_documents(self, filters: Optional[Dict[str, Any]] = None) -> List[Document]:
206
+ """
207
+ The main query method for the document store. It retrieves all documents that match the filters.
208
+
209
+ :param filters: A dictionary of filters to apply. For more information on the structure of the filters,
210
+ see the official Elasticsearch
211
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html)
212
+ :returns: List of `Document`s that match the filters.
213
+ """
168
214
  if filters and "operator" not in filters and "conditions" not in filters:
169
215
  filters = convert(filters)
170
216
 
@@ -174,9 +220,15 @@ class ElasticsearchDocumentStore:
174
220
 
175
221
  def write_documents(self, documents: List[Document], policy: DuplicatePolicy = DuplicatePolicy.NONE) -> int:
176
222
  """
177
- Writes Documents to Elasticsearch.
178
- If policy is not specified or set to DuplicatePolicy.NONE, it will raise an exception if a document with the
179
- same ID already exists in the document store.
223
+ Writes `Document`s to Elasticsearch.
224
+
225
+ :param documents: List of Documents to write to the document store.
226
+ :param policy: DuplicatePolicy to apply when a document with the same ID already exists in the document store.
227
+ :raises ValueError: If `documents` is not a list of `Document`s.
228
+ :raises DuplicateDocumentError: If a document with the same ID already exists in the document store and
229
+ `policy` is set to `DuplicatePolicy.FAIL` or `DuplicatePolicy.NONE`.
230
+ :raises DocumentStoreError: If an error occurs while writing the documents to the document store.
231
+ :returns: Number of documents written to the document store.
180
232
  """
181
233
  if len(documents) > 0:
182
234
  if not isinstance(documents[0], Document):
@@ -187,16 +239,30 @@ class ElasticsearchDocumentStore:
187
239
  policy = DuplicatePolicy.FAIL
188
240
 
189
241
  action = "index" if policy == DuplicatePolicy.OVERWRITE else "create"
190
- documents_written, errors = helpers.bulk(
191
- client=self._client,
192
- actions=(
242
+
243
+ elasticsearch_actions = []
244
+ for doc in documents:
245
+ doc_dict = doc.to_dict()
246
+ if "sparse_embedding" in doc_dict:
247
+ sparse_embedding = doc_dict.pop("sparse_embedding", None)
248
+ if sparse_embedding:
249
+ logger.warning(
250
+ "Document %s has the `sparse_embedding` field set,"
251
+ "but storing sparse embeddings in Elasticsearch is not currently supported."
252
+ "The `sparse_embedding` field will be ignored.",
253
+ doc.id,
254
+ )
255
+ elasticsearch_actions.append(
193
256
  {
194
257
  "_op_type": action,
195
258
  "_id": doc.id,
196
- "_source": doc.to_dict(),
259
+ "_source": doc_dict,
197
260
  }
198
- for doc in documents
199
- ),
261
+ )
262
+
263
+ documents_written, errors = helpers.bulk(
264
+ client=self._client,
265
+ actions=elasticsearch_actions,
200
266
  refresh="wait_for",
201
267
  index=self._index,
202
268
  raise_on_error=False,
@@ -225,10 +291,15 @@ class ElasticsearchDocumentStore:
225
291
 
226
292
  return documents_written
227
293
 
228
- def _deserialize_document(self, hit: Dict[str, Any]) -> Document:
294
+ @staticmethod
295
+ def _deserialize_document(hit: Dict[str, Any]) -> Document:
229
296
  """
230
- Creates a Document from the search hit provided.
297
+ Creates a `Document` from the search hit provided.
298
+
231
299
  This is mostly useful in self.filter_documents().
300
+
301
+ :param hit: A search hit from Elasticsearch.
302
+ :returns: `Document` created from the search hit.
232
303
  """
233
304
  data = hit["_source"]
234
305
 
@@ -240,12 +311,11 @@ class ElasticsearchDocumentStore:
240
311
 
241
312
  def delete_documents(self, document_ids: List[str]) -> None:
242
313
  """
243
- Deletes all documents with a matching document_ids from the document store.
314
+ Deletes all `Document`s with a matching `document_ids` from the document store.
244
315
 
245
- :param object_ids: the object_ids to delete
316
+ :param document_ids: the object IDs to delete
246
317
  """
247
318
 
248
- #
249
319
  helpers.bulk(
250
320
  client=self._client,
251
321
  actions=({"_op_type": "delete", "_id": id_} for id_ in document_ids),
@@ -264,26 +334,25 @@ class ElasticsearchDocumentStore:
264
334
  scale_score: bool = False,
265
335
  ) -> List[Document]:
266
336
  """
267
- Elasticsearch by defaults uses BM25 search algorithm.
337
+ Retrieves `Document`s from Elasticsearch using the BM25 search algorithm.
338
+
268
339
  Even though this method is called `bm25_retrieval` it searches for `query`
269
340
  using the search algorithm `_client` was configured with.
270
341
 
271
- This method is not mean to be part of the public interface of
342
+ This method is not meant to be part of the public interface of
272
343
  `ElasticsearchDocumentStore` nor called directly.
273
344
  `ElasticsearchBM25Retriever` uses this method directly and is the public interface for it.
274
345
 
275
- `query` must be a non empty string, otherwise a `ValueError` will be raised.
276
-
277
- :param query: String to search in saved Documents' text.
278
- :param filters: Filters applied to the retrieved Documents, for more info
279
- see `ElasticsearchDocumentStore.filter_documents`, defaults to None
280
- :param fuzziness: Fuzziness parameter passed to Elasticsearch, defaults to "AUTO".
281
- see the official documentation for valid values:
282
- https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness
283
- :param top_k: Maximum number of Documents to return, defaults to 10
284
- :param scale_score: If `True` scales the Document`s scores between 0 and 1, defaults to False
346
+ :param query: String to search in saved `Document`s' text.
347
+ :param filters: Filters applied to the retrieved `Document`s, for more info
348
+ see `ElasticsearchDocumentStore.filter_documents`.
349
+ :param fuzziness: Fuzziness parameter passed to Elasticsearch. See the official
350
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#fuzziness)
351
+ for valid values.
352
+ :param top_k: Maximum number of `Document`s to return.
353
+ :param scale_score: If `True` scales the `Document``s scores between 0 and 1.
285
354
  :raises ValueError: If `query` is an empty string
286
- :return: List of Document that match `query`
355
+ :returns: List of `Document` that match `query`
287
356
  """
288
357
 
289
358
  if not query:
@@ -329,22 +398,23 @@ class ElasticsearchDocumentStore:
329
398
  ) -> List[Document]:
330
399
  """
331
400
  Retrieves documents that are most similar to the query embedding using a vector similarity metric.
401
+
332
402
  It uses the Elasticsearch's Approximate k-Nearest Neighbors search algorithm.
333
403
 
334
- This method is not mean to be part of the public interface of
404
+ This method is not meant to be part of the public interface of
335
405
  `ElasticsearchDocumentStore` nor called directly.
336
406
  `ElasticsearchEmbeddingRetriever` uses this method directly and is the public interface for it.
337
407
 
338
408
  :param query_embedding: Embedding of the query.
339
- :param filters: Filters applied to the retrieved Documents. Defaults to None.
409
+ :param filters: Filters applied to the retrieved `Document`s.
340
410
  Filters are applied during the approximate kNN search to ensure that top_k matching documents are returned.
341
- :param top_k: Maximum number of Documents to return, defaults to 10
411
+ :param top_k: Maximum number of `Document`s to return.
342
412
  :param num_candidates: Number of approximate nearest neighbor candidates on each shard. Defaults to top_k * 10.
343
413
  Increasing this value will improve search accuracy at the cost of slower search speeds.
344
- You can read more about it in the Elasticsearch documentation:
345
- https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy
346
- :raises ValueError: If `query_embedding` is an empty list
347
- :return: List of Document that are most similar to `query_embedding`
414
+ You can read more about it in the Elasticsearch
415
+ [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy)
416
+ :raises ValueError: If `query_embedding` is an empty list.
417
+ :returns: List of `Document` that are most similar to `query_embedding`.
348
418
  """
349
419
 
350
420
  if not query_embedding: