eegdash 0.3.9.dev182388821__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

eegdash/logging.py ADDED
@@ -0,0 +1,54 @@
1
+ # Authors: The EEGDash contributors.
2
+ # License: GNU General Public License
3
+ # Copyright the EEGDash contributors.
4
+
5
+ """Logging configuration for EEGDash.
6
+
7
+ This module sets up centralized logging for the EEGDash package using Rich for enhanced
8
+ console output formatting. It provides a consistent logging interface across all modules.
9
+ """
10
+
11
+ import logging
12
+
13
+ from rich.logging import RichHandler
14
+
15
+ # Get the root logger
16
+ root_logger = logging.getLogger()
17
+
18
+ # --- This is the key part ---
19
+ # 1. Remove any handlers that may have been added by default
20
+ root_logger.handlers = []
21
+
22
+ # 2. Add your RichHandler
23
+ root_logger.addHandler(RichHandler(rich_tracebacks=True, markup=True))
24
+ # ---------------------------
25
+
26
+ # 3. Set the level for the root logger
27
+ root_logger.setLevel(logging.INFO)
28
+
29
+ # Now, get your package-specific logger. It will inherit the
30
+ # configuration from the root logger we just set up.
31
+ logger = logging.getLogger("eegdash")
32
+ """The primary logger for the EEGDash package.
33
+
34
+ This logger is configured to use :class:`rich.logging.RichHandler` for
35
+ formatted, colorful output in the console. It inherits its base configuration
36
+ from the root logger, which is set to the ``INFO`` level.
37
+
38
+ Examples
39
+ --------
40
+ Usage in other modules:
41
+
42
+ .. code-block:: python
43
+
44
+ from .logging import logger
45
+
46
+ logger.info("This is an informational message.")
47
+ logger.warning("This is a warning.")
48
+ logger.error("This is an error.")
49
+ """
50
+
51
+
52
+ logger.setLevel(logging.INFO)
53
+
54
+ __all__ = ["logger"]
eegdash/mongodb.py CHANGED
@@ -1,42 +1,66 @@
1
+ # Authors: The EEGDash contributors.
2
+ # License: GNU General Public License
3
+ # Copyright the EEGDash contributors.
4
+
5
+ """MongoDB connection and operations management.
6
+
7
+ This module provides a thread-safe singleton manager for MongoDB connections,
8
+ ensuring that connections to the database are handled efficiently and consistently
9
+ across the application.
10
+ """
11
+
1
12
  import threading
2
13
 
3
14
  from pymongo import MongoClient
4
-
5
- # MongoDB Operations
6
- # These methods provide a high-level interface to interact with the MongoDB
7
- # collection, allowing users to find, add, and update EEG data records.
8
- # - find:
9
- # - exist:
10
- # - add_request:
11
- # - add:
12
- # - update_request:
13
- # - remove_field:
14
- # - remove_field_from_db:
15
- # - close: Close the MongoDB connection.
16
- # - __del__: Destructor to close the MongoDB connection.
15
+ from pymongo.collection import Collection
16
+ from pymongo.database import Database
17
17
 
18
18
 
19
19
  class MongoConnectionManager:
20
- """Singleton class to manage MongoDB client connections."""
20
+ """A thread-safe singleton to manage MongoDB client connections.
21
+
22
+ This class ensures that only one connection instance is created for each
23
+ unique combination of a connection string and staging flag. It provides
24
+ class methods to get a client and to close all active connections.
25
+
26
+ Attributes
27
+ ----------
28
+ _instances : dict
29
+ A dictionary to store singleton instances, mapping a
30
+ (connection_string, is_staging) tuple to a (client, db, collection)
31
+ tuple.
32
+ _lock : threading.Lock
33
+ A lock to ensure thread-safe instantiation of clients.
21
34
 
22
- _instances = {}
35
+ """
36
+
37
+ _instances: dict[tuple[str, bool], tuple[MongoClient, Database, Collection]] = {}
23
38
  _lock = threading.Lock()
24
39
 
25
40
  @classmethod
26
- def get_client(cls, connection_string: str, is_staging: bool = False):
27
- """Get or create a MongoDB client for the given connection string and staging flag.
41
+ def get_client(
42
+ cls, connection_string: str, is_staging: bool = False
43
+ ) -> tuple[MongoClient, Database, Collection]:
44
+ """Get or create a MongoDB client for the given connection parameters.
45
+
46
+ This method returns a cached client if one already exists for the given
47
+ connection string and staging flag. Otherwise, it creates a new client,
48
+ connects to the appropriate database ("eegdash" or "eegdashstaging"),
49
+ and returns the client, database, and "records" collection.
28
50
 
29
51
  Parameters
30
52
  ----------
31
53
  connection_string : str
32
- The MongoDB connection string
33
- is_staging : bool
34
- Whether to use staging database
54
+ The MongoDB connection string.
55
+ is_staging : bool, default False
56
+ If True, connect to the staging database ("eegdashstaging").
57
+ Otherwise, connect to the production database ("eegdash").
35
58
 
36
59
  Returns
37
60
  -------
38
- tuple
39
- A tuple of (client, database, collection)
61
+ tuple[MongoClient, Database, Collection]
62
+ A tuple containing the connected MongoClient instance, the Database
63
+ object, and the Collection object for the "records" collection.
40
64
 
41
65
  """
42
66
  # Create a unique key based on connection string and staging flag
@@ -55,8 +79,12 @@ class MongoConnectionManager:
55
79
  return cls._instances[key]
56
80
 
57
81
  @classmethod
58
- def close_all(cls):
59
- """Close all MongoDB client connections."""
82
+ def close_all(cls) -> None:
83
+ """Close all managed MongoDB client connections.
84
+
85
+ This method iterates through all cached client instances and closes
86
+ their connections. It also clears the instance cache.
87
+ """
60
88
  with cls._lock:
61
89
  for client, _, _ in cls._instances.values():
62
90
  try:
@@ -64,3 +92,6 @@ class MongoConnectionManager:
64
92
  except Exception:
65
93
  pass
66
94
  cls._instances.clear()
95
+
96
+
97
+ __all__ = ["MongoConnectionManager"]
eegdash/paths.py CHANGED
@@ -1,3 +1,14 @@
1
+ # Authors: The EEGDash contributors.
2
+ # License: GNU General Public License
3
+ # Copyright the EEGDash contributors.
4
+
5
+ """Path utilities and cache directory management.
6
+
7
+ This module provides functions for resolving consistent cache directories and path
8
+ management throughout the EEGDash package, with integration to MNE-Python's
9
+ configuration system.
10
+ """
11
+
1
12
  from __future__ import annotations
2
13
 
3
14
  import os
@@ -7,12 +18,21 @@ from mne.utils import get_config as mne_get_config
7
18
 
8
19
 
9
20
  def get_default_cache_dir() -> Path:
10
- """Resolve a consistent default cache directory for EEGDash.
21
+ """Resolve the default cache directory for EEGDash data.
22
+
23
+ The function determines the cache directory based on the following
24
+ priority order:
25
+ 1. The path specified by the ``EEGDASH_CACHE_DIR`` environment variable.
26
+ 2. The path specified by the ``MNE_DATA`` configuration in the MNE-Python
27
+ config file.
28
+ 3. A hidden directory named ``.eegdash_cache`` in the current working
29
+ directory.
30
+
31
+ Returns
32
+ -------
33
+ pathlib.Path
34
+ The resolved, absolute path to the default cache directory.
11
35
 
12
- Priority order:
13
- 1) Environment variable ``EEGDASH_CACHE_DIR`` if set.
14
- 2) MNE config ``MNE_DATA`` if set (aligns with tests and ecosystem caches).
15
- 3) ``.eegdash_cache`` under the current working directory.
16
36
  """
17
37
  # 1) Explicit env var wins
18
38
  env_dir = os.environ.get("EEGDASH_CACHE_DIR")
@@ -26,3 +46,6 @@ def get_default_cache_dir() -> Path:
26
46
 
27
47
  # 3) Default to a project-local hidden folder
28
48
  return Path.cwd() / ".eegdash_cache"
49
+
50
+
51
+ __all__ = ["get_default_cache_dir"]
eegdash/utils.py CHANGED
@@ -1,7 +1,32 @@
1
+ # Authors: The EEGDash contributors.
2
+ # License: GNU General Public License
3
+ # Copyright the EEGDash contributors.
4
+
5
+ """General utility functions for EEGDash.
6
+
7
+ This module contains miscellaneous utility functions used across the EEGDash package,
8
+ including MongoDB client initialization and configuration helpers.
9
+ """
10
+
1
11
  from mne.utils import get_config, set_config, use_log_level
2
12
 
3
13
 
4
- def _init_mongo_client():
14
+ def _init_mongo_client() -> None:
15
+ """Initialize the default MongoDB connection URI in the MNE config.
16
+
17
+ This function checks if the ``EEGDASH_DB_URI`` is already set in the
18
+ MNE-Python configuration. If it is not set, this function sets it to the
19
+ default public EEGDash MongoDB Atlas cluster URI.
20
+
21
+ The operation is performed with MNE's logging level temporarily set to
22
+ "ERROR" to suppress verbose output.
23
+
24
+ Notes
25
+ -----
26
+ This is an internal helper function and is not intended for direct use
27
+ by end-users.
28
+
29
+ """
5
30
  with use_log_level("ERROR"):
6
31
  if get_config("EEGDASH_DB_URI") is None:
7
32
  set_config(
@@ -9,3 +34,6 @@ def _init_mongo_client():
9
34
  "mongodb+srv://eegdash-user:mdzoMjQcHWTVnKDq@cluster0.vz35p.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0",
10
35
  set_env=True,
11
36
  )
37
+
38
+
39
+ __all__ = ["_init_mongo_client"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.3.9.dev182388821
3
+ Version: 0.4.0
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -25,25 +25,24 @@ Requires-Python: >=3.10
25
25
  Description-Content-Type: text/markdown
26
26
  License-File: LICENSE
27
27
  Requires-Dist: braindecode>=1.0
28
- Requires-Dist: mne_bids>=0.16.0
28
+ Requires-Dist: mne_bids>=0.17.0
29
29
  Requires-Dist: numba
30
30
  Requires-Dist: numpy
31
31
  Requires-Dist: pandas
32
- Requires-Dist: pybids
33
32
  Requires-Dist: pymongo
34
33
  Requires-Dist: python-dotenv
35
34
  Requires-Dist: s3fs
36
- Requires-Dist: scipy
37
35
  Requires-Dist: tqdm
38
- Requires-Dist: xarray
39
36
  Requires-Dist: h5io>=0.2.4
40
37
  Requires-Dist: pymatreader
41
38
  Requires-Dist: eeglabio
42
39
  Requires-Dist: tabulate
43
40
  Requires-Dist: docstring_inheritance
41
+ Requires-Dist: rich
44
42
  Provides-Extra: tests
45
43
  Requires-Dist: pytest; extra == "tests"
46
44
  Requires-Dist: pytest-cov; extra == "tests"
45
+ Requires-Dist: pytest-sugar; extra == "tests"
47
46
  Requires-Dist: codecov; extra == "tests"
48
47
  Requires-Dist: pytest_cases; extra == "tests"
49
48
  Requires-Dist: pytest-benchmark; extra == "tests"
@@ -57,6 +56,7 @@ Requires-Dist: sphinx_gallery; extra == "docs"
57
56
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
58
57
  Requires-Dist: pydata-sphinx-theme; extra == "docs"
59
58
  Requires-Dist: sphinx-autobuild; extra == "docs"
59
+ Requires-Dist: sphinx-copybutton; extra == "docs"
60
60
  Requires-Dist: sphinx-sitemap; extra == "docs"
61
61
  Requires-Dist: numpydoc; extra == "docs"
62
62
  Requires-Dist: memory_profiler; extra == "docs"
@@ -64,10 +64,14 @@ Requires-Dist: ipython; extra == "docs"
64
64
  Requires-Dist: lightgbm; extra == "docs"
65
65
  Requires-Dist: plotly; extra == "docs"
66
66
  Requires-Dist: nbformat; extra == "docs"
67
+ Requires-Dist: graphviz; extra == "docs"
68
+ Provides-Extra: digestion
69
+ Requires-Dist: pybids; extra == "digestion"
67
70
  Provides-Extra: all
68
71
  Requires-Dist: eegdash[docs]; extra == "all"
69
72
  Requires-Dist: eegdash[dev]; extra == "all"
70
73
  Requires-Dist: eegdash[tests]; extra == "all"
74
+ Requires-Dist: eegdash[digestion]; extra == "all"
71
75
  Dynamic: license-file
72
76
 
73
77
  # EEG-Dash
@@ -86,22 +90,6 @@ To leverage recent and ongoing advancements in large-scale computational methods
86
90
 
87
91
  The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
88
92
 
89
- ## Featured data
90
-
91
- The following HBN datasets are currently featured on EEGDash. Documentation about these datasets is available [here](https://neuromechanist.github.io/data/hbn/).
92
-
93
- | DatasetID | Participants | Files | Sessions | Population | Channels | Is 10-20? | Modality | Size |
94
- |---|---|---|---|---|---|---|---|---|
95
- | [ds005505](https://nemar.org/dataexplorer/detail?dataset_id=ds005505) | 136 | 5393 | 1 | Healthy | 129 | other | Visual | 103 GB |
96
- | [ds005506](https://nemar.org/dataexplorer/detail?dataset_id=ds005506) | 150 | 5645 | 1 | Healthy | 129 | other | Visual | 112 GB |
97
- | [ds005507](https://nemar.org/dataexplorer/detail?dataset_id=ds005507) | 184 | 7273 | 1 | Healthy | 129 | other | Visual | 140 GB |
98
- | [ds005508](https://nemar.org/dataexplorer/detail?dataset_id=ds005508) | 324 | 13393 | 1 | Healthy | 129 | other | Visual | 230 GB |
99
- | [ds005510](https://nemar.org/dataexplorer/detail?dataset_id=ds005510) | 135 | 4933 | 1 | Healthy | 129 | other | Visual | 91 GB |
100
- | [ds005512](https://nemar.org/dataexplorer/detail?dataset_id=ds005512) | 257 | 9305 | 1 | Healthy | 129 | other | Visual | 157 GB |
101
- | [ds005514](https://nemar.org/dataexplorer/detail?dataset_id=ds005514) | 295 | 11565 | 1 | Healthy | 129 | other | Visual | 185 GB |
102
-
103
- A total of [246 other datasets](datasets.md) are also available through EEGDash.
104
-
105
93
  ## Data format
106
94
 
107
95
  EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
@@ -113,47 +101,11 @@ EEGDash datasets are processed using the popular [braindecode](https://braindeco
113
101
  ## EEG-Dash usage
114
102
 
115
103
  ### Install
116
- Use your preferred Python environment manager with Python > 3.9 to install the package.
104
+ Use your preferred Python environment manager with Python > 3.10 to install the package.
117
105
  * To install the eegdash package, use the following command: `pip install eegdash`
118
106
  * To verify the installation, start a Python session and type: `from eegdash import EEGDash`
119
107
 
120
- ### Data access
121
-
122
- To use the data from a single subject, enter:
123
-
124
- ```python
125
- from eegdash import EEGDashDataset
126
-
127
- ds_NDARDB033FW5 = EEGDashDataset(
128
- {"dataset": "ds005514", "task":
129
- "RestingState", "subject": "NDARDB033FW5"},
130
- cache_dir="."
131
- )
132
- ```
133
-
134
- This will search and download the metadata for the task **RestingState** for subject **NDARDB033FW5** in BIDS dataset **ds005514**. The actual data will not be downloaded at this stage. Following standard practice, data is only downloaded once it is processed. The **ds_NDARDB033FW5** object is a fully functional braindecode dataset, which is itself a PyTorch dataset. This [tutorial](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_eoec.ipynb) shows how to preprocess the EEG data, extracting portions of the data containing eyes-open and eyes-closed segments, then perform eyes-open vs. eyes-closed classification using a (shallow) deep-learning model.
135
-
136
- To use the data from multiple subjects, enter:
137
-
138
- ```python
139
- from eegdash import EEGDashDataset
140
-
141
- ds_ds005505rest = EEGDashDataset(
142
- {"dataset": "ds005505", "task": "RestingState"}, target_name="sex", cache_dir=".
143
- )
144
- ```
145
-
146
- This will search and download the metadata for the task 'RestingState' for all subjects in BIDS dataset 'ds005505' (a total of 136). As above, the actual data will not be downloaded at this stage so this command is quick to execute. Also, the target class for each subject is assigned using the target_name parameter. This means that this object is ready to be directly fed to a deep learning model, although the [tutorial script](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_sex_classification.ipynb) performs minimal processing on it, prior to training a deep-learning model. Because 14 gigabytes of data are downloaded, this tutorial takes about 10 minutes to execute.
147
-
148
- ### Automatic caching
149
-
150
- By default, EEGDash caches downloaded data under a single, consistent folder:
151
-
152
- - If ``EEGDASH_CACHE_DIR`` is set in your environment, that path is used.
153
- - Else, if MNE’s ``MNE_DATA`` config is set, that path is used to align with other EEG tooling.
154
- - Otherwise, ``.eegdash_cache`` in the current working directory is used.
155
-
156
- This means that if you run the tutorial [scripts](https://github.com/sccn/EEGDash/tree/develop/notebooks), the data will only be downloaded the first time the script is executed and reused thereafter.
108
+ Please check our tutorial webpages to explore what you can do with [eegdash](https://eegdash.org/)!
157
109
 
158
110
  ## Education -- Coming soon...
159
111
 
@@ -0,0 +1,37 @@
1
+ eegdash/__init__.py,sha256=t5aGchFmv16iV1xtyON_Ba_6j2R7kdNou3OegrvPWIQ,697
2
+ eegdash/api.py,sha256=az7uUYrEvJfBtzvkzYKzXqEztDSCMsCmgIywpdzYqc8,38381
3
+ eegdash/bids_eeg_metadata.py,sha256=kEmFUe07tivkuIoC5T-YwfO4QQYJBxuc769ZBV1UCKo,16682
4
+ eegdash/const.py,sha256=9WMetN7YMQJbkN2PhzItxtVRZ4VBXLP82vFu9pY6xok,9066
5
+ eegdash/data_utils.py,sha256=LOA-8ShugnIXlqmGmmSClTCBr3khQSconmYAcvT_9tY,26528
6
+ eegdash/downloader.py,sha256=Z-9EEJildqJxIihwdtXc_h9kzCkuF9LWIwQEfyG9Huw,6030
7
+ eegdash/logging.py,sha256=OQ4jMtwv1h-gzjxmr3PCpcsKi5-3Nhd3r9PJ4UN7oQI,1467
8
+ eegdash/mongodb.py,sha256=9FJDeEebOD5RzNYfAf1lhr0R-pECAlnug6Sjhd9_oUw,3469
9
+ eegdash/paths.py,sha256=dKaDlF87q47KwP-5arAFwx83i5IwGgmEfPfNauEtkds,1499
10
+ eegdash/utils.py,sha256=u_fQ8DiA1b7dVLzwzZBhm8H-LUk6dga54WyqbbqYEJ4,1282
11
+ eegdash/dataset/__init__.py,sha256=HKDfV2DHBv63BqYLBWDMvU8jbFNRC7DqQbxL7RG1DKQ,863
12
+ eegdash/dataset/dataset.py,sha256=DnR6LoirPNV45MECq42MNtIPyhL7DTFuwPWavVWZmmA,8137
13
+ eegdash/dataset/dataset_summary.csv,sha256=YJX-BitOyo-5nsHBd3ECIY1u7lFBjMQAFfCUPLYEgpo,25289
14
+ eegdash/dataset/registry.py,sha256=5TOCWalA0RV7omRoYS0OzdcSaOTvXvqos74_Vj2jv0M,9127
15
+ eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
16
+ eegdash/features/datasets.py,sha256=5BQZMNwsUsugW05_qGSdKbCFVgI4KP8PGukLx5y8p2A,24569
17
+ eegdash/features/decorators.py,sha256=xK6-HcusPRnKcUCot3DEzkoRjlazd9OLVvq6R8JO0Nw,3826
18
+ eegdash/features/extractors.py,sha256=1srmgEsj0mFkkyQByFOsuL4r0ZpAQGdBPjiTpJWswQ8,11766
19
+ eegdash/features/inspect.py,sha256=IF3kv1T-uLm2KKwaKhlBBDMrqNFnrnKqKpEvkOu8gJA,3911
20
+ eegdash/features/serialization.py,sha256=ppRFvbd7qhrZBun61hJOY7e5X0HTTckcGh9dREMS2iI,3888
21
+ eegdash/features/utils.py,sha256=lK-epGlkRm9_psqsbgiWzan_gFC8BuizCRu44PSTvco,6092
22
+ eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
23
+ eegdash/features/feature_bank/complexity.py,sha256=eOLN0X_xaS15ZpLPDQcychuwjL459-FqZKYfOG51z-g,3366
24
+ eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
25
+ eegdash/features/feature_bank/csp.py,sha256=jKPrmqBj7FliybNbg035cVZddvVSkhk9OazcscDpipU,3303
26
+ eegdash/features/feature_bank/dimensionality.py,sha256=Pit3YNxv64-qHUyz_5c3nBo4sFD5AnCE5mTwgnzSndc,3980
27
+ eegdash/features/feature_bank/signal.py,sha256=3Tb8z9gX7iZipxQJ9DSyy30JfdmW58kgvimSyZX74p8,3404
28
+ eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
29
+ eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
30
+ eegdash/hbn/__init__.py,sha256=hsI5pmIuYDzr--aE5UiToO-P9XL5fVRKahZzdsAodro,794
31
+ eegdash/hbn/preprocessing.py,sha256=xp0HBz8WGhLI5c2Zkk4QiVUzGoIZep8YypnHNZsUJ4o,3800
32
+ eegdash/hbn/windows.py,sha256=Z_fhG3kaHd5MAPg60FwFnxMJay8EzacXytUaCsOENGc,14408
33
+ eegdash-0.4.0.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
34
+ eegdash-0.4.0.dist-info/METADATA,sha256=UCnP4qTDgjFySFRIWhUfFv8F279oCF-q5he6-KQ_ACU,6920
35
+ eegdash-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
36
+ eegdash-0.4.0.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
37
+ eegdash-0.4.0.dist-info/RECORD,,
@@ -1,35 +0,0 @@
1
- eegdash/__init__.py,sha256=JV_edkvsUdIH15LC98ZUBjFdCPi7Y72URaxZwmAKUSk,290
2
- eegdash/api.py,sha256=xuNi5mP8zFmTETbRkYajSS7ba320HaDeX7XzcR_t3ZU,40216
3
- eegdash/bids_eeg_metadata.py,sha256=LZrGPGVdnGUbZlD4M_aAW4kEItzwTTeZFicH-jyqDyc,9712
4
- eegdash/const.py,sha256=qdFBEL9kIrsj9CdxbXhBkR61R3CrTGSaj5Iq0YOACIs,7313
5
- eegdash/data_utils.py,sha256=DZ-B03VleA9-mOUzGXcS4N18dVC2uFkFGXMFsKK8nUc,34166
6
- eegdash/mongodb.py,sha256=GD3WgA253oFgpzOHrYaj4P1mRjNtDMT5Oj4kVvHswjI,2006
7
- eegdash/paths.py,sha256=246xkectTxDAYcREs1Qma_F1Y-oSmLlb0hn0F2Za5Ss,866
8
- eegdash/utils.py,sha256=7TfQ9D0LrAJ7FgnSXEvWgeHWK2QqaqS-_WcWXD86ObQ,408
9
- eegdash/dataset/__init__.py,sha256=Qmzki5G8GaFlzTb10e4SmC3WkKuJyo1Ckii15tCEHAo,157
10
- eegdash/dataset/dataset.py,sha256=YuyzmqN5M0itimzUD1NF1hcDwkb6fg91dRZtK6HbYOc,6521
11
- eegdash/dataset/dataset_summary.csv,sha256=XF0vdHz77DFyVLTaET8lL5gQQ4r-q1xAfSDWH5GTPLA,23655
12
- eegdash/dataset/registry.py,sha256=genOqAuf9cQBnHhPqRwfLP7S1XsnkLot6sLyJozPtf4,4150
13
- eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
14
- eegdash/features/datasets.py,sha256=kU1DO70ArSIy-LF1hHD2NN4iT-kJrI0mVpSkyV_OSeI,18301
15
- eegdash/features/decorators.py,sha256=v0qaJz_dcX703p1fvFYbAIXmwK3d8naYGlq7fRVKn_w,1313
16
- eegdash/features/extractors.py,sha256=H7h6tP3dKoRcjDJpWWAo0ppmokCq5QlhqMcehYwYV9s,6845
17
- eegdash/features/inspect.py,sha256=PmbWhx5H_WqpnorUpWONUSkUtaIHkZblRa_Xyk7Szyc,1569
18
- eegdash/features/serialization.py,sha256=snXuHVd0CoT2ese0iWi5RwZrVHCGc0oCZ8-SXqGY88I,2848
19
- eegdash/features/utils.py,sha256=eM6DdyOpdVfNh7dSPykJ0WaTDtaGvkCQWAmW0G8v60Y,3784
20
- eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
21
- eegdash/features/feature_bank/complexity.py,sha256=iy9uaLInsYdxKZlXHTWlgEpP9fVI-v9TqLGfnS15-Eg,3258
22
- eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
23
- eegdash/features/feature_bank/csp.py,sha256=jKPrmqBj7FliybNbg035cVZddvVSkhk9OazcscDpipU,3303
24
- eegdash/features/feature_bank/dimensionality.py,sha256=j_Ds71Y1AbV2uLFQj8EuXQ4kzofLBlQtPV5snMkF7i4,3965
25
- eegdash/features/feature_bank/signal.py,sha256=3Tb8z9gX7iZipxQJ9DSyy30JfdmW58kgvimSyZX74p8,3404
26
- eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
27
- eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
28
- eegdash/hbn/__init__.py,sha256=U8mK64napnKU746C5DOwkX7W7sg3iW5kb_cVv2pfFq0,394
29
- eegdash/hbn/preprocessing.py,sha256=7S_TTRKPKEk47tTnh2D6WExBt4cctAMxUxGDjJqq5lU,2221
30
- eegdash/hbn/windows.py,sha256=DU_QruLOHQOttZbXCgtO4mjKaG3E5STWjMQ0_s-g0gw,9929
31
- eegdash-0.3.9.dev182388821.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
32
- eegdash-0.3.9.dev182388821.dist-info/METADATA,sha256=fLL2T760cfhM0fCyaJbPa41UJzNih7QsLbBwsQHzpGk,10348
33
- eegdash-0.3.9.dev182388821.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
- eegdash-0.3.9.dev182388821.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
35
- eegdash-0.3.9.dev182388821.dist-info/RECORD,,