eegdash 0.4.1__py3-none-any.whl → 0.4.1.dev185__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/__init__.py +3 -3
- eegdash/api.py +2 -480
- eegdash/dataset/__init__.py +8 -2
- eegdash/dataset/base.py +311 -0
- eegdash/{data_utils.py → dataset/bids_dataset.py} +4 -295
- eegdash/dataset/dataset.py +507 -4
- eegdash/features/datasets.py +9 -8
- eegdash/features/decorators.py +3 -3
- eegdash/features/inspect.py +21 -18
- eegdash/features/serialization.py +14 -9
- eegdash/features/utils.py +20 -18
- eegdash/paths.py +6 -5
- {eegdash-0.4.1.dist-info → eegdash-0.4.1.dev185.dist-info}/METADATA +2 -1
- {eegdash-0.4.1.dist-info → eegdash-0.4.1.dev185.dist-info}/RECORD +17 -16
- {eegdash-0.4.1.dist-info → eegdash-0.4.1.dev185.dist-info}/WHEEL +0 -0
- {eegdash-0.4.1.dist-info → eegdash-0.4.1.dev185.dist-info}/licenses/LICENSE +0 -0
- {eegdash-0.4.1.dist-info → eegdash-0.4.1.dev185.dist-info}/top_level.txt +0 -0
eegdash/features/inspect.py
CHANGED
|
@@ -4,7 +4,7 @@ import inspect
|
|
|
4
4
|
from collections.abc import Callable
|
|
5
5
|
|
|
6
6
|
from . import extractors, feature_bank
|
|
7
|
-
from .extractors import
|
|
7
|
+
from .extractors import _get_underlying_func
|
|
8
8
|
|
|
9
9
|
__all__ = [
|
|
10
10
|
"get_all_feature_extractors",
|
|
@@ -25,21 +25,24 @@ def get_feature_predecessors(feature_or_extractor: Callable) -> list:
|
|
|
25
25
|
Parameters
|
|
26
26
|
----------
|
|
27
27
|
feature_or_extractor : callable
|
|
28
|
-
The feature function or :class
|
|
28
|
+
The feature function or :class:`~eegdash.features.extractors.FeatureExtractor`
|
|
29
|
+
class to inspect.
|
|
29
30
|
|
|
30
31
|
Returns
|
|
31
32
|
-------
|
|
32
33
|
list
|
|
33
34
|
A nested list representing the dependency tree. For a simple linear
|
|
34
35
|
chain, this will be a flat list from the specific feature up to the
|
|
35
|
-
base
|
|
36
|
-
tuples of sub-dependencies.
|
|
36
|
+
base :class:`~eegdash.features.extractors.FeatureExtractor`. For
|
|
37
|
+
multiple dependencies, it will contain tuples of sub-dependencies.
|
|
37
38
|
|
|
38
39
|
"""
|
|
39
40
|
current = _get_underlying_func(feature_or_extractor)
|
|
40
|
-
if current is FeatureExtractor:
|
|
41
|
+
if current is extractors.FeatureExtractor:
|
|
41
42
|
return [current]
|
|
42
|
-
predecessor = getattr(
|
|
43
|
+
predecessor = getattr(
|
|
44
|
+
current, "parent_extractor_type", [extractors.FeatureExtractor]
|
|
45
|
+
)
|
|
43
46
|
if len(predecessor) == 1:
|
|
44
47
|
return [current, *get_feature_predecessors(predecessor[0])]
|
|
45
48
|
else:
|
|
@@ -50,7 +53,7 @@ def get_feature_predecessors(feature_or_extractor: Callable) -> list:
|
|
|
50
53
|
return [current, tuple(predecessors)]
|
|
51
54
|
|
|
52
55
|
|
|
53
|
-
def get_feature_kind(feature: Callable) -> MultivariateFeature:
|
|
56
|
+
def get_feature_kind(feature: Callable) -> extractors.MultivariateFeature:
|
|
54
57
|
"""Get the 'kind' of a feature function.
|
|
55
58
|
|
|
56
59
|
The feature kind (e.g., univariate, bivariate) is typically attached by a
|
|
@@ -63,8 +66,8 @@ def get_feature_kind(feature: Callable) -> MultivariateFeature:
|
|
|
63
66
|
|
|
64
67
|
Returns
|
|
65
68
|
-------
|
|
66
|
-
MultivariateFeature
|
|
67
|
-
An instance of the feature kind (e.g.,
|
|
69
|
+
:class:`~eegdash.features.extractors.MultivariateFeature`
|
|
70
|
+
An instance of the feature kind (e.g., ``UnivariateFeature()``).
|
|
68
71
|
|
|
69
72
|
"""
|
|
70
73
|
return _get_underlying_func(feature).feature_kind
|
|
@@ -89,30 +92,30 @@ def get_all_features() -> list[tuple[str, Callable]]:
|
|
|
89
92
|
return inspect.getmembers(feature_bank, isfeature)
|
|
90
93
|
|
|
91
94
|
|
|
92
|
-
def get_all_feature_extractors() -> list[tuple[str, type[FeatureExtractor]]]:
|
|
93
|
-
"""Get a list of all available
|
|
95
|
+
def get_all_feature_extractors() -> list[tuple[str, type[extractors.FeatureExtractor]]]:
|
|
96
|
+
"""Get a list of all available :class:`~eegdash.features.extractors.FeatureExtractor` classes.
|
|
94
97
|
|
|
95
98
|
Scans the `eegdash.features.feature_bank` module for all classes that
|
|
96
99
|
subclass :class:`~eegdash.features.extractors.FeatureExtractor`.
|
|
97
100
|
|
|
98
101
|
Returns
|
|
99
102
|
-------
|
|
100
|
-
list[tuple[str, type[FeatureExtractor]]]
|
|
103
|
+
list[tuple[str, type[eegdash.features.extractors.FeatureExtractor]]]
|
|
101
104
|
A list of (name, class) tuples for all discovered feature extractors,
|
|
102
|
-
including the base
|
|
105
|
+
including the base :class:`~eegdash.features.extractors.FeatureExtractor` itself.
|
|
103
106
|
|
|
104
107
|
"""
|
|
105
108
|
|
|
106
109
|
def isfeatureextractor(x):
|
|
107
|
-
return inspect.isclass(x) and issubclass(x, FeatureExtractor)
|
|
110
|
+
return inspect.isclass(x) and issubclass(x, extractors.FeatureExtractor)
|
|
108
111
|
|
|
109
112
|
return [
|
|
110
|
-
("FeatureExtractor", FeatureExtractor),
|
|
113
|
+
("FeatureExtractor", extractors.FeatureExtractor),
|
|
111
114
|
*inspect.getmembers(feature_bank, isfeatureextractor),
|
|
112
115
|
]
|
|
113
116
|
|
|
114
117
|
|
|
115
|
-
def get_all_feature_kinds() -> list[tuple[str, type[MultivariateFeature]]]:
|
|
118
|
+
def get_all_feature_kinds() -> list[tuple[str, type[extractors.MultivariateFeature]]]:
|
|
116
119
|
"""Get a list of all available feature 'kind' classes.
|
|
117
120
|
|
|
118
121
|
Scans the `eegdash.features.extractors` module for all classes that
|
|
@@ -120,12 +123,12 @@ def get_all_feature_kinds() -> list[tuple[str, type[MultivariateFeature]]]:
|
|
|
120
123
|
|
|
121
124
|
Returns
|
|
122
125
|
-------
|
|
123
|
-
list[tuple[str, type[MultivariateFeature]]]
|
|
126
|
+
list[tuple[str, type[eegdash.features.extractors.MultivariateFeature]]]
|
|
124
127
|
A list of (name, class) tuples for all discovered feature kinds.
|
|
125
128
|
|
|
126
129
|
"""
|
|
127
130
|
|
|
128
131
|
def isfeaturekind(x):
|
|
129
|
-
return inspect.isclass(x) and issubclass(x, MultivariateFeature)
|
|
132
|
+
return inspect.isclass(x) and issubclass(x, extractors.MultivariateFeature)
|
|
130
133
|
|
|
131
134
|
return inspect.getmembers(extractors, isfeaturekind)
|
|
@@ -26,11 +26,13 @@ __all__ = [
|
|
|
26
26
|
def load_features_concat_dataset(
|
|
27
27
|
path: str | Path, ids_to_load: list[int] | None = None, n_jobs: int = 1
|
|
28
28
|
) -> FeaturesConcatDataset:
|
|
29
|
-
"""Load a stored
|
|
29
|
+
"""Load a stored :class:`~eegdash.features.datasets.FeaturesConcatDataset` from a directory.
|
|
30
30
|
|
|
31
|
-
This function reconstructs a
|
|
32
|
-
|
|
33
|
-
|
|
31
|
+
This function reconstructs a
|
|
32
|
+
:class:`~eegdash.features.datasets.FeaturesConcatDataset` by loading
|
|
33
|
+
individual :class:`~eegdash.features.datasets.FeaturesDataset` instances
|
|
34
|
+
from subdirectories within the given path. It uses joblib for parallel
|
|
35
|
+
loading.
|
|
34
36
|
|
|
35
37
|
Parameters
|
|
36
38
|
----------
|
|
@@ -48,7 +50,8 @@ def load_features_concat_dataset(
|
|
|
48
50
|
Returns
|
|
49
51
|
-------
|
|
50
52
|
eegdash.features.datasets.FeaturesConcatDataset
|
|
51
|
-
A concatenated dataset containing the loaded
|
|
53
|
+
A concatenated dataset containing the loaded
|
|
54
|
+
:class:`~eegdash.features.datasets.FeaturesDataset` instances.
|
|
52
55
|
|
|
53
56
|
"""
|
|
54
57
|
# Make sure we always work with a pathlib.Path
|
|
@@ -65,15 +68,17 @@ def load_features_concat_dataset(
|
|
|
65
68
|
|
|
66
69
|
|
|
67
70
|
def _load_parallel(path: Path, i: str) -> FeaturesDataset:
|
|
68
|
-
"""Load a single
|
|
71
|
+
"""Load a single :class:`~eegdash.features.datasets.FeaturesDataset` from its subdirectory.
|
|
69
72
|
|
|
70
|
-
This is a helper function for
|
|
71
|
-
|
|
73
|
+
This is a helper function for
|
|
74
|
+
:func:`~eegdash.features.serialization.load_features_concat_dataset` that
|
|
75
|
+
handles the loading of one dataset's files (features, metadata, descriptions, etc.).
|
|
72
76
|
|
|
73
77
|
Parameters
|
|
74
78
|
----------
|
|
75
79
|
path : pathlib.Path
|
|
76
|
-
The root directory of the saved
|
|
80
|
+
The root directory of the saved
|
|
81
|
+
:class:`~eegdash.features.datasets.FeaturesConcatDataset`.
|
|
77
82
|
i : str
|
|
78
83
|
The identifier of the dataset to load, corresponding to its
|
|
79
84
|
subdirectory name.
|
eegdash/features/utils.py
CHANGED
|
@@ -14,8 +14,8 @@ from braindecode.datasets.base import (
|
|
|
14
14
|
WindowsDataset,
|
|
15
15
|
)
|
|
16
16
|
|
|
17
|
+
from . import extractors
|
|
17
18
|
from .datasets import FeaturesConcatDataset, FeaturesDataset
|
|
18
|
-
from .extractors import FeatureExtractor
|
|
19
19
|
|
|
20
20
|
__all__ = [
|
|
21
21
|
"extract_features",
|
|
@@ -25,7 +25,7 @@ __all__ = [
|
|
|
25
25
|
|
|
26
26
|
def _extract_features_from_windowsdataset(
|
|
27
27
|
win_ds: EEGWindowsDataset | WindowsDataset,
|
|
28
|
-
feature_extractor: FeatureExtractor,
|
|
28
|
+
feature_extractor: extractors.FeatureExtractor,
|
|
29
29
|
batch_size: int = 512,
|
|
30
30
|
) -> FeaturesDataset:
|
|
31
31
|
"""Extract features from a single `WindowsDataset`.
|
|
@@ -38,14 +38,14 @@ def _extract_features_from_windowsdataset(
|
|
|
38
38
|
----------
|
|
39
39
|
win_ds : EEGWindowsDataset or WindowsDataset
|
|
40
40
|
The windowed dataset to extract features from.
|
|
41
|
-
feature_extractor : FeatureExtractor
|
|
41
|
+
feature_extractor : ~eegdash.features.extractors.FeatureExtractor
|
|
42
42
|
The feature extractor instance to apply.
|
|
43
43
|
batch_size : int, default 512
|
|
44
44
|
The number of windows to process in each batch.
|
|
45
45
|
|
|
46
46
|
Returns
|
|
47
47
|
-------
|
|
48
|
-
FeaturesDataset
|
|
48
|
+
~eegdash.features.datasets.FeaturesDataset
|
|
49
49
|
A new dataset containing the extracted features and associated metadata.
|
|
50
50
|
|
|
51
51
|
"""
|
|
@@ -93,7 +93,7 @@ def _extract_features_from_windowsdataset(
|
|
|
93
93
|
|
|
94
94
|
def extract_features(
|
|
95
95
|
concat_dataset: BaseConcatDataset,
|
|
96
|
-
features: FeatureExtractor | Dict[str, Callable] | List[Callable],
|
|
96
|
+
features: extractors.FeatureExtractor | Dict[str, Callable] | List[Callable],
|
|
97
97
|
*,
|
|
98
98
|
batch_size: int = 512,
|
|
99
99
|
n_jobs: int = 1,
|
|
@@ -109,8 +109,9 @@ def extract_features(
|
|
|
109
109
|
concat_dataset : BaseConcatDataset
|
|
110
110
|
A concatenated dataset of `WindowsDataset` or `EEGWindowsDataset`
|
|
111
111
|
instances.
|
|
112
|
-
features : FeatureExtractor or dict or list
|
|
113
|
-
The feature extractor(s) to apply. Can be a
|
|
112
|
+
features : ~eegdash.features.extractors.FeatureExtractor or dict or list
|
|
113
|
+
The feature extractor(s) to apply. Can be a
|
|
114
|
+
:class:`~eegdash.features.extractors.FeatureExtractor`
|
|
114
115
|
instance, a dictionary of named feature functions, or a list of
|
|
115
116
|
feature functions.
|
|
116
117
|
batch_size : int, default 512
|
|
@@ -121,14 +122,14 @@ def extract_features(
|
|
|
121
122
|
|
|
122
123
|
Returns
|
|
123
124
|
-------
|
|
124
|
-
FeaturesConcatDataset
|
|
125
|
+
~eegdash.features.datasets.FeaturesConcatDataset
|
|
125
126
|
A new concatenated dataset containing the extracted features.
|
|
126
127
|
|
|
127
128
|
"""
|
|
128
129
|
if isinstance(features, list):
|
|
129
130
|
features = dict(enumerate(features))
|
|
130
|
-
if not isinstance(features, FeatureExtractor):
|
|
131
|
-
features = FeatureExtractor(features)
|
|
131
|
+
if not isinstance(features, extractors.FeatureExtractor):
|
|
132
|
+
features = extractors.FeatureExtractor(features)
|
|
132
133
|
feature_ds_list = list(
|
|
133
134
|
tqdm(
|
|
134
135
|
Parallel(n_jobs=n_jobs, return_as="generator")(
|
|
@@ -146,34 +147,35 @@ def extract_features(
|
|
|
146
147
|
|
|
147
148
|
def fit_feature_extractors(
|
|
148
149
|
concat_dataset: BaseConcatDataset,
|
|
149
|
-
features: FeatureExtractor | Dict[str, Callable] | List[Callable],
|
|
150
|
+
features: extractors.FeatureExtractor | Dict[str, Callable] | List[Callable],
|
|
150
151
|
batch_size: int = 8192,
|
|
151
|
-
) -> FeatureExtractor:
|
|
152
|
+
) -> extractors.FeatureExtractor:
|
|
152
153
|
"""Fit trainable feature extractors on a dataset.
|
|
153
154
|
|
|
154
155
|
If the provided feature extractor (or any of its sub-extractors) is
|
|
155
|
-
trainable (i.e., subclasses
|
|
156
|
-
|
|
156
|
+
trainable (i.e., subclasses
|
|
157
|
+
:class:`~eegdash.features.extractors.TrainableFeature`), this function
|
|
158
|
+
iterates through the dataset to fit it.
|
|
157
159
|
|
|
158
160
|
Parameters
|
|
159
161
|
----------
|
|
160
162
|
concat_dataset : BaseConcatDataset
|
|
161
163
|
The dataset to use for fitting the feature extractors.
|
|
162
|
-
features : FeatureExtractor or dict or list
|
|
164
|
+
features : ~eegdash.features.extractors.FeatureExtractor or dict or list
|
|
163
165
|
The feature extractor(s) to fit.
|
|
164
166
|
batch_size : int, default 8192
|
|
165
167
|
The batch size to use when iterating through the dataset for fitting.
|
|
166
168
|
|
|
167
169
|
Returns
|
|
168
170
|
-------
|
|
169
|
-
FeatureExtractor
|
|
171
|
+
~eegdash.features.extractors.FeatureExtractor
|
|
170
172
|
The fitted feature extractor.
|
|
171
173
|
|
|
172
174
|
"""
|
|
173
175
|
if isinstance(features, list):
|
|
174
176
|
features = dict(enumerate(features))
|
|
175
|
-
if not isinstance(features, FeatureExtractor):
|
|
176
|
-
features = FeatureExtractor(features)
|
|
177
|
+
if not isinstance(features, extractors.FeatureExtractor):
|
|
178
|
+
features = extractors.FeatureExtractor(features)
|
|
177
179
|
if not features._is_trainable:
|
|
178
180
|
return features
|
|
179
181
|
features.clear()
|
eegdash/paths.py
CHANGED
|
@@ -22,11 +22,12 @@ def get_default_cache_dir() -> Path:
|
|
|
22
22
|
|
|
23
23
|
The function determines the cache directory based on the following
|
|
24
24
|
priority order:
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
25
|
+
|
|
26
|
+
1. The path specified by the ``EEGDASH_CACHE_DIR`` environment variable.
|
|
27
|
+
2. The path specified by the ``MNE_DATA`` configuration in the MNE-Python
|
|
28
|
+
config file.
|
|
29
|
+
3. A hidden directory named ``.eegdash_cache`` in the current working
|
|
30
|
+
directory.
|
|
30
31
|
|
|
31
32
|
Returns
|
|
32
33
|
-------
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eegdash
|
|
3
|
-
Version: 0.4.1
|
|
3
|
+
Version: 0.4.1.dev185
|
|
4
4
|
Summary: EEG data for machine learning
|
|
5
5
|
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
|
|
6
6
|
License-Expression: GPL-3.0-only
|
|
@@ -60,6 +60,7 @@ Requires-Dist: lightgbm; extra == "docs"
|
|
|
60
60
|
Requires-Dist: plotly; extra == "docs"
|
|
61
61
|
Requires-Dist: nbformat; extra == "docs"
|
|
62
62
|
Requires-Dist: graphviz; extra == "docs"
|
|
63
|
+
Requires-Dist: neato; extra == "docs"
|
|
63
64
|
Provides-Extra: digestion
|
|
64
65
|
Requires-Dist: pybids; extra == "digestion"
|
|
65
66
|
Requires-Dist: python-dotenv; extra == "digestion"
|
|
@@ -1,24 +1,25 @@
|
|
|
1
|
-
eegdash/__init__.py,sha256=
|
|
2
|
-
eegdash/api.py,sha256=
|
|
1
|
+
eegdash/__init__.py,sha256=GEDA8-xE1JPDzIRGN6fmVpGsBOFd2_uNrnAxp-UuN6w,704
|
|
2
|
+
eegdash/api.py,sha256=saCl7_9tvblPVeTWZphw8fRXW4A2t1t2JBBp-RDvq1M,19632
|
|
3
3
|
eegdash/bids_eeg_metadata.py,sha256=kEmFUe07tivkuIoC5T-YwfO4QQYJBxuc769ZBV1UCKo,16682
|
|
4
4
|
eegdash/const.py,sha256=9WMetN7YMQJbkN2PhzItxtVRZ4VBXLP82vFu9pY6xok,9066
|
|
5
|
-
eegdash/data_utils.py,sha256=t7m00gwfST3MlOFmGwEr2LNPo-fPbQ1WFwC6y8XW7yw,26119
|
|
6
5
|
eegdash/downloader.py,sha256=Z-9EEJildqJxIihwdtXc_h9kzCkuF9LWIwQEfyG9Huw,6030
|
|
7
6
|
eegdash/logging.py,sha256=OQ4jMtwv1h-gzjxmr3PCpcsKi5-3Nhd3r9PJ4UN7oQI,1467
|
|
8
7
|
eegdash/mongodb.py,sha256=9FJDeEebOD5RzNYfAf1lhr0R-pECAlnug6Sjhd9_oUw,3469
|
|
9
|
-
eegdash/paths.py,sha256=
|
|
8
|
+
eegdash/paths.py,sha256=iXzBUindjIwgkf2k0Phm2InChOfPZNGilQmGwJ8zNO0,1507
|
|
10
9
|
eegdash/utils.py,sha256=u_fQ8DiA1b7dVLzwzZBhm8H-LUk6dga54WyqbbqYEJ4,1282
|
|
11
|
-
eegdash/dataset/__init__.py,sha256=
|
|
12
|
-
eegdash/dataset/
|
|
10
|
+
eegdash/dataset/__init__.py,sha256=EXmCtcIWz2_iq7-04AzOPmOxfv1hvUGnrSRgu_Je800,975
|
|
11
|
+
eegdash/dataset/base.py,sha256=dHCiUtoZddflLpUD-q2yIDImMfcIVZmTuvRRJflVS8s,11718
|
|
12
|
+
eegdash/dataset/bids_dataset.py,sha256=577D_kqig4xmW_fYz1VbaUbGWPquL33eT97ge_CbXpQ,14919
|
|
13
|
+
eegdash/dataset/dataset.py,sha256=IDAGg5qDeh1R48nFMiyG6_9CxenS2KK56VeuvM_w5tM,27593
|
|
13
14
|
eegdash/dataset/dataset_summary.csv,sha256=YJX-BitOyo-5nsHBd3ECIY1u7lFBjMQAFfCUPLYEgpo,25289
|
|
14
15
|
eegdash/dataset/registry.py,sha256=5TOCWalA0RV7omRoYS0OzdcSaOTvXvqos74_Vj2jv0M,9127
|
|
15
16
|
eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
|
|
16
|
-
eegdash/features/datasets.py,sha256
|
|
17
|
-
eegdash/features/decorators.py,sha256=
|
|
17
|
+
eegdash/features/datasets.py,sha256=79Xey6SouPHMKybF78madVl5i7P0f03jnostBV6Dr7M,24880
|
|
18
|
+
eegdash/features/decorators.py,sha256=Gvk-5VtqatpH7BBVVV3pcz1KJKygd-ZU8mniR_Tpvlw,4052
|
|
18
19
|
eegdash/features/extractors.py,sha256=R4csU3jj95xndtWI1VuMKoKi26xprzmuOp9wcy9iVzI,11937
|
|
19
|
-
eegdash/features/inspect.py,sha256=
|
|
20
|
-
eegdash/features/serialization.py,sha256=
|
|
21
|
-
eegdash/features/utils.py,sha256=
|
|
20
|
+
eegdash/features/inspect.py,sha256=GpNV4708XPn4LXl5BXy8e0GNr_DSrojxjAT9c7POxqk,4373
|
|
21
|
+
eegdash/features/serialization.py,sha256=f981K8DcfaLZ0q98IBrXeAbMHnPmKBbp7cFiXZnjezw,4194
|
|
22
|
+
eegdash/features/utils.py,sha256=SuvPE6N_ccm-Ar4g-1dgVj1qaW2bV9hNQivtz946hlY,6487
|
|
22
23
|
eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
|
|
23
24
|
eegdash/features/feature_bank/complexity.py,sha256=eOLN0X_xaS15ZpLPDQcychuwjL459-FqZKYfOG51z-g,3366
|
|
24
25
|
eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
|
|
@@ -30,8 +31,8 @@ eegdash/features/feature_bank/utils.py,sha256=zCdkfDMLWJhPjBqb5Xz0jLKg8gm3qQDY1G
|
|
|
30
31
|
eegdash/hbn/__init__.py,sha256=hsI5pmIuYDzr--aE5UiToO-P9XL5fVRKahZzdsAodro,794
|
|
31
32
|
eegdash/hbn/preprocessing.py,sha256=xp0HBz8WGhLI5c2Zkk4QiVUzGoIZep8YypnHNZsUJ4o,3800
|
|
32
33
|
eegdash/hbn/windows.py,sha256=Z_fhG3kaHd5MAPg60FwFnxMJay8EzacXytUaCsOENGc,14408
|
|
33
|
-
eegdash-0.4.1.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
|
|
34
|
-
eegdash-0.4.1.dist-info/METADATA,sha256=
|
|
35
|
-
eegdash-0.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
36
|
-
eegdash-0.4.1.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
37
|
-
eegdash-0.4.1.dist-info/RECORD,,
|
|
34
|
+
eegdash-0.4.1.dev185.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
|
|
35
|
+
eegdash-0.4.1.dev185.dist-info/METADATA,sha256=kprps0odUjO5HR9uFhU6L1GCUFf69AqfX91lSh5ojkM,6880
|
|
36
|
+
eegdash-0.4.1.dev185.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
37
|
+
eegdash-0.4.1.dev185.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
38
|
+
eegdash-0.4.1.dev185.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|