eegdash 0.3.8__py3-none-any.whl → 0.3.9.dev129__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/__init__.py +1 -1
- eegdash/api.py +72 -157
- eegdash/bids_eeg_metadata.py +149 -27
- eegdash/data_utils.py +63 -254
- eegdash/dataset/dataset.py +50 -44
- eegdash/dataset/registry.py +5 -16
- eegdash/downloader.py +176 -0
- eegdash/features/datasets.py +4 -3
- eegdash/hbn/preprocessing.py +1 -3
- eegdash/hbn/windows.py +0 -2
- eegdash/logging.py +23 -0
- {eegdash-0.3.8.dist-info → eegdash-0.3.9.dev129.dist-info}/METADATA +4 -2
- {eegdash-0.3.8.dist-info → eegdash-0.3.9.dev129.dist-info}/RECORD +16 -14
- {eegdash-0.3.8.dist-info → eegdash-0.3.9.dev129.dist-info}/WHEEL +0 -0
- {eegdash-0.3.8.dist-info → eegdash-0.3.9.dev129.dist-info}/licenses/LICENSE +0 -0
- {eegdash-0.3.8.dist-info → eegdash-0.3.9.dev129.dist-info}/top_level.txt +0 -0
eegdash/__init__.py
CHANGED
eegdash/api.py
CHANGED
|
@@ -1,9 +1,6 @@
|
|
|
1
|
-
import logging
|
|
2
1
|
import os
|
|
3
|
-
import tempfile
|
|
4
2
|
from pathlib import Path
|
|
5
3
|
from typing import Any, Mapping
|
|
6
|
-
from urllib.parse import urlsplit
|
|
7
4
|
|
|
8
5
|
import mne
|
|
9
6
|
import numpy as np
|
|
@@ -11,13 +8,15 @@ import xarray as xr
|
|
|
11
8
|
from docstring_inheritance import NumpyDocstringInheritanceInitMeta
|
|
12
9
|
from dotenv import load_dotenv
|
|
13
10
|
from joblib import Parallel, delayed
|
|
14
|
-
from mne.utils import warn
|
|
15
11
|
from mne_bids import find_matching_paths, get_bids_path_from_fname, read_raw_bids
|
|
16
12
|
from pymongo import InsertOne, UpdateOne
|
|
17
|
-
from
|
|
13
|
+
from rich.console import Console
|
|
14
|
+
from rich.panel import Panel
|
|
15
|
+
from rich.text import Text
|
|
18
16
|
|
|
19
17
|
from braindecode.datasets import BaseConcatDataset
|
|
20
18
|
|
|
19
|
+
from . import downloader
|
|
21
20
|
from .bids_eeg_metadata import (
|
|
22
21
|
build_query_from_kwargs,
|
|
23
22
|
load_eeg_attrs_from_bids_file,
|
|
@@ -33,10 +32,10 @@ from .data_utils import (
|
|
|
33
32
|
EEGBIDSDataset,
|
|
34
33
|
EEGDashBaseDataset,
|
|
35
34
|
)
|
|
35
|
+
from .logging import logger
|
|
36
36
|
from .mongodb import MongoConnectionManager
|
|
37
37
|
from .paths import get_default_cache_dir
|
|
38
|
-
|
|
39
|
-
logger = logging.getLogger("eegdash")
|
|
38
|
+
from .utils import _init_mongo_client
|
|
40
39
|
|
|
41
40
|
|
|
42
41
|
class EEGDash:
|
|
@@ -74,34 +73,38 @@ class EEGDash:
|
|
|
74
73
|
|
|
75
74
|
if self.is_public:
|
|
76
75
|
DB_CONNECTION_STRING = mne.utils.get_config("EEGDASH_DB_URI")
|
|
76
|
+
if not DB_CONNECTION_STRING:
|
|
77
|
+
try:
|
|
78
|
+
_init_mongo_client()
|
|
79
|
+
DB_CONNECTION_STRING = mne.utils.get_config("EEGDASH_DB_URI")
|
|
80
|
+
except Exception:
|
|
81
|
+
DB_CONNECTION_STRING = None
|
|
77
82
|
else:
|
|
78
83
|
load_dotenv()
|
|
79
84
|
DB_CONNECTION_STRING = os.getenv("DB_CONNECTION_STRING")
|
|
80
85
|
|
|
81
86
|
# Use singleton to get MongoDB client, database, and collection
|
|
87
|
+
if not DB_CONNECTION_STRING:
|
|
88
|
+
raise RuntimeError(
|
|
89
|
+
"No MongoDB connection string configured. Set MNE config 'EEGDASH_DB_URI' "
|
|
90
|
+
"or environment variable 'DB_CONNECTION_STRING'."
|
|
91
|
+
)
|
|
82
92
|
self.__client, self.__db, self.__collection = MongoConnectionManager.get_client(
|
|
83
93
|
DB_CONNECTION_STRING, is_staging
|
|
84
94
|
)
|
|
85
95
|
|
|
86
|
-
self.filesystem = S3FileSystem(
|
|
87
|
-
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
88
|
-
)
|
|
89
|
-
|
|
90
96
|
def find(
|
|
91
97
|
self, query: dict[str, Any] = None, /, **kwargs
|
|
92
98
|
) -> list[Mapping[str, Any]]:
|
|
93
99
|
"""Find records in the MongoDB collection.
|
|
94
100
|
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
>>> eegdash.find({}) # fetches all records (use with care)
|
|
103
|
-
4. By combining a raw query with kwargs (merged via logical AND):
|
|
104
|
-
>>> eegdash.find({"dataset": "ds002718"}, subject=["012", "013"]) # yields {"$and":[{"dataset":"ds002718"}, {"subject":{"$in":["012","013"]}}]}
|
|
101
|
+
Examples
|
|
102
|
+
--------
|
|
103
|
+
>>> eegdash.find({"dataset": "ds002718", "subject": {"$in": ["012", "013"]}}) # pre-built query
|
|
104
|
+
>>> eegdash.find(dataset="ds002718", subject="012") # keyword filters
|
|
105
|
+
>>> eegdash.find(dataset="ds002718", subject=["012", "013"]) # sequence -> $in
|
|
106
|
+
>>> eegdash.find({}) # fetch all (use with care)
|
|
107
|
+
>>> eegdash.find({"dataset": "ds002718"}, subject=["012", "013"]) # combine query + kwargs (AND)
|
|
105
108
|
|
|
106
109
|
Parameters
|
|
107
110
|
----------
|
|
@@ -313,83 +316,6 @@ class EEGDash:
|
|
|
313
316
|
f"Conflicting constraints for '{key}': disjoint sets {r_val!r} and {k_val!r}"
|
|
314
317
|
)
|
|
315
318
|
|
|
316
|
-
def load_eeg_data_from_s3(self, s3path: str) -> xr.DataArray:
|
|
317
|
-
"""Load EEG data from an S3 URI into an ``xarray.DataArray``.
|
|
318
|
-
|
|
319
|
-
Preserves the original filename, downloads sidecar files when applicable
|
|
320
|
-
(e.g., ``.fdt`` for EEGLAB, ``.vmrk``/``.eeg`` for BrainVision), and uses
|
|
321
|
-
MNE's direct readers.
|
|
322
|
-
|
|
323
|
-
Parameters
|
|
324
|
-
----------
|
|
325
|
-
s3path : str
|
|
326
|
-
An S3 URI (should start with "s3://").
|
|
327
|
-
|
|
328
|
-
Returns
|
|
329
|
-
-------
|
|
330
|
-
xr.DataArray
|
|
331
|
-
EEG data with dimensions ``("channel", "time")``.
|
|
332
|
-
|
|
333
|
-
Raises
|
|
334
|
-
------
|
|
335
|
-
ValueError
|
|
336
|
-
If the file extension is unsupported.
|
|
337
|
-
|
|
338
|
-
"""
|
|
339
|
-
# choose a temp dir so sidecars can be colocated
|
|
340
|
-
with tempfile.TemporaryDirectory() as tmpdir:
|
|
341
|
-
# Derive local filenames from the S3 key to keep base name consistent
|
|
342
|
-
s3_key = urlsplit(s3path).path # e.g., "/dsXXXX/sub-.../..._eeg.set"
|
|
343
|
-
basename = Path(s3_key).name
|
|
344
|
-
ext = Path(basename).suffix.lower()
|
|
345
|
-
local_main = Path(tmpdir) / basename
|
|
346
|
-
|
|
347
|
-
# Download main file
|
|
348
|
-
with (
|
|
349
|
-
self.filesystem.open(s3path, mode="rb") as fsrc,
|
|
350
|
-
open(local_main, "wb") as fdst,
|
|
351
|
-
):
|
|
352
|
-
fdst.write(fsrc.read())
|
|
353
|
-
|
|
354
|
-
# Determine and fetch any required sidecars
|
|
355
|
-
sidecars: list[str] = []
|
|
356
|
-
if ext == ".set": # EEGLAB
|
|
357
|
-
sidecars = [".fdt"]
|
|
358
|
-
elif ext == ".vhdr": # BrainVision
|
|
359
|
-
sidecars = [".vmrk", ".eeg", ".dat", ".raw"]
|
|
360
|
-
|
|
361
|
-
for sc_ext in sidecars:
|
|
362
|
-
sc_key = s3_key[: -len(ext)] + sc_ext
|
|
363
|
-
sc_uri = f"s3://{urlsplit(s3path).netloc}{sc_key}"
|
|
364
|
-
try:
|
|
365
|
-
# If sidecar exists, download next to the main file
|
|
366
|
-
info = self.filesystem.info(sc_uri)
|
|
367
|
-
if info:
|
|
368
|
-
sc_local = Path(tmpdir) / Path(sc_key).name
|
|
369
|
-
with (
|
|
370
|
-
self.filesystem.open(sc_uri, mode="rb") as fsrc,
|
|
371
|
-
open(sc_local, "wb") as fdst,
|
|
372
|
-
):
|
|
373
|
-
fdst.write(fsrc.read())
|
|
374
|
-
except Exception:
|
|
375
|
-
# Sidecar not present; skip silently
|
|
376
|
-
pass
|
|
377
|
-
|
|
378
|
-
# Read using appropriate MNE reader
|
|
379
|
-
raw = mne.io.read_raw(str(local_main), preload=True, verbose=False)
|
|
380
|
-
|
|
381
|
-
data = raw.get_data()
|
|
382
|
-
fs = raw.info["sfreq"]
|
|
383
|
-
max_time = data.shape[1] / fs
|
|
384
|
-
time_steps = np.linspace(0, max_time, data.shape[1]).squeeze()
|
|
385
|
-
channel_names = raw.ch_names
|
|
386
|
-
|
|
387
|
-
return xr.DataArray(
|
|
388
|
-
data=data,
|
|
389
|
-
dims=["channel", "time"],
|
|
390
|
-
coords={"time": time_steps, "channel": channel_names},
|
|
391
|
-
)
|
|
392
|
-
|
|
393
319
|
def load_eeg_data_from_bids_file(self, bids_file: str) -> xr.DataArray:
|
|
394
320
|
"""Load EEG data from a local BIDS-formatted file.
|
|
395
321
|
|
|
@@ -511,39 +437,13 @@ class EEGDash:
|
|
|
511
437
|
results = Parallel(
|
|
512
438
|
n_jobs=-1 if len(sessions) > 1 else 1, prefer="threads", verbose=1
|
|
513
439
|
)(
|
|
514
|
-
delayed(
|
|
440
|
+
delayed(downloader.load_eeg_from_s3)(
|
|
441
|
+
downloader.get_s3path("s3://openneuro.org", session["bidspath"])
|
|
442
|
+
)
|
|
515
443
|
for session in sessions
|
|
516
444
|
)
|
|
517
445
|
return results
|
|
518
446
|
|
|
519
|
-
def _get_s3path(self, record: Mapping[str, Any] | str) -> str:
|
|
520
|
-
"""Build an S3 URI from a DB record or a relative path.
|
|
521
|
-
|
|
522
|
-
Parameters
|
|
523
|
-
----------
|
|
524
|
-
record : dict or str
|
|
525
|
-
Either a DB record containing a ``'bidspath'`` key, or a relative
|
|
526
|
-
path string under the OpenNeuro bucket.
|
|
527
|
-
|
|
528
|
-
Returns
|
|
529
|
-
-------
|
|
530
|
-
str
|
|
531
|
-
Fully qualified S3 URI.
|
|
532
|
-
|
|
533
|
-
Raises
|
|
534
|
-
------
|
|
535
|
-
ValueError
|
|
536
|
-
If a mapping is provided but ``'bidspath'`` is missing.
|
|
537
|
-
|
|
538
|
-
"""
|
|
539
|
-
if isinstance(record, str):
|
|
540
|
-
rel = record
|
|
541
|
-
else:
|
|
542
|
-
rel = record.get("bidspath")
|
|
543
|
-
if not rel:
|
|
544
|
-
raise ValueError("Record missing 'bidspath' for S3 path resolution")
|
|
545
|
-
return f"s3://openneuro.org/{rel}"
|
|
546
|
-
|
|
547
447
|
def _add_request(self, record: dict):
|
|
548
448
|
"""Internal helper method to create a MongoDB insertion request for a record."""
|
|
549
449
|
return InsertOne(record)
|
|
@@ -555,8 +455,11 @@ class EEGDash:
|
|
|
555
455
|
except ValueError as e:
|
|
556
456
|
logger.error("Validation error for record: %s ", record["data_name"])
|
|
557
457
|
logger.error(e)
|
|
558
|
-
except:
|
|
559
|
-
logger.error(
|
|
458
|
+
except Exception as exc:
|
|
459
|
+
logger.error(
|
|
460
|
+
"Error adding record: %s ", record.get("data_name", "<unknown>")
|
|
461
|
+
)
|
|
462
|
+
logger.debug("Add operation failed", exc_info=exc)
|
|
560
463
|
|
|
561
464
|
def _update_request(self, record: dict):
|
|
562
465
|
"""Internal helper method to create a MongoDB update request for a record."""
|
|
@@ -575,8 +478,11 @@ class EEGDash:
|
|
|
575
478
|
self.__collection.update_one(
|
|
576
479
|
{"data_name": record["data_name"]}, {"$set": record}
|
|
577
480
|
)
|
|
578
|
-
except: #
|
|
579
|
-
logger.error(
|
|
481
|
+
except Exception as exc: # log and continue
|
|
482
|
+
logger.error(
|
|
483
|
+
"Error updating record: %s", record.get("data_name", "<unknown>")
|
|
484
|
+
)
|
|
485
|
+
logger.debug("Update operation failed", exc_info=exc)
|
|
580
486
|
|
|
581
487
|
def exists(self, query: dict[str, Any]) -> bool:
|
|
582
488
|
"""Alias for :meth:`exist` provided for API clarity."""
|
|
@@ -641,8 +547,8 @@ class EEGDashDataset(BaseConcatDataset, metaclass=NumpyDocstringInheritanceInitM
|
|
|
641
547
|
and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
|
|
642
548
|
instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
|
|
643
549
|
|
|
644
|
-
|
|
645
|
-
|
|
550
|
+
Examples
|
|
551
|
+
--------
|
|
646
552
|
# Find by single subject
|
|
647
553
|
>>> ds = EEGDashDataset(dataset="ds005505", subject="NDARCA153NKE")
|
|
648
554
|
|
|
@@ -695,10 +601,11 @@ class EEGDashDataset(BaseConcatDataset, metaclass=NumpyDocstringInheritanceInitM
|
|
|
695
601
|
a new client is created on demand, not used in the case of no download.
|
|
696
602
|
**kwargs : dict
|
|
697
603
|
Additional keyword arguments serving two purposes:
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
|
|
604
|
+
|
|
605
|
+
- Filtering: any keys present in ``ALLOWED_QUERY_FIELDS`` are treated as
|
|
606
|
+
query filters (e.g., ``dataset``, ``subject``, ``task``, ...).
|
|
607
|
+
- Dataset options: remaining keys are forwarded to
|
|
608
|
+
``EEGDashBaseDataset``.
|
|
702
609
|
|
|
703
610
|
"""
|
|
704
611
|
|
|
@@ -728,13 +635,15 @@ class EEGDashDataset(BaseConcatDataset, metaclass=NumpyDocstringInheritanceInitM
|
|
|
728
635
|
self.records = records
|
|
729
636
|
self.download = download
|
|
730
637
|
self.n_jobs = n_jobs
|
|
731
|
-
self.eeg_dash_instance = eeg_dash_instance
|
|
638
|
+
self.eeg_dash_instance = eeg_dash_instance
|
|
732
639
|
|
|
733
640
|
# Resolve a unified cache directory across code/tests/CI
|
|
734
641
|
self.cache_dir = Path(cache_dir or get_default_cache_dir())
|
|
735
642
|
|
|
736
643
|
if not self.cache_dir.exists():
|
|
737
|
-
|
|
644
|
+
logger.warning(
|
|
645
|
+
f"Cache directory does not exist, creating it: {self.cache_dir}"
|
|
646
|
+
)
|
|
738
647
|
self.cache_dir.mkdir(exist_ok=True, parents=True)
|
|
739
648
|
|
|
740
649
|
# Separate query kwargs from other kwargs passed to the BaseDataset constructor
|
|
@@ -774,21 +683,28 @@ class EEGDashDataset(BaseConcatDataset, metaclass=NumpyDocstringInheritanceInitM
|
|
|
774
683
|
not _suppress_comp_warning
|
|
775
684
|
and self.query["dataset"] in RELEASE_TO_OPENNEURO_DATASET_MAP.values()
|
|
776
685
|
):
|
|
777
|
-
|
|
778
|
-
"
|
|
779
|
-
"\n
|
|
780
|
-
"
|
|
781
|
-
"
|
|
782
|
-
"
|
|
783
|
-
"
|
|
784
|
-
"
|
|
785
|
-
"
|
|
786
|
-
"\n"
|
|
787
|
-
"If you are participating in the competition, always use `EEGChallengeDataset` to ensure consistency with the challenge data.\n"
|
|
788
|
-
"\n",
|
|
789
|
-
UserWarning,
|
|
790
|
-
module="eegdash",
|
|
686
|
+
message_text = Text.from_markup(
|
|
687
|
+
"[italic]This notice is only for users who are participating in the [link=https://eeg2025.github.io/]EEG 2025 Competition[/link].[/italic]\n\n"
|
|
688
|
+
"[bold]EEG 2025 Competition Data Notice![/bold]\n"
|
|
689
|
+
"You are loading one of the datasets that is used in competition, but via `EEGDashDataset`.\n\n"
|
|
690
|
+
"[bold red]IMPORTANT[/bold red]: \n"
|
|
691
|
+
"If you download data from `EEGDashDataset`, it is [u]NOT[/u] identical to the official competition data, which is accessed via `EEGChallengeDataset`. "
|
|
692
|
+
"The competition data has been downsampled and filtered.\n\n"
|
|
693
|
+
"[bold]If you are participating in the competition, you must use the `EEGChallengeDataset` object to ensure consistency.[/bold] \n\n"
|
|
694
|
+
"If you are not participating in the competition, you can ignore this message."
|
|
791
695
|
)
|
|
696
|
+
warning_panel = Panel(
|
|
697
|
+
message_text,
|
|
698
|
+
title="[yellow]EEG 2025 Competition Data Notice[/yellow]",
|
|
699
|
+
subtitle="[cyan]Source: EEGDashDataset[/cyan]",
|
|
700
|
+
border_style="yellow",
|
|
701
|
+
)
|
|
702
|
+
|
|
703
|
+
try:
|
|
704
|
+
Console().print(warning_panel)
|
|
705
|
+
except Exception:
|
|
706
|
+
logger.warning(str(message_text))
|
|
707
|
+
|
|
792
708
|
if records is not None:
|
|
793
709
|
self.records = records
|
|
794
710
|
datasets = [
|
|
@@ -850,16 +766,15 @@ class EEGDashDataset(BaseConcatDataset, metaclass=NumpyDocstringInheritanceInitM
|
|
|
850
766
|
)
|
|
851
767
|
)
|
|
852
768
|
elif self.query:
|
|
853
|
-
|
|
769
|
+
if self.eeg_dash_instance is None:
|
|
770
|
+
self.eeg_dash_instance = EEGDash()
|
|
854
771
|
datasets = self._find_datasets(
|
|
855
772
|
query=build_query_from_kwargs(**self.query),
|
|
856
773
|
description_fields=description_fields,
|
|
857
774
|
base_dataset_kwargs=base_dataset_kwargs,
|
|
858
775
|
)
|
|
859
776
|
# We only need filesystem if we need to access S3
|
|
860
|
-
self.filesystem =
|
|
861
|
-
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
862
|
-
)
|
|
777
|
+
self.filesystem = downloader.get_s3_filesystem()
|
|
863
778
|
else:
|
|
864
779
|
raise ValueError(
|
|
865
780
|
"You must provide either 'records', a 'data_dir', or a query/keyword arguments for filtering."
|
eegdash/bids_eeg_metadata.py
CHANGED
|
@@ -1,18 +1,23 @@
|
|
|
1
|
-
import logging
|
|
2
1
|
import re
|
|
3
2
|
from pathlib import Path
|
|
4
3
|
from typing import Any
|
|
5
4
|
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from mne_bids import BIDSPath
|
|
7
|
+
|
|
6
8
|
from .const import ALLOWED_QUERY_FIELDS
|
|
7
9
|
from .const import config as data_config
|
|
8
|
-
|
|
9
|
-
logger = logging.getLogger("eegdash")
|
|
10
|
+
from .logging import logger
|
|
10
11
|
|
|
11
12
|
__all__ = [
|
|
12
13
|
"build_query_from_kwargs",
|
|
13
14
|
"load_eeg_attrs_from_bids_file",
|
|
14
15
|
"merge_participants_fields",
|
|
15
16
|
"normalize_key",
|
|
17
|
+
"participants_row_for_subject",
|
|
18
|
+
"participants_extras_from_tsv",
|
|
19
|
+
"attach_participants_extras",
|
|
20
|
+
"enrich_from_participants",
|
|
16
21
|
]
|
|
17
22
|
|
|
18
23
|
|
|
@@ -72,28 +77,6 @@ def build_query_from_kwargs(**kwargs) -> dict[str, Any]:
|
|
|
72
77
|
return query
|
|
73
78
|
|
|
74
79
|
|
|
75
|
-
def _get_raw_extensions(bids_file: str, bids_dataset) -> list[str]:
|
|
76
|
-
"""Helper to find paths to additional "sidecar" files that may be associated
|
|
77
|
-
with a given main data file in a BIDS dataset; paths are returned as relative to
|
|
78
|
-
the parent dataset path.
|
|
79
|
-
|
|
80
|
-
For example, if the input file is a .set file, this will return the relative path
|
|
81
|
-
to a corresponding .fdt file (if any).
|
|
82
|
-
"""
|
|
83
|
-
bids_file = Path(bids_file)
|
|
84
|
-
extensions = {
|
|
85
|
-
".set": [".set", ".fdt"], # eeglab
|
|
86
|
-
".edf": [".edf"], # european
|
|
87
|
-
".vhdr": [".eeg", ".vhdr", ".vmrk", ".dat", ".raw"], # brainvision
|
|
88
|
-
".bdf": [".bdf"], # biosemi
|
|
89
|
-
}
|
|
90
|
-
return [
|
|
91
|
-
str(bids_dataset._get_relative_bidspath(bids_file.with_suffix(suffix)))
|
|
92
|
-
for suffix in extensions[bids_file.suffix]
|
|
93
|
-
if bids_file.with_suffix(suffix).exists()
|
|
94
|
-
]
|
|
95
|
-
|
|
96
|
-
|
|
97
80
|
def load_eeg_attrs_from_bids_file(bids_dataset, bids_file: str) -> dict[str, Any]:
|
|
98
81
|
"""Build the metadata record for a given BIDS file (single recording) in a BIDS dataset.
|
|
99
82
|
|
|
@@ -140,7 +123,7 @@ def load_eeg_attrs_from_bids_file(bids_dataset, bids_file: str) -> dict[str, Any
|
|
|
140
123
|
eeg_json = None
|
|
141
124
|
|
|
142
125
|
bids_dependencies_files = data_config["bids_dependencies_files"]
|
|
143
|
-
bidsdependencies = []
|
|
126
|
+
bidsdependencies: list[str] = []
|
|
144
127
|
for extension in bids_dependencies_files:
|
|
145
128
|
try:
|
|
146
129
|
dep_path = bids_dataset.get_bids_metadata_files(bids_file, extension)
|
|
@@ -151,7 +134,26 @@ def load_eeg_attrs_from_bids_file(bids_dataset, bids_file: str) -> dict[str, Any
|
|
|
151
134
|
except Exception:
|
|
152
135
|
pass
|
|
153
136
|
|
|
154
|
-
|
|
137
|
+
bids_path = BIDSPath(
|
|
138
|
+
subject=bids_dataset.get_bids_file_attribute("subject", bids_file),
|
|
139
|
+
session=bids_dataset.get_bids_file_attribute("session", bids_file),
|
|
140
|
+
task=bids_dataset.get_bids_file_attribute("task", bids_file),
|
|
141
|
+
run=bids_dataset.get_bids_file_attribute("run", bids_file),
|
|
142
|
+
root=bids_dataset.bidsdir,
|
|
143
|
+
datatype=bids_dataset.get_bids_file_attribute("modality", bids_file),
|
|
144
|
+
suffix="eeg",
|
|
145
|
+
extension=Path(bids_file).suffix,
|
|
146
|
+
check=False,
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
sidecars_map = {
|
|
150
|
+
".set": [".fdt"],
|
|
151
|
+
".vhdr": [".eeg", ".vmrk", ".dat", ".raw"],
|
|
152
|
+
}
|
|
153
|
+
for ext in sidecars_map.get(bids_path.extension, []):
|
|
154
|
+
sidecar = bids_path.find_matching_sidecar(extension=ext, on_error="ignore")
|
|
155
|
+
if sidecar is not None:
|
|
156
|
+
bidsdependencies.append(str(bids_dataset._get_relative_bidspath(sidecar)))
|
|
155
157
|
|
|
156
158
|
# Define field extraction functions with error handling
|
|
157
159
|
field_extractors = {
|
|
@@ -252,3 +254,123 @@ def merge_participants_fields(
|
|
|
252
254
|
if norm_key not in description:
|
|
253
255
|
description[norm_key] = part_value
|
|
254
256
|
return description
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def participants_row_for_subject(
|
|
260
|
+
bids_root: str | Path,
|
|
261
|
+
subject: str,
|
|
262
|
+
id_columns: tuple[str, ...] = ("participant_id", "participant", "subject"),
|
|
263
|
+
) -> pd.Series | None:
|
|
264
|
+
"""Load participants.tsv and return the row for a subject.
|
|
265
|
+
|
|
266
|
+
- Accepts either "01" or "sub-01" as the subject identifier.
|
|
267
|
+
- Returns a pandas Series for the first matching row, or None if not found.
|
|
268
|
+
"""
|
|
269
|
+
try:
|
|
270
|
+
participants_tsv = Path(bids_root) / "participants.tsv"
|
|
271
|
+
if not participants_tsv.exists():
|
|
272
|
+
return None
|
|
273
|
+
|
|
274
|
+
df = pd.read_csv(
|
|
275
|
+
participants_tsv, sep="\t", dtype="string", keep_default_na=False
|
|
276
|
+
)
|
|
277
|
+
if df.empty:
|
|
278
|
+
return None
|
|
279
|
+
|
|
280
|
+
candidates = {str(subject), f"sub-{subject}"}
|
|
281
|
+
present_cols = [c for c in id_columns if c in df.columns]
|
|
282
|
+
if not present_cols:
|
|
283
|
+
return None
|
|
284
|
+
|
|
285
|
+
mask = pd.Series(False, index=df.index)
|
|
286
|
+
for col in present_cols:
|
|
287
|
+
mask |= df[col].isin(candidates)
|
|
288
|
+
match = df.loc[mask]
|
|
289
|
+
if match.empty:
|
|
290
|
+
return None
|
|
291
|
+
return match.iloc[0]
|
|
292
|
+
except Exception:
|
|
293
|
+
return None
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def participants_extras_from_tsv(
|
|
297
|
+
bids_root: str | Path,
|
|
298
|
+
subject: str,
|
|
299
|
+
*,
|
|
300
|
+
id_columns: tuple[str, ...] = ("participant_id", "participant", "subject"),
|
|
301
|
+
na_like: tuple[str, ...] = ("", "n/a", "na", "nan", "unknown", "none"),
|
|
302
|
+
) -> dict[str, Any]:
|
|
303
|
+
"""Return non-identifier, non-empty participants.tsv fields for a subject.
|
|
304
|
+
|
|
305
|
+
Uses vectorized pandas operations to drop id columns and NA-like values.
|
|
306
|
+
"""
|
|
307
|
+
row = participants_row_for_subject(bids_root, subject, id_columns=id_columns)
|
|
308
|
+
if row is None:
|
|
309
|
+
return {}
|
|
310
|
+
|
|
311
|
+
# Drop identifier columns and clean values
|
|
312
|
+
extras = row.drop(labels=[c for c in id_columns if c in row.index], errors="ignore")
|
|
313
|
+
s = extras.astype("string").str.strip()
|
|
314
|
+
valid = ~s.isna() & ~s.str.lower().isin(na_like)
|
|
315
|
+
return s[valid].to_dict()
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
def attach_participants_extras(
|
|
319
|
+
raw: Any,
|
|
320
|
+
description: Any,
|
|
321
|
+
extras: dict[str, Any],
|
|
322
|
+
) -> None:
|
|
323
|
+
"""Attach extras to Raw.info and dataset description without overwriting.
|
|
324
|
+
|
|
325
|
+
- Adds to ``raw.info['subject_info']['participants_extras']``.
|
|
326
|
+
- Adds to ``description`` if dict or pandas Series (only missing keys).
|
|
327
|
+
"""
|
|
328
|
+
if not extras:
|
|
329
|
+
return
|
|
330
|
+
|
|
331
|
+
# Raw.info enrichment
|
|
332
|
+
try:
|
|
333
|
+
subject_info = raw.info.get("subject_info") or {}
|
|
334
|
+
if not isinstance(subject_info, dict):
|
|
335
|
+
subject_info = {}
|
|
336
|
+
pe = subject_info.get("participants_extras") or {}
|
|
337
|
+
if not isinstance(pe, dict):
|
|
338
|
+
pe = {}
|
|
339
|
+
for k, v in extras.items():
|
|
340
|
+
pe.setdefault(k, v)
|
|
341
|
+
subject_info["participants_extras"] = pe
|
|
342
|
+
raw.info["subject_info"] = subject_info
|
|
343
|
+
except Exception:
|
|
344
|
+
pass
|
|
345
|
+
|
|
346
|
+
# Description enrichment
|
|
347
|
+
try:
|
|
348
|
+
import pandas as _pd # local import to avoid hard dependency at import time
|
|
349
|
+
|
|
350
|
+
if isinstance(description, dict):
|
|
351
|
+
for k, v in extras.items():
|
|
352
|
+
description.setdefault(k, v)
|
|
353
|
+
elif isinstance(description, _pd.Series):
|
|
354
|
+
missing = [k for k in extras.keys() if k not in description.index]
|
|
355
|
+
if missing:
|
|
356
|
+
description.loc[missing] = [extras[m] for m in missing]
|
|
357
|
+
except Exception:
|
|
358
|
+
pass
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
def enrich_from_participants(
|
|
362
|
+
bids_root: str | Path,
|
|
363
|
+
bidspath: BIDSPath,
|
|
364
|
+
raw: Any,
|
|
365
|
+
description: Any,
|
|
366
|
+
) -> dict[str, Any]:
|
|
367
|
+
"""Convenience wrapper: read participants.tsv and attach extras for this subject.
|
|
368
|
+
|
|
369
|
+
Returns the extras dictionary for further use if needed.
|
|
370
|
+
"""
|
|
371
|
+
subject = getattr(bidspath, "subject", None)
|
|
372
|
+
if not subject:
|
|
373
|
+
return {}
|
|
374
|
+
extras = participants_extras_from_tsv(bids_root, subject)
|
|
375
|
+
attach_participants_extras(raw, description, extras)
|
|
376
|
+
return extras
|