eegdash 0.4.0.dev173__py3-none-any.whl → 0.4.0.dev176__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

eegdash/__init__.py CHANGED
@@ -18,4 +18,4 @@ _init_mongo_client()
18
18
 
19
19
  __all__ = ["EEGDash", "EEGDashDataset", "EEGChallengeDataset", "preprocessing"]
20
20
 
21
- __version__ = "0.4.0.dev173"
21
+ __version__ = "0.4.0.dev176"
@@ -18,6 +18,11 @@ from braindecode.datasets.base import (
18
18
 
19
19
  from ..logging import logger
20
20
 
21
+ __all__ = [
22
+ "FeaturesDataset",
23
+ "FeaturesConcatDataset",
24
+ ]
25
+
21
26
 
22
27
  class FeaturesDataset(EEGWindowsDataset):
23
28
  """A dataset of features extracted from EEG windows.
@@ -10,6 +10,14 @@ from .extractors import (
10
10
  _get_underlying_func,
11
11
  )
12
12
 
13
+ __all__ = [
14
+ "bivariate_feature",
15
+ "FeatureKind",
16
+ "FeaturePredecessor",
17
+ "multivariate_feature",
18
+ "univariate_feature",
19
+ ]
20
+
13
21
 
14
22
  class FeaturePredecessor:
15
23
  """A decorator to specify parent extractors for a feature function.
@@ -8,6 +8,15 @@ from typing import Dict
8
8
  import numpy as np
9
9
  from numba.core.dispatcher import Dispatcher
10
10
 
11
+ __all__ = [
12
+ "BivariateFeature",
13
+ "DirectedBivariateFeature",
14
+ "FeatureExtractor",
15
+ "MultivariateFeature",
16
+ "TrainableFeature",
17
+ "UnivariateFeature",
18
+ ]
19
+
11
20
 
12
21
  def _get_underlying_func(func: Callable) -> Callable:
13
22
  """Get the underlying function from a potential wrapper.
@@ -8,20 +8,21 @@ from ..extractors import FeatureExtractor
8
8
 
9
9
  __all__ = [
10
10
  "HilbertFeatureExtractor",
11
- "signal_mean",
12
- "signal_variance",
13
- "signal_skewness",
11
+ "SIGNAL_PREDECESSORS",
12
+ "signal_decorrelation_time",
13
+ "signal_hjorth_activity",
14
+ "signal_hjorth_complexity",
15
+ "signal_hjorth_mobility",
14
16
  "signal_kurtosis",
15
- "signal_std",
16
- "signal_root_mean_square",
17
+ "signal_line_length",
18
+ "signal_mean",
17
19
  "signal_peak_to_peak",
18
20
  "signal_quantile",
21
+ "signal_root_mean_square",
22
+ "signal_skewness",
23
+ "signal_std",
24
+ "signal_variance",
19
25
  "signal_zero_crossings",
20
- "signal_line_length",
21
- "signal_hjorth_activity",
22
- "signal_hjorth_mobility",
23
- "signal_hjorth_complexity",
24
- "signal_decorrelation_time",
25
26
  ]
26
27
 
27
28
 
@@ -1,5 +1,13 @@
1
1
  import numpy as np
2
2
 
3
+ __all__ = [
4
+ "DEFAULT_FREQ_BANDS",
5
+ "get_valid_freq_band",
6
+ "reduce_freq_bands",
7
+ "slice_freq_band",
8
+ ]
9
+
10
+
3
11
  DEFAULT_FREQ_BANDS = {
4
12
  "delta": (1, 4.5),
5
13
  "theta": (4.5, 8),
@@ -6,6 +6,14 @@ from collections.abc import Callable
6
6
  from . import extractors, feature_bank
7
7
  from .extractors import FeatureExtractor, MultivariateFeature, _get_underlying_func
8
8
 
9
+ __all__ = [
10
+ "get_all_feature_extractors",
11
+ "get_all_feature_kinds",
12
+ "get_all_features",
13
+ "get_feature_kind",
14
+ "get_feature_predecessors",
15
+ ]
16
+
9
17
 
10
18
  def get_feature_predecessors(feature_or_extractor: Callable) -> list:
11
19
  """Get the dependency hierarchy for a feature or feature extractor.
@@ -2,7 +2,7 @@
2
2
 
3
3
  See Also
4
4
  --------
5
- https://github.com/braindecode/braindecode//blob/master/braindecode/datautil/serialization.py#L165-L229
5
+ https://github.com/braindecode/braindecode/blob/master/braindecode/datautil/serialization.py#L165-L229
6
6
 
7
7
  """
8
8
 
@@ -18,6 +18,10 @@ from braindecode.datautil.serialization import _load_kwargs_json
18
18
 
19
19
  from .datasets import FeaturesConcatDataset, FeaturesDataset
20
20
 
21
+ __all__ = [
22
+ "load_features_concat_dataset",
23
+ ]
24
+
21
25
 
22
26
  def load_features_concat_dataset(
23
27
  path: str | Path, ids_to_load: list[int] | None = None, n_jobs: int = 1
eegdash/features/utils.py CHANGED
@@ -17,6 +17,11 @@ from braindecode.datasets.base import (
17
17
  from .datasets import FeaturesConcatDataset, FeaturesDataset
18
18
  from .extractors import FeatureExtractor
19
19
 
20
+ __all__ = [
21
+ "extract_features",
22
+ "fit_feature_extractors",
23
+ ]
24
+
20
25
 
21
26
  def _extract_features_from_windowsdataset(
22
27
  win_ds: EEGWindowsDataset | WindowsDataset,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.4.0.dev173
3
+ Version: 0.4.0.dev176
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -1,4 +1,4 @@
1
- eegdash/__init__.py,sha256=ynbkEQjTlwKxtoQy16y185nEEY5daZ1qCvrGNs4ku34,704
1
+ eegdash/__init__.py,sha256=A7Uh_kXQuDzVmoSuZyWHE7RRxwhA2_JzaAmLD7LZM4E,704
2
2
  eegdash/api.py,sha256=az7uUYrEvJfBtzvkzYKzXqEztDSCMsCmgIywpdzYqc8,38381
3
3
  eegdash/bids_eeg_metadata.py,sha256=kEmFUe07tivkuIoC5T-YwfO4QQYJBxuc769ZBV1UCKo,16682
4
4
  eegdash/const.py,sha256=9WMetN7YMQJbkN2PhzItxtVRZ4VBXLP82vFu9pY6xok,9066
@@ -13,25 +13,25 @@ eegdash/dataset/dataset.py,sha256=DnR6LoirPNV45MECq42MNtIPyhL7DTFuwPWavVWZmmA,81
13
13
  eegdash/dataset/dataset_summary.csv,sha256=YJX-BitOyo-5nsHBd3ECIY1u7lFBjMQAFfCUPLYEgpo,25289
14
14
  eegdash/dataset/registry.py,sha256=5TOCWalA0RV7omRoYS0OzdcSaOTvXvqos74_Vj2jv0M,9127
15
15
  eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
16
- eegdash/features/datasets.py,sha256=5BQZMNwsUsugW05_qGSdKbCFVgI4KP8PGukLx5y8p2A,24569
17
- eegdash/features/decorators.py,sha256=xK6-HcusPRnKcUCot3DEzkoRjlazd9OLVvq6R8JO0Nw,3826
18
- eegdash/features/extractors.py,sha256=1srmgEsj0mFkkyQByFOsuL4r0ZpAQGdBPjiTpJWswQ8,11766
19
- eegdash/features/inspect.py,sha256=IF3kv1T-uLm2KKwaKhlBBDMrqNFnrnKqKpEvkOu8gJA,3911
20
- eegdash/features/serialization.py,sha256=ppRFvbd7qhrZBun61hJOY7e5X0HTTckcGh9dREMS2iI,3888
21
- eegdash/features/utils.py,sha256=lK-epGlkRm9_psqsbgiWzan_gFC8BuizCRu44PSTvco,6092
16
+ eegdash/features/datasets.py,sha256=-Y-CxBypJu3dHyNDLFKFIo-zIi4qEInahZTgJslnrVQ,24636
17
+ eegdash/features/decorators.py,sha256=VOCeL6rFa8wqkRJRnecWaTqdBW2B9MO724vGGk1AkGo,3965
18
+ eegdash/features/extractors.py,sha256=R4csU3jj95xndtWI1VuMKoKi26xprzmuOp9wcy9iVzI,11937
19
+ eegdash/features/inspect.py,sha256=XYuEDkiwNhEFYS0a0auyn8E96WvMaPrpNn4nMRk2foM,4069
20
+ eegdash/features/serialization.py,sha256=Um5fseiyk7SXmXoSLaaVRl2-0a6iAiRLm5rAmqdYfpg,3938
21
+ eegdash/features/utils.py,sha256=DiutW7SOVU0pnkRTKvWpdca0RW4UCJD6JvHGDNJPjXk,6161
22
22
  eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
23
23
  eegdash/features/feature_bank/complexity.py,sha256=eOLN0X_xaS15ZpLPDQcychuwjL459-FqZKYfOG51z-g,3366
24
24
  eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
25
25
  eegdash/features/feature_bank/csp.py,sha256=jKPrmqBj7FliybNbg035cVZddvVSkhk9OazcscDpipU,3303
26
26
  eegdash/features/feature_bank/dimensionality.py,sha256=Pit3YNxv64-qHUyz_5c3nBo4sFD5AnCE5mTwgnzSndc,3980
27
- eegdash/features/feature_bank/signal.py,sha256=3Tb8z9gX7iZipxQJ9DSyy30JfdmW58kgvimSyZX74p8,3404
27
+ eegdash/features/feature_bank/signal.py,sha256=iSMrgnZLKNn1qNdBPheEoE_UcJPPLAOv3qDTaRI1BcE,3431
28
28
  eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
29
- eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
29
+ eegdash/features/feature_bank/utils.py,sha256=zCdkfDMLWJhPjBqb5Xz0jLKg8gm3qQDY1G1rZTLuCaM,1354
30
30
  eegdash/hbn/__init__.py,sha256=hsI5pmIuYDzr--aE5UiToO-P9XL5fVRKahZzdsAodro,794
31
31
  eegdash/hbn/preprocessing.py,sha256=xp0HBz8WGhLI5c2Zkk4QiVUzGoIZep8YypnHNZsUJ4o,3800
32
32
  eegdash/hbn/windows.py,sha256=Z_fhG3kaHd5MAPg60FwFnxMJay8EzacXytUaCsOENGc,14408
33
- eegdash-0.4.0.dev173.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
34
- eegdash-0.4.0.dev173.dist-info/METADATA,sha256=4Vz2JDLtnRzommOV5TUUGvyy-YwDczhuKrzzpbsnT2E,6927
35
- eegdash-0.4.0.dev173.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
36
- eegdash-0.4.0.dev173.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
37
- eegdash-0.4.0.dev173.dist-info/RECORD,,
33
+ eegdash-0.4.0.dev176.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
34
+ eegdash-0.4.0.dev176.dist-info/METADATA,sha256=85mnc40qlaAusZRVmbWhmM9RaD29YxaReud8ICVuDp4,6927
35
+ eegdash-0.4.0.dev176.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
36
+ eegdash-0.4.0.dev176.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
37
+ eegdash-0.4.0.dev176.dist-info/RECORD,,