effspm 0.3.0__cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl → 0.3.3__cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
effspm/_effspm.cpp CHANGED
@@ -2,6 +2,686 @@
2
2
 
3
3
  #include <pybind11/pybind11.h>
4
4
  #include <pybind11/stl.h>
5
+
6
+ #include <iostream>
7
+ #include <fstream>
8
+ #include <cstdio> // std::remove
9
+ #include <vector>
10
+ #include <string>
11
+ #include <ctime>
12
+ #include <cmath>
13
+
14
+ namespace py = pybind11;
15
+
16
+ // PrefixProjection headers (global namespace)
17
+ #include "freq_miner.hpp"
18
+ #include "load_inst.hpp"
19
+ #include "utility.hpp"
20
+
21
+ // BTMiner (namespaced)
22
+ #include "btminer/src/freq_miner.hpp"
23
+ #include "btminer/src/load_inst.hpp"
24
+ #include "btminer/src/utility.hpp"
25
+ #include "btminer/src/build_mdd.hpp"
26
+
27
+ // HTMiner (namespaced)
28
+ #include "htminer/src/build_mdd.hpp"
29
+ #include "htminer/src/freq_miner.hpp"
30
+ #include "htminer/src/load_inst.hpp"
31
+ #include "htminer/src/utility.hpp"
32
+
33
+ // LargePrefixProjection
34
+ #include "largepp/src/freq_miner.hpp"
35
+ #include "largepp/src/load_inst.hpp"
36
+ #include "largepp/src/utility.hpp"
37
+
38
+ // LargeBTMiner
39
+ #include "largebm/src/freq_miner.hpp"
40
+ #include "largebm/src/load_inst.hpp"
41
+ #include "largebm/src/utility.hpp"
42
+ #include "largebm/src/build_mdd.hpp"
43
+
44
+ // LargeHTMiner
45
+ #include "largehm/src/freq_miner.hpp"
46
+ #include "largehm/src/load_inst.hpp"
47
+ #include "largehm/src/utility.hpp"
48
+ #include "largehm/src/build_mdd.hpp"
49
+
50
+ namespace {
51
+
52
+ // RAII helper for temp file
53
+ struct TempFile {
54
+ std::string path;
55
+ ~TempFile() {
56
+ if (!path.empty()) {
57
+ std::remove(path.c_str());
58
+ }
59
+ }
60
+ };
61
+
62
+ // Write Python list[list[int]] to a temp file in professor’s format:
63
+ // one sequence per line, items separated by spaces.
64
+ std::string write_temp_seq_file(const std::vector<std::vector<int>>& seqs) {
65
+ char tmp_name[L_tmpnam];
66
+ if (!std::tmpnam(tmp_name)) {
67
+ throw std::runtime_error("Failed to create temporary file name");
68
+ }
69
+ std::string path = std::string(tmp_name) + ".txt";
70
+
71
+ std::ofstream ofs(path);
72
+ if (!ofs) {
73
+ throw std::runtime_error("Failed to open temporary file for writing: " + path);
74
+ }
75
+
76
+ for (const auto& seq : seqs) {
77
+ for (size_t i = 0; i < seq.size(); ++i) {
78
+ if (i) ofs << ' ';
79
+ ofs << seq[i];
80
+ }
81
+ ofs << '\n';
82
+ }
83
+
84
+ ofs.close();
85
+ return path;
86
+ }
87
+
88
+ } // anonymous namespace
89
+
90
+
91
+ PYBIND11_MODULE(_effspm, m) {
92
+ m.doc() = "Unified SPM library: PrefixProjection, BTMiner, HTMiner, Large* variants";
93
+
94
+ // ─────────────────────────────────────────────────────────────
95
+ // PrefixProjection (works directly on Python lists or files)
96
+ // ─────────────────────────────────────────────────────────────
97
+ m.def("PrefixProjection",
98
+ [](py::object data,
99
+ double minsup,
100
+ unsigned int time_limit,
101
+ bool preproc,
102
+ bool use_dic,
103
+ bool verbose,
104
+ const std::string &out_file)
105
+ {
106
+ ::time_limit = time_limit;
107
+ ::pre_pro = preproc;
108
+ ::use_dic = use_dic;
109
+ ::use_list = false;
110
+ ::b_disp = verbose; // controls prints in original code
111
+ ::b_write = !out_file.empty();
112
+ ::out_file = out_file;
113
+
114
+ ClearCollected();
115
+ start_time = std::clock();
116
+
117
+ if (py::isinstance<py::str>(data)) {
118
+ std::string path = data.cast<std::string>();
119
+ if (!Load_instance(path, minsup))
120
+ throw std::runtime_error("PrefixProjection: failed to load file: " + path);
121
+ } else {
122
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
123
+ items = std::move(seqs);
124
+ N = items.size();
125
+
126
+ int max_id = 0;
127
+ for (auto &seq : items)
128
+ for (int x : seq)
129
+ max_id = std::max(max_id, std::abs(x));
130
+ L = max_id;
131
+
132
+ theta = (minsup < 1.0) ? std::ceil(minsup * N) : minsup;
133
+
134
+ DFS.clear();
135
+ DFS.reserve(L);
136
+ for (unsigned int i = 0; i < L; ++i)
137
+ DFS.emplace_back(-static_cast<int>(i) - 1);
138
+
139
+ M = 0;
140
+ E = 0;
141
+ for (auto &seq : items) {
142
+ M = std::max<unsigned int>(M, seq.size());
143
+ E += seq.size();
144
+ }
145
+ }
146
+
147
+ Freq_miner();
148
+
149
+ py::dict out;
150
+ out["patterns"] = GetCollected();
151
+ out["time"] = give_time(std::clock() - start_time);
152
+ return out;
153
+ },
154
+ py::arg("data"),
155
+ py::arg("minsup") = 0.01,
156
+ py::arg("time_limit") = 36000,
157
+ py::arg("preproc") = false,
158
+ py::arg("use_dic") = false,
159
+ py::arg("verbose") = false,
160
+ py::arg("out_file") = ""
161
+ );
162
+
163
+ // ─────────────────────────────────────────────────────────────
164
+ // BTMiner (always uses professor's Load_instance)
165
+ // ─────────────────────────────────────────────────────────────
166
+ // ─────────────────────────────────────────────────────────────
167
+ // BTMiner (always uses professor's Load_instance)
168
+ // ─────────────────────────────────────────────────────────────
169
+ /*m.def("BTMiner",
170
+ [](py::object data,
171
+ double minsup,
172
+ unsigned int time_limit,
173
+ bool preproc,
174
+ bool use_dic,
175
+ bool verbose,
176
+ const std::string &out_file)
177
+ {
178
+ // 1) Configure professor globals
179
+ btminer::time_limit = static_cast<int>(time_limit);
180
+ btminer::pre_pro = preproc;
181
+ btminer::use_dic = use_dic;
182
+ btminer::b_disp = verbose;
183
+ btminer::b_write = !out_file.empty();
184
+ btminer::out_file = out_file;
185
+ btminer::N_mult = 1;
186
+ btminer::M_mult = 1;
187
+ btminer::just_build = false;
188
+
189
+ // 2) HARD RESET of *known* global state for BTMiner
190
+ // (Only touch what we know exists in btminer namespace)
191
+ btminer::ClearCollected(); // clear collected patterns
192
+ btminer::Tree.clear(); // clear MDD tree
193
+ btminer::DFS.clear(); // clear DFS patterns
194
+
195
+ btminer::M = 0;
196
+ btminer::L = 0;
197
+ btminer::N = 0;
198
+ btminer::theta = 0;
199
+ btminer::E = 0;
200
+ btminer::num_patt = 0; // reset pattern counter if defined
201
+
202
+ // NOTE: we do NOT reinsert root here; btminer::Load_instance()
203
+ // is responsible for calling Tree.emplace_back(0,0,0) as needed.
204
+
205
+ btminer::start_time = std::clock();
206
+
207
+ // 3) Handle input (path or list-of-lists)
208
+ TempFile tmp;
209
+ std::string path;
210
+
211
+ if (py::isinstance<py::str>(data)) {
212
+ // File path: use directly
213
+ path = data.cast<std::string>();
214
+ } else {
215
+ // Python list → write to a temp file in professor’s format
216
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
217
+ tmp.path = write_temp_seq_file(seqs);
218
+ path = tmp.path;
219
+ }
220
+
221
+ if (verbose) {
222
+ std::cerr << "[BTMiner] path=" << path
223
+ << " minsup=" << minsup
224
+ << " preproc=" << preproc
225
+ << " use_dic=" << use_dic
226
+ << std::endl;
227
+ }
228
+
229
+ // 4) Build MDD + run miner
230
+ if (!btminer::Load_instance(path, minsup)) {
231
+ throw std::runtime_error("BTMiner: failed to load instance from: " + path);
232
+ }
233
+
234
+ btminer::Freq_miner();
235
+
236
+ // 5) Return results
237
+ py::dict out;
238
+ out["patterns"] = btminer::GetCollected();
239
+ out["num_patterns"] = btminer::num_patt;
240
+ out["time"] = btminer::give_time(std::clock() - btminer::start_time);
241
+ out["N"] = btminer::N;
242
+ out["L"] = btminer::L;
243
+ out["theta"] = btminer::theta;
244
+ return out;
245
+ },
246
+ py::arg("data"),
247
+ py::arg("minsup") = 0.01,
248
+ py::arg("time_limit") = 36000,
249
+ py::arg("preproc") = false,
250
+ py::arg("use_dic") = false,
251
+ py::arg("verbose") = false,
252
+ py::arg("out_file") = ""
253
+ ); */
254
+ m.def("BTMiner",
255
+ [](py::object data,
256
+ double minsup,
257
+ unsigned int time_limit,
258
+ bool preproc,
259
+ bool use_dic,
260
+ bool verbose,
261
+ const std::string &out_file)
262
+ {
263
+ // 1) Configure professor globals
264
+ btminer::time_limit = static_cast<int>(time_limit);
265
+ btminer::pre_pro = preproc;
266
+ btminer::use_dic = use_dic;
267
+ btminer::b_disp = verbose;
268
+ btminer::b_write = !out_file.empty();
269
+ btminer::out_file = out_file;
270
+ btminer::N_mult = 1;
271
+ btminer::M_mult = 1;
272
+ btminer::just_build = false;
273
+
274
+ // 2) HARD RESET of *known* global state for BTMiner
275
+ btminer::ClearCollected(); // clear collected patterns
276
+ btminer::Tree.clear(); // clear MDD tree
277
+ btminer::DFS.clear(); // clear DFS patterns
278
+
279
+ // clear all frequency / mapping / item structures
280
+ btminer::freq.clear();
281
+ btminer::item_dic.clear();
282
+ btminer::item_map.clear();
283
+ btminer::item_map_rev.clear();
284
+ btminer::items.clear(); // if you have this defined anywhere
285
+
286
+ // reset scalar globals
287
+ btminer::M = 0;
288
+ btminer::L = 0;
289
+ btminer::N = 0;
290
+ btminer::theta = 0;
291
+ btminer::E = 0;
292
+ btminer::num_patt = 0;
293
+ btminer::num_nodes = 0;
294
+ btminer::cur_node = 0;
295
+ // N_mult, M_mult, flags are set just above
296
+
297
+ btminer::start_time = std::clock();
298
+
299
+
300
+ // 3) Handle input (path or list-of-lists)
301
+ TempFile tmp;
302
+ std::string path;
303
+
304
+ if (py::isinstance<py::str>(data)) {
305
+ // File path: use directly
306
+ path = data.cast<std::string>();
307
+ } else {
308
+ // Python list → write to a temp file in professor’s format
309
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
310
+ tmp.path = write_temp_seq_file(seqs);
311
+ path = tmp.path;
312
+ }
313
+
314
+ if (verbose) {
315
+ std::cerr << "[BTMiner] path=" << path
316
+ << " minsup=" << minsup
317
+ << " preproc=" << preproc
318
+ << " use_dic=" << use_dic
319
+ << std::endl;
320
+ }
321
+
322
+ // 4) Build MDD + run miner
323
+ if (!btminer::Load_instance(path, minsup)) {
324
+ throw std::runtime_error("BTMiner: failed to load instance from: " + path);
325
+ }
326
+
327
+ btminer::Freq_miner();
328
+
329
+ // 5) Return results
330
+ py::dict out;
331
+ out["patterns"] = btminer::GetCollected();
332
+ out["num_patterns"] = btminer::num_patt;
333
+ out["time"] = btminer::give_time(std::clock() - btminer::start_time);
334
+ out["N"] = btminer::N;
335
+ out["L"] = btminer::L;
336
+ out["theta"] = btminer::theta;
337
+ return out;
338
+ },
339
+ py::arg("data"),
340
+ py::arg("minsup") = 0.01,
341
+ py::arg("time_limit") = 36000,
342
+ py::arg("preproc") = false,
343
+ py::arg("use_dic") = false,
344
+ py::arg("verbose") = false,
345
+ py::arg("out_file") = ""
346
+ );
347
+
348
+ // ─────────────────────────────────────────────────────────────
349
+ // HTMiner (works on files; we use a temp file for in-memory data)
350
+ // ─────────────────────────────────────────────────────────────
351
+ // ─────────────────────────────────────────────────────────────
352
+ // HTMiner (always uses professor's Load_instance; pre_pro forced ON)
353
+ // ─────────────────────────────────────────────────────────────
354
+ m.def("HTMiner",
355
+ [](py::object data,
356
+ double minsup,
357
+ unsigned int time_limit,
358
+ bool /*preproc*/, // Python arg is ignored internally
359
+ bool use_dic,
360
+ bool verbose,
361
+ const std::string &out_file)
362
+ {
363
+ using namespace htminer;
364
+
365
+ // ───────── Global parameter setup ─────────
366
+ htminer::time_limit = time_limit;
367
+
368
+ // IMPORTANT: always run with preprocessing ON,
369
+ // regardless of the Python `preproc` flag.
370
+ htminer::pre_pro = true;
371
+ htminer::use_dic = use_dic;
372
+ htminer::just_build = false;
373
+ htminer::b_disp = verbose;
374
+ htminer::b_write = !out_file.empty();
375
+ htminer::out_file = out_file;
376
+
377
+ // ───────── HARD RESET of HTMiner globals ─────────
378
+ htminer::ClearCollected();
379
+ htminer::Tree.clear();
380
+ htminer::VTree.clear();
381
+ htminer::CTree.clear();
382
+ htminer::DFS.clear();
383
+ htminer::VDFS.clear();
384
+ htminer::item_dic.clear();
385
+
386
+ htminer::M = 0;
387
+ htminer::N = 0;
388
+ htminer::L = 0;
389
+ htminer::E = 0;
390
+ htminer::theta = 0;
391
+ htminer::mlim = 0;
392
+ htminer::itmset_exists = false;
393
+
394
+ // NOTE: do NOT add a root arc here;
395
+ // htminer::Load_instance() already does Tree.emplace_back(0,0,0)
396
+ htminer::start_time = std::clock();
397
+
398
+ // ───────── Handle input (path or in-memory sequences) ─────────
399
+ TempFile tmp;
400
+ std::string path;
401
+
402
+ if (py::isinstance<py::str>(data)) {
403
+ // data is a file path
404
+ path = data.cast<std::string>();
405
+ } else {
406
+ // data is a list[list[int]] → write a temp file in the same text format
407
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
408
+ tmp.path = write_temp_seq_file(seqs);
409
+ path = tmp.path;
410
+ }
411
+
412
+ if (verbose) {
413
+ std::cerr << "[HTMiner] path=" << path
414
+ << " minsup=" << minsup
415
+ << " preproc(always)=true"
416
+ << " use_dic=" << use_dic
417
+ << std::endl;
418
+ }
419
+
420
+ // ───────── Build MDD via professor's loader ─────────
421
+ if (!htminer::Load_instance(path, minsup)) {
422
+ throw std::runtime_error("HTMiner: failed to load instance from: " + path);
423
+ }
424
+
425
+ // ───────── Run miner ─────────
426
+ htminer::Freq_miner();
427
+
428
+ // ───────── Return results ─────────
429
+ py::dict out;
430
+ out["patterns"] = htminer::GetCollected();
431
+ out["time"] = htminer::give_time(std::clock() - htminer::start_time);
432
+ return out;
433
+ },
434
+ py::arg("data"),
435
+ py::arg("minsup") = 0.01,
436
+ py::arg("time_limit") = 36000,
437
+ py::arg("preproc") = false, // kept for API symmetry, but IGNORED
438
+ py::arg("use_dic") = false,
439
+ py::arg("verbose") = false,
440
+ py::arg("out_file") = ""
441
+ );
442
+
443
+ // ─────────────────────────────────────────────────────────────
444
+ // LargePrefixProjection (already has its own Load_py)
445
+ // ─────────────────────────────────────────────────────────────
446
+ m.def("LargePrefixProjection",
447
+ [](py::object data,
448
+ double minsup,
449
+ unsigned int time_limit,
450
+ bool preproc,
451
+ bool use_dic,
452
+ bool verbose,
453
+ const std::string &out_file)
454
+ {
455
+ // 1) Configure global flags
456
+ largepp::time_limit = time_limit;
457
+ largepp::pre_pro = preproc;
458
+ largepp::use_dic = use_dic;
459
+ largepp::use_list = true; // LargePrefixProjection is list-based
460
+ largepp::b_disp = verbose;
461
+ largepp::b_write = !out_file.empty();
462
+ largepp::out_file = out_file;
463
+ largepp::just_build = false;
464
+
465
+ // 2) HARD RESET of largepp global state
466
+ // (only touch symbols that actually exist in largepp)
467
+ largepp::ClearCollected(); // clear previously collected patterns
468
+
469
+ // If these exist in largepp::load_inst.hpp / utility.hpp they’ll compile;
470
+ // if the compiler complains about any of them, just comment that line out.
471
+ largepp::items.clear(); // transaction DB
472
+ largepp::DFS.clear(); // DFS pattern stack, if list-based miner uses it
473
+
474
+ largepp::M = 0;
475
+ largepp::L = 0;
476
+ largepp::N = 0;
477
+ largepp::theta = 0;
478
+ largepp::E = 0;
479
+ largepp::num_patt = 0;
480
+
481
+ largepp::start_time = std::clock();
482
+
483
+ // 3) Handle input (path or Python list)
484
+ if (py::isinstance<py::str>(data)) {
485
+ std::string fname = data.cast<std::string>();
486
+ largepp::Load_instance(fname, minsup);
487
+ } else {
488
+ largepp::Load_py(data, minsup);
489
+ }
490
+
491
+ // 4) Run miner
492
+ largepp::Freq_miner();
493
+
494
+ // 5) Return results
495
+ py::dict out;
496
+ out["patterns"] = largepp::GetCollected();
497
+ out["time"] = largepp::give_time(std::clock() - largepp::start_time);
498
+ return out;
499
+ },
500
+ py::arg("data"),
501
+ py::arg("minsup") = 0.01,
502
+ py::arg("time_limit") = 36000,
503
+ py::arg("preproc") = false,
504
+ py::arg("use_dic") = false,
505
+ py::arg("verbose") = false,
506
+ py::arg("out_file") = ""
507
+ );
508
+
509
+ // ─────────────────────────────────────────────────────────────
510
+ // LargeBTMiner (always uses professor's largebm::Load_instance)
511
+ // ─────────────────────────────────────────────────────────────
512
+ m.def("LargeBTMiner",
513
+ [](py::object data,
514
+ double minsup,
515
+ unsigned int time_limit,
516
+ bool preproc,
517
+ bool use_dic,
518
+ bool verbose,
519
+ const std::string &out_file)
520
+ {
521
+ using namespace largebm;
522
+
523
+ largebm::time_limit = time_limit;
524
+ largebm::pre_pro = preproc;
525
+ largebm::use_dic = use_dic;
526
+ largebm::use_list = false; // MDD-based
527
+ largebm::b_disp = verbose;
528
+ largebm::b_write = !out_file.empty();
529
+ largebm::out_file = out_file;
530
+ largebm::just_build = false;
531
+
532
+ largebm::ClearCollected();
533
+ largebm::items.clear();
534
+ largebm::item_dic.clear();
535
+ largebm::inv_item_dic.clear();
536
+ largebm::Tree.clear();
537
+ largebm::DFS.clear();
538
+
539
+ largebm::start_time = std::clock();
540
+
541
+ TempFile tmp;
542
+ std::string path;
543
+
544
+ if (py::isinstance<py::str>(data)) {
545
+ path = data.cast<std::string>();
546
+ } else {
547
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
548
+ tmp.path = write_temp_seq_file(seqs);
549
+ path = tmp.path;
550
+ }
551
+
552
+ if (verbose) {
553
+ std::cerr << "[LargeBTMiner] path=" << path
554
+ << " minsup=" << minsup
555
+ << " preproc=" << preproc
556
+ << " use_dic=" << use_dic
557
+ << std::endl;
558
+ }
559
+
560
+ if (!largebm::Load_instance(path, minsup)) {
561
+ throw std::runtime_error("LargeBTMiner: failed to load instance from: " + path);
562
+ }
563
+
564
+ largebm::Freq_miner();
565
+
566
+ py::dict out;
567
+ out["patterns"] = largebm::GetCollected();
568
+ out["time"] = largebm::give_time(std::clock() - largebm::start_time);
569
+ return out;
570
+ },
571
+ py::arg("data"),
572
+ py::arg("minsup") = 0.01,
573
+ py::arg("time_limit") = 36000,
574
+ py::arg("preproc") = false,
575
+ py::arg("use_dic") = false,
576
+ py::arg("verbose") = false,
577
+ py::arg("out_file") = ""
578
+ );
579
+
580
+ // ─────────────────────────────────────────────────────────────
581
+ // LargeHTMiner (always uses professor's largehm::Load_instance; pre_pro forced ON)
582
+ // ─────────────────────────────────────────────────────────────
583
+ // ─────────────────────────────────────────────────────────────
584
+ // LargeHTMiner (professor's Large HTMiner, namespaced as largehm)
585
+ // ─────────────────────────────────────────────────────────────
586
+ m.def("LargeHTMiner",
587
+ [](py::object data,
588
+ double minsup,
589
+ unsigned int time_limit,
590
+ bool /*preproc*/, // kept for API symmetry; ignored
591
+ bool use_dic,
592
+ bool verbose,
593
+ const std::string &out_file)
594
+ {
595
+ using namespace largehm;
596
+
597
+ // 1) Global configuration (mirror professor's style)
598
+ largehm::time_limit = time_limit;
599
+ largehm::pre_pro = true; // always preprocess
600
+ largehm::use_dic = use_dic;
601
+ largehm::just_build = false;
602
+ largehm::b_disp = verbose;
603
+ largehm::b_write = !out_file.empty();
604
+ largehm::out_file = out_file;
605
+
606
+ // 2) HARD RESET of all global state for a fresh run
607
+ largehm::ClearCollected(); // our helper in largehm::utility.cpp
608
+
609
+ largehm::M = 0;
610
+ largehm::L = 0;
611
+ largehm::mlim = 0;
612
+ largehm::N = 0;
613
+ largehm::theta = 0;
614
+ largehm::E = 0;
615
+ largehm::itmset_exists = false;
616
+
617
+ // containers
618
+ // (item_dic reset is optional and not strictly needed here)
619
+ largehm::DFS.clear();
620
+ largehm::VDFS.clear();
621
+ largehm::Tree.clear();
622
+ largehm::VTree.clear();
623
+ largehm::CTree.clear();
624
+
625
+ largehm::start_time = std::clock();
626
+
627
+ // 3) Handle input (file path or Python list)
628
+ TempFile tmp;
629
+ std::string path;
630
+
631
+ if (py::isinstance<py::str>(data)) {
632
+ path = data.cast<std::string>();
633
+ } else {
634
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
635
+ tmp.path = write_temp_seq_file(seqs);
636
+ path = tmp.path;
637
+ }
638
+
639
+ if (verbose) {
640
+ std::cerr << "[LargeHTMiner] path=" << path
641
+ << " minsup=" << minsup
642
+ << " preproc(always)=true"
643
+ << " use_dic=" << use_dic
644
+ << std::endl;
645
+ }
646
+
647
+ // 4) Build MDD / load instance.
648
+ // NOTE: Load_instance() itself does Tree.emplace_back(0,0,0),
649
+ // so we DO NOT create a root node here.
650
+ if (!largehm::Load_instance(path, minsup)) {
651
+ throw std::runtime_error("LargeHTMiner: failed to load instance from: " + path);
652
+ }
653
+
654
+ // 5) Run miner (same timing logic as original main)
655
+ if (!largehm::just_build &&
656
+ largehm::give_time(std::clock() - largehm::start_time) < largehm::time_limit)
657
+ {
658
+ largehm::Freq_miner();
659
+ if (largehm::give_time(std::clock() - largehm::start_time) >= largehm::time_limit) {
660
+ std::cout << "TIME LIMIT REACHED\n";
661
+ }
662
+ }
663
+
664
+ // 6) Return collected patterns + runtime
665
+ py::dict out;
666
+ out["patterns"] = largehm::GetCollected();
667
+ out["time"] = largehm::give_time(std::clock() - largehm::start_time);
668
+ return out;
669
+ },
670
+ py::arg("data"),
671
+ py::arg("minsup") = 0.01,
672
+ py::arg("time_limit") = 36000,
673
+ py::arg("preproc") = false, // kept for API symmetry
674
+ py::arg("use_dic") = false,
675
+ py::arg("verbose") = false,
676
+ py::arg("out_file") = ""
677
+ );
678
+
679
+
680
+ }
681
+
682
+
683
+ /*#include <pybind11/pybind11.h>
684
+ #include <pybind11/stl.h>
5
685
  namespace py = pybind11;
6
686
  #include <iostream>
7
687
 
@@ -28,6 +708,7 @@ namespace py = pybind11;
28
708
  #include "largepp/src/load_inst.hpp"
29
709
  #include "largepp/src/utility.hpp"
30
710
 
711
+
31
712
  #include "largebm/src/freq_miner.hpp"
32
713
  #include "largebm/src/load_inst.hpp"
33
714
  #include "largebm/src/utility.hpp"
@@ -469,7 +1150,7 @@ m.def("HTMiner",
469
1150
  // ─────────────────────────────────────────────────────────────────────────
470
1151
  // LargeBTMiner (MDD-based)
471
1152
  // ─────────────────────────────────────────────────────────────────────────
472
- m.def("LargeBTMiner",
1153
+ /*m.def("LargeBTMiner",
473
1154
  [](py::object data,
474
1155
  double minsup,
475
1156
  unsigned int time_limit,
@@ -676,4 +1357,4 @@ m.def("LargeHTMiner",
676
1357
 
677
1358
 
678
1359
 
679
- }
1360
+ } */