effspm 0.3.0__cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl → 0.3.2__cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
effspm/_effspm.cpp CHANGED
@@ -2,6 +2,575 @@
2
2
 
3
3
  #include <pybind11/pybind11.h>
4
4
  #include <pybind11/stl.h>
5
+
6
+ #include <iostream>
7
+ #include <fstream>
8
+ #include <cstdio> // std::remove
9
+ #include <vector>
10
+ #include <string>
11
+ #include <ctime>
12
+ #include <cmath>
13
+
14
+ namespace py = pybind11;
15
+
16
+ // PrefixProjection headers (global namespace)
17
+ #include "freq_miner.hpp"
18
+ #include "load_inst.hpp"
19
+ #include "utility.hpp"
20
+
21
+ // BTMiner (namespaced)
22
+ #include "btminer/src/freq_miner.hpp"
23
+ #include "btminer/src/load_inst.hpp"
24
+ #include "btminer/src/utility.hpp"
25
+ #include "btminer/src/build_mdd.hpp"
26
+
27
+ // HTMiner (namespaced)
28
+ #include "htminer/src/build_mdd.hpp"
29
+ #include "htminer/src/freq_miner.hpp"
30
+ #include "htminer/src/load_inst.hpp"
31
+ #include "htminer/src/utility.hpp"
32
+
33
+ // LargePrefixProjection
34
+ #include "largepp/src/freq_miner.hpp"
35
+ #include "largepp/src/load_inst.hpp"
36
+ #include "largepp/src/utility.hpp"
37
+
38
+ // LargeBTMiner
39
+ #include "largebm/src/freq_miner.hpp"
40
+ #include "largebm/src/load_inst.hpp"
41
+ #include "largebm/src/utility.hpp"
42
+ #include "largebm/src/build_mdd.hpp"
43
+
44
+ // LargeHTMiner
45
+ #include "largehm/src/freq_miner.hpp"
46
+ #include "largehm/src/load_inst.hpp"
47
+ #include "largehm/src/utility.hpp"
48
+ #include "largehm/src/build_mdd.hpp"
49
+
50
+ namespace {
51
+
52
+ // RAII helper for temp file
53
+ struct TempFile {
54
+ std::string path;
55
+ ~TempFile() {
56
+ if (!path.empty()) {
57
+ std::remove(path.c_str());
58
+ }
59
+ }
60
+ };
61
+
62
+ // Write Python list[list[int]] to a temp file in professor’s format:
63
+ // one sequence per line, items separated by spaces.
64
+ std::string write_temp_seq_file(const std::vector<std::vector<int>>& seqs) {
65
+ char tmp_name[L_tmpnam];
66
+ if (!std::tmpnam(tmp_name)) {
67
+ throw std::runtime_error("Failed to create temporary file name");
68
+ }
69
+ std::string path = std::string(tmp_name) + ".txt";
70
+
71
+ std::ofstream ofs(path);
72
+ if (!ofs) {
73
+ throw std::runtime_error("Failed to open temporary file for writing: " + path);
74
+ }
75
+
76
+ for (const auto& seq : seqs) {
77
+ for (size_t i = 0; i < seq.size(); ++i) {
78
+ if (i) ofs << ' ';
79
+ ofs << seq[i];
80
+ }
81
+ ofs << '\n';
82
+ }
83
+
84
+ ofs.close();
85
+ return path;
86
+ }
87
+
88
+ } // anonymous namespace
89
+
90
+
91
+ PYBIND11_MODULE(_effspm, m) {
92
+ m.doc() = "Unified SPM library: PrefixProjection, BTMiner, HTMiner, Large* variants";
93
+
94
+ // ─────────────────────────────────────────────────────────────
95
+ // PrefixProjection (works directly on Python lists or files)
96
+ // ─────────────────────────────────────────────────────────────
97
+ m.def("PrefixProjection",
98
+ [](py::object data,
99
+ double minsup,
100
+ unsigned int time_limit,
101
+ bool preproc,
102
+ bool use_dic,
103
+ bool verbose,
104
+ const std::string &out_file)
105
+ {
106
+ ::time_limit = time_limit;
107
+ ::pre_pro = preproc;
108
+ ::use_dic = use_dic;
109
+ ::use_list = false;
110
+ ::b_disp = verbose; // controls prints in original code
111
+ ::b_write = !out_file.empty();
112
+ ::out_file = out_file;
113
+
114
+ ClearCollected();
115
+ start_time = std::clock();
116
+
117
+ if (py::isinstance<py::str>(data)) {
118
+ std::string path = data.cast<std::string>();
119
+ if (!Load_instance(path, minsup))
120
+ throw std::runtime_error("PrefixProjection: failed to load file: " + path);
121
+ } else {
122
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
123
+ items = std::move(seqs);
124
+ N = items.size();
125
+
126
+ int max_id = 0;
127
+ for (auto &seq : items)
128
+ for (int x : seq)
129
+ max_id = std::max(max_id, std::abs(x));
130
+ L = max_id;
131
+
132
+ theta = (minsup < 1.0) ? std::ceil(minsup * N) : minsup;
133
+
134
+ DFS.clear();
135
+ DFS.reserve(L);
136
+ for (unsigned int i = 0; i < L; ++i)
137
+ DFS.emplace_back(-static_cast<int>(i) - 1);
138
+
139
+ M = 0;
140
+ E = 0;
141
+ for (auto &seq : items) {
142
+ M = std::max<unsigned int>(M, seq.size());
143
+ E += seq.size();
144
+ }
145
+ }
146
+
147
+ Freq_miner();
148
+
149
+ py::dict out;
150
+ out["patterns"] = GetCollected();
151
+ out["time"] = give_time(std::clock() - start_time);
152
+ return out;
153
+ },
154
+ py::arg("data"),
155
+ py::arg("minsup") = 0.01,
156
+ py::arg("time_limit") = 36000,
157
+ py::arg("preproc") = false,
158
+ py::arg("use_dic") = false,
159
+ py::arg("verbose") = false,
160
+ py::arg("out_file") = ""
161
+ );
162
+
163
+ // ─────────────────────────────────────────────────────────────
164
+ // BTMiner (always uses professor's Load_instance)
165
+ // ─────────────────────────────────────────────────────────────
166
+ // ─────────────────────────────────────────────────────────────
167
+ // BTMiner (always uses professor's Load_instance)
168
+ // ─────────────────────────────────────────────────────────────
169
+ m.def("BTMiner",
170
+ [](py::object data,
171
+ double minsup,
172
+ unsigned int time_limit,
173
+ bool preproc,
174
+ bool use_dic,
175
+ bool verbose,
176
+ const std::string &out_file)
177
+ {
178
+ // 1) Configure professor globals
179
+ btminer::time_limit = static_cast<int>(time_limit);
180
+ btminer::pre_pro = preproc;
181
+ btminer::use_dic = use_dic;
182
+ btminer::b_disp = verbose;
183
+ btminer::b_write = !out_file.empty();
184
+ btminer::out_file = out_file;
185
+ btminer::N_mult = 1;
186
+ btminer::M_mult = 1;
187
+ btminer::just_build = false;
188
+
189
+ // 2) HARD RESET of *known* global state for BTMiner
190
+ // (Only touch what we know exists in btminer namespace)
191
+ btminer::ClearCollected(); // clear collected patterns
192
+ btminer::Tree.clear(); // clear MDD tree
193
+ btminer::DFS.clear(); // clear DFS patterns
194
+
195
+ btminer::M = 0;
196
+ btminer::L = 0;
197
+ btminer::N = 0;
198
+ btminer::theta = 0;
199
+ btminer::E = 0;
200
+ btminer::num_patt = 0; // reset pattern counter if defined
201
+
202
+ // NOTE: we do NOT reinsert root here; btminer::Load_instance()
203
+ // is responsible for calling Tree.emplace_back(0,0,0) as needed.
204
+
205
+ btminer::start_time = std::clock();
206
+
207
+ // 3) Handle input (path or list-of-lists)
208
+ TempFile tmp;
209
+ std::string path;
210
+
211
+ if (py::isinstance<py::str>(data)) {
212
+ // File path: use directly
213
+ path = data.cast<std::string>();
214
+ } else {
215
+ // Python list → write to a temp file in professor’s format
216
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
217
+ tmp.path = write_temp_seq_file(seqs);
218
+ path = tmp.path;
219
+ }
220
+
221
+ if (verbose) {
222
+ std::cerr << "[BTMiner] path=" << path
223
+ << " minsup=" << minsup
224
+ << " preproc=" << preproc
225
+ << " use_dic=" << use_dic
226
+ << std::endl;
227
+ }
228
+
229
+ // 4) Build MDD + run miner
230
+ if (!btminer::Load_instance(path, minsup)) {
231
+ throw std::runtime_error("BTMiner: failed to load instance from: " + path);
232
+ }
233
+
234
+ btminer::Freq_miner();
235
+
236
+ // 5) Return results
237
+ py::dict out;
238
+ out["patterns"] = btminer::GetCollected();
239
+ out["num_patterns"] = btminer::num_patt;
240
+ out["time"] = btminer::give_time(std::clock() - btminer::start_time);
241
+ out["N"] = btminer::N;
242
+ out["L"] = btminer::L;
243
+ out["theta"] = btminer::theta;
244
+ return out;
245
+ },
246
+ py::arg("data"),
247
+ py::arg("minsup") = 0.01,
248
+ py::arg("time_limit") = 36000,
249
+ py::arg("preproc") = false,
250
+ py::arg("use_dic") = false,
251
+ py::arg("verbose") = false,
252
+ py::arg("out_file") = ""
253
+ );
254
+
255
+
256
+ // ─────────────────────────────────────────────────────────────
257
+ // HTMiner (works on files; we use a temp file for in-memory data)
258
+ // ─────────────────────────────────────────────────────────────
259
+ // ─────────────────────────────────────────────────────────────
260
+ // HTMiner (always uses professor's Load_instance; pre_pro forced ON)
261
+ // ─────────────────────────────────────────────────────────────
262
+ m.def("HTMiner",
263
+ [](py::object data,
264
+ double minsup,
265
+ unsigned int time_limit,
266
+ bool /*preproc*/, // Python arg is ignored internally
267
+ bool use_dic,
268
+ bool verbose,
269
+ const std::string &out_file)
270
+ {
271
+ using namespace htminer;
272
+
273
+ // ───────── Global parameter setup ─────────
274
+ htminer::time_limit = time_limit;
275
+
276
+ // IMPORTANT: always run with preprocessing ON,
277
+ // regardless of the Python `preproc` flag.
278
+ htminer::pre_pro = true;
279
+ htminer::use_dic = use_dic;
280
+ htminer::just_build = false;
281
+ htminer::b_disp = verbose;
282
+ htminer::b_write = !out_file.empty();
283
+ htminer::out_file = out_file;
284
+
285
+ // ───────── HARD RESET of HTMiner globals ─────────
286
+ htminer::ClearCollected();
287
+ htminer::Tree.clear();
288
+ htminer::VTree.clear();
289
+ htminer::CTree.clear();
290
+ htminer::DFS.clear();
291
+ htminer::VDFS.clear();
292
+ htminer::item_dic.clear();
293
+
294
+ htminer::M = 0;
295
+ htminer::N = 0;
296
+ htminer::L = 0;
297
+ htminer::E = 0;
298
+ htminer::theta = 0;
299
+ htminer::mlim = 0;
300
+ htminer::itmset_exists = false;
301
+
302
+ // NOTE: do NOT add a root arc here;
303
+ // htminer::Load_instance() already does Tree.emplace_back(0,0,0)
304
+ htminer::start_time = std::clock();
305
+
306
+ // ───────── Handle input (path or in-memory sequences) ─────────
307
+ TempFile tmp;
308
+ std::string path;
309
+
310
+ if (py::isinstance<py::str>(data)) {
311
+ // data is a file path
312
+ path = data.cast<std::string>();
313
+ } else {
314
+ // data is a list[list[int]] → write a temp file in the same text format
315
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
316
+ tmp.path = write_temp_seq_file(seqs);
317
+ path = tmp.path;
318
+ }
319
+
320
+ if (verbose) {
321
+ std::cerr << "[HTMiner] path=" << path
322
+ << " minsup=" << minsup
323
+ << " preproc(always)=true"
324
+ << " use_dic=" << use_dic
325
+ << std::endl;
326
+ }
327
+
328
+ // ───────── Build MDD via professor's loader ─────────
329
+ if (!htminer::Load_instance(path, minsup)) {
330
+ throw std::runtime_error("HTMiner: failed to load instance from: " + path);
331
+ }
332
+
333
+ // ───────── Run miner ─────────
334
+ htminer::Freq_miner();
335
+
336
+ // ───────── Return results ─────────
337
+ py::dict out;
338
+ out["patterns"] = htminer::GetCollected();
339
+ out["time"] = htminer::give_time(std::clock() - htminer::start_time);
340
+ return out;
341
+ },
342
+ py::arg("data"),
343
+ py::arg("minsup") = 0.01,
344
+ py::arg("time_limit") = 36000,
345
+ py::arg("preproc") = false, // kept for API symmetry, but IGNORED
346
+ py::arg("use_dic") = false,
347
+ py::arg("verbose") = false,
348
+ py::arg("out_file") = ""
349
+ );
350
+
351
+ // ─────────────────────────────────────────────────────────────
352
+ // LargePrefixProjection (already has its own Load_py)
353
+ // ─────────────────────────────────────────────────────────────
354
+ m.def("LargePrefixProjection",
355
+ [](py::object data,
356
+ double minsup,
357
+ unsigned int time_limit,
358
+ bool preproc,
359
+ bool use_dic,
360
+ bool verbose,
361
+ const std::string &out_file)
362
+ {
363
+ largepp::time_limit = time_limit;
364
+ largepp::pre_pro = preproc;
365
+ largepp::use_dic = use_dic;
366
+ largepp::use_list = true; // large prefix uses list-based mining
367
+ largepp::b_disp = verbose;
368
+ largepp::b_write = !out_file.empty();
369
+ largepp::out_file = out_file;
370
+ largepp::just_build = false;
371
+
372
+ largepp::ClearCollected();
373
+ largepp::start_time = std::clock();
374
+
375
+ if (py::isinstance<py::str>(data)) {
376
+ std::string fname = data.cast<std::string>();
377
+ largepp::Load_instance(fname, minsup);
378
+ } else {
379
+ largepp::Load_py(data, minsup);
380
+ }
381
+
382
+ largepp::Freq_miner();
383
+
384
+ py::dict out;
385
+ out["patterns"] = largepp::GetCollected();
386
+ out["time"] = largepp::give_time(std::clock() - largepp::start_time);
387
+ return out;
388
+ },
389
+ py::arg("data"),
390
+ py::arg("minsup") = 0.01,
391
+ py::arg("time_limit") = 36000,
392
+ py::arg("preproc") = false,
393
+ py::arg("use_dic") = false,
394
+ py::arg("verbose") = false,
395
+ py::arg("out_file") = ""
396
+ );
397
+
398
+ // ─────────────────────────────────────────────────────────────
399
+ // LargeBTMiner (always uses professor's largebm::Load_instance)
400
+ // ─────────────────────────────────────────────────────────────
401
+ m.def("LargeBTMiner",
402
+ [](py::object data,
403
+ double minsup,
404
+ unsigned int time_limit,
405
+ bool preproc,
406
+ bool use_dic,
407
+ bool verbose,
408
+ const std::string &out_file)
409
+ {
410
+ using namespace largebm;
411
+
412
+ largebm::time_limit = time_limit;
413
+ largebm::pre_pro = preproc;
414
+ largebm::use_dic = use_dic;
415
+ largebm::use_list = false; // MDD-based
416
+ largebm::b_disp = verbose;
417
+ largebm::b_write = !out_file.empty();
418
+ largebm::out_file = out_file;
419
+ largebm::just_build = false;
420
+
421
+ largebm::ClearCollected();
422
+ largebm::items.clear();
423
+ largebm::item_dic.clear();
424
+ largebm::inv_item_dic.clear();
425
+ largebm::Tree.clear();
426
+ largebm::DFS.clear();
427
+
428
+ largebm::start_time = std::clock();
429
+
430
+ TempFile tmp;
431
+ std::string path;
432
+
433
+ if (py::isinstance<py::str>(data)) {
434
+ path = data.cast<std::string>();
435
+ } else {
436
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
437
+ tmp.path = write_temp_seq_file(seqs);
438
+ path = tmp.path;
439
+ }
440
+
441
+ if (verbose) {
442
+ std::cerr << "[LargeBTMiner] path=" << path
443
+ << " minsup=" << minsup
444
+ << " preproc=" << preproc
445
+ << " use_dic=" << use_dic
446
+ << std::endl;
447
+ }
448
+
449
+ if (!largebm::Load_instance(path, minsup)) {
450
+ throw std::runtime_error("LargeBTMiner: failed to load instance from: " + path);
451
+ }
452
+
453
+ largebm::Freq_miner();
454
+
455
+ py::dict out;
456
+ out["patterns"] = largebm::GetCollected();
457
+ out["time"] = largebm::give_time(std::clock() - largebm::start_time);
458
+ return out;
459
+ },
460
+ py::arg("data"),
461
+ py::arg("minsup") = 0.01,
462
+ py::arg("time_limit") = 36000,
463
+ py::arg("preproc") = false,
464
+ py::arg("use_dic") = false,
465
+ py::arg("verbose") = false,
466
+ py::arg("out_file") = ""
467
+ );
468
+
469
+ // ─────────────────────────────────────────────────────────────
470
+ // LargeHTMiner (always uses professor's largehm::Load_instance; pre_pro forced ON)
471
+ // ─────────────────────────────────────────────────────────────
472
+ // ─────────────────────────────────────────────────────────────
473
+ // LargeHTMiner (professor's Large HTMiner, namespaced as largehm)
474
+ // ─────────────────────────────────────────────────────────────
475
+ m.def("LargeHTMiner",
476
+ [](py::object data,
477
+ double minsup,
478
+ unsigned int time_limit,
479
+ bool /*preproc*/, // kept for API symmetry; ignored
480
+ bool use_dic,
481
+ bool verbose,
482
+ const std::string &out_file)
483
+ {
484
+ using namespace largehm;
485
+
486
+ // 1) Global configuration (mirror professor's style)
487
+ largehm::time_limit = time_limit;
488
+ largehm::pre_pro = true; // always preprocess
489
+ largehm::use_dic = use_dic;
490
+ largehm::just_build = false;
491
+ largehm::b_disp = verbose;
492
+ largehm::b_write = !out_file.empty();
493
+ largehm::out_file = out_file;
494
+
495
+ // 2) HARD RESET of all global state for a fresh run
496
+ largehm::ClearCollected(); // our helper in largehm::utility.cpp
497
+
498
+ largehm::M = 0;
499
+ largehm::L = 0;
500
+ largehm::mlim = 0;
501
+ largehm::N = 0;
502
+ largehm::theta = 0;
503
+ largehm::E = 0;
504
+ largehm::itmset_exists = false;
505
+
506
+ // containers
507
+ // (item_dic reset is optional and not strictly needed here)
508
+ largehm::DFS.clear();
509
+ largehm::VDFS.clear();
510
+ largehm::Tree.clear();
511
+ largehm::VTree.clear();
512
+ largehm::CTree.clear();
513
+
514
+ largehm::start_time = std::clock();
515
+
516
+ // 3) Handle input (file path or Python list)
517
+ TempFile tmp;
518
+ std::string path;
519
+
520
+ if (py::isinstance<py::str>(data)) {
521
+ path = data.cast<std::string>();
522
+ } else {
523
+ auto seqs = data.cast<std::vector<std::vector<int>>>();
524
+ tmp.path = write_temp_seq_file(seqs);
525
+ path = tmp.path;
526
+ }
527
+
528
+ if (verbose) {
529
+ std::cerr << "[LargeHTMiner] path=" << path
530
+ << " minsup=" << minsup
531
+ << " preproc(always)=true"
532
+ << " use_dic=" << use_dic
533
+ << std::endl;
534
+ }
535
+
536
+ // 4) Build MDD / load instance.
537
+ // NOTE: Load_instance() itself does Tree.emplace_back(0,0,0),
538
+ // so we DO NOT create a root node here.
539
+ if (!largehm::Load_instance(path, minsup)) {
540
+ throw std::runtime_error("LargeHTMiner: failed to load instance from: " + path);
541
+ }
542
+
543
+ // 5) Run miner (same timing logic as original main)
544
+ if (!largehm::just_build &&
545
+ largehm::give_time(std::clock() - largehm::start_time) < largehm::time_limit)
546
+ {
547
+ largehm::Freq_miner();
548
+ if (largehm::give_time(std::clock() - largehm::start_time) >= largehm::time_limit) {
549
+ std::cout << "TIME LIMIT REACHED\n";
550
+ }
551
+ }
552
+
553
+ // 6) Return collected patterns + runtime
554
+ py::dict out;
555
+ out["patterns"] = largehm::GetCollected();
556
+ out["time"] = largehm::give_time(std::clock() - largehm::start_time);
557
+ return out;
558
+ },
559
+ py::arg("data"),
560
+ py::arg("minsup") = 0.01,
561
+ py::arg("time_limit") = 36000,
562
+ py::arg("preproc") = false, // kept for API symmetry
563
+ py::arg("use_dic") = false,
564
+ py::arg("verbose") = false,
565
+ py::arg("out_file") = ""
566
+ );
567
+
568
+
569
+ }
570
+
571
+
572
+ /*#include <pybind11/pybind11.h>
573
+ #include <pybind11/stl.h>
5
574
  namespace py = pybind11;
6
575
  #include <iostream>
7
576
 
@@ -28,6 +597,7 @@ namespace py = pybind11;
28
597
  #include "largepp/src/load_inst.hpp"
29
598
  #include "largepp/src/utility.hpp"
30
599
 
600
+
31
601
  #include "largebm/src/freq_miner.hpp"
32
602
  #include "largebm/src/load_inst.hpp"
33
603
  #include "largebm/src/utility.hpp"
@@ -469,7 +1039,7 @@ m.def("HTMiner",
469
1039
  // ─────────────────────────────────────────────────────────────────────────
470
1040
  // LargeBTMiner (MDD-based)
471
1041
  // ─────────────────────────────────────────────────────────────────────────
472
- m.def("LargeBTMiner",
1042
+ /*m.def("LargeBTMiner",
473
1043
  [](py::object data,
474
1044
  double minsup,
475
1045
  unsigned int time_limit,
@@ -676,4 +1246,4 @@ m.def("LargeHTMiner",
676
1246
 
677
1247
 
678
1248
 
679
- }
1249
+ } */
@@ -67,8 +67,8 @@ bool Load_instance(string &items_file, double thresh) {
67
67
  if (pre_pro) {
68
68
  if (!Preprocess(items_file, thresh))
69
69
  return false;
70
-
71
- cout << "\nPreprocess done in " << give_time(clock() - kk) << " seconds\n\n";
70
+ if (b_disp)
71
+ cout << "\nPreprocess done in " << give_time(clock() - kk) << " seconds\n\n";
72
72
 
73
73
  // build empty DFS of size L
74
74
  DFS.clear();
@@ -88,12 +88,13 @@ bool Load_instance(string &items_file, double thresh) {
88
88
  else
89
89
  theta = static_cast<int>(thresh);
90
90
  }
91
-
92
- cout << "\nMDD Database built in " << give_time(clock() - kk) << " seconds\n\n";
93
- cout << "Found " << N * N_mult
94
- << " sequence, with max line len " << M
95
- << ", and " << L << " items, and " << E << " enteries\n";
96
- cout << "Total MDD nodes: " << Tree.size() << endl;
91
+ if (b_disp)
92
+ cout << "\nMDD Database built in " << give_time(clock() - kk) << " seconds\n\n";
93
+ if (b_disp)
94
+ cout << "Found " << N * N_mult
95
+ << " sequence, with max line len " << M
96
+ << ", and " << L << " items, and " << E << " enteries\n";
97
+ //cout << "Total MDD nodes: " << Tree.size() << endl;
97
98
 
98
99
  return true;
99
100
  }
@@ -147,8 +148,8 @@ bool Preprocess(string &inst, double thresh) {
147
148
  if (freq[i] >= theta)
148
149
  item_dic[i] = ++real_L;
149
150
  }
150
-
151
- cout << "Original number of items: " << L
151
+ if (b_disp)
152
+ cout << "Original number of items: " << L
152
153
  << " Reduced to: " << real_L << endl;
153
154
 
154
155
  L = real_L;