eegdash 0.3.7.dev183881899__py3-none-any.whl → 0.3.9.dev114__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

eegdash/utils.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from mne.utils import get_config, set_config, use_log_level
2
2
 
3
3
 
4
- def __init__mongo_client():
4
+ def _init_mongo_client():
5
5
  with use_log_level("ERROR"):
6
6
  if get_config("EEGDASH_DB_URI") is None:
7
7
  set_config(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.3.7.dev183881899
3
+ Version: 0.3.9.dev114
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>, Aviv Dotan <avivd220@gmail.com>, Oren Shriki <oren70@gmail.com>, Bruno Aristimunha <b.aristimunha@gmail.com>
6
6
  License-Expression: GPL-3.0-only
@@ -40,6 +40,7 @@ Requires-Dist: h5io>=0.2.4
40
40
  Requires-Dist: pymatreader
41
41
  Requires-Dist: eeglabio
42
42
  Requires-Dist: tabulate
43
+ Requires-Dist: docstring_inheritance
43
44
  Provides-Extra: tests
44
45
  Requires-Dist: pytest; extra == "tests"
45
46
  Requires-Dist: pytest-cov; extra == "tests"
@@ -62,6 +63,7 @@ Requires-Dist: memory_profiler; extra == "docs"
62
63
  Requires-Dist: ipython; extra == "docs"
63
64
  Requires-Dist: lightgbm; extra == "docs"
64
65
  Requires-Dist: plotly; extra == "docs"
66
+ Requires-Dist: nbformat; extra == "docs"
65
67
  Provides-Extra: all
66
68
  Requires-Dist: eegdash[docs]; extra == "all"
67
69
  Requires-Dist: eegdash[dev]; extra == "all"
@@ -106,7 +108,7 @@ EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine lea
106
108
 
107
109
  ## Data preprocessing
108
110
 
109
- EEGDash datasets are processed using the popular [BrainDecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are BrainDecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on BrainDecode datasets is also possible on EEGDash datasets. Refer to [BrainDecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
111
+ EEGDash datasets are processed using the popular [braindecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are braindecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on braindecode datasets is also possible on EEGDash datasets. Refer to [braindecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
110
112
 
111
113
  ## EEG-Dash usage
112
114
 
@@ -129,7 +131,7 @@ ds_NDARDB033FW5 = EEGDashDataset(
129
131
  )
130
132
  ```
131
133
 
132
- This will search and download the metadata for the task **RestingState** for subject **NDARDB033FW5** in BIDS dataset **ds005514**. The actual data will not be downloaded at this stage. Following standard practice, data is only downloaded once it is processed. The **ds_NDARDB033FW5** object is a fully functional BrainDecode dataset, which is itself a PyTorch dataset. This [tutorial](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_eoec.ipynb) shows how to preprocess the EEG data, extracting portions of the data containing eyes-open and eyes-closed segments, then perform eyes-open vs. eyes-closed classification using a (shallow) deep-learning model.
134
+ This will search and download the metadata for the task **RestingState** for subject **NDARDB033FW5** in BIDS dataset **ds005514**. The actual data will not be downloaded at this stage. Following standard practice, data is only downloaded once it is processed. The **ds_NDARDB033FW5** object is a fully functional braindecode dataset, which is itself a PyTorch dataset. This [tutorial](https://github.com/sccn/EEGDash/blob/develop/notebooks/tutorial_eoec.ipynb) shows how to preprocess the EEG data, extracting portions of the data containing eyes-open and eyes-closed segments, then perform eyes-open vs. eyes-closed classification using a (shallow) deep-learning model.
133
135
 
134
136
  To use the data from multiple subjects, enter:
135
137
 
@@ -145,7 +147,13 @@ This will search and download the metadata for the task 'RestingState' for all s
145
147
 
146
148
  ### Automatic caching
147
149
 
148
- EEGDash automatically caches the downloaded data in the .eegdash_cache folder of the current directory from which the script is called. This means that if you run the tutorial [scripts](https://github.com/sccn/EEGDash/tree/develop/notebooks), the data will only be downloaded the first time the script is executed.
150
+ By default, EEGDash caches downloaded data under a single, consistent folder:
151
+
152
+ - If ``EEGDASH_CACHE_DIR`` is set in your environment, that path is used.
153
+ - Else, if MNE’s ``MNE_DATA`` config is set, that path is used to align with other EEG tooling.
154
+ - Otherwise, ``.eegdash_cache`` in the current working directory is used.
155
+
156
+ This means that if you run the tutorial [scripts](https://github.com/sccn/EEGDash/tree/develop/notebooks), the data will only be downloaded the first time the script is executed and reused thereafter.
149
157
 
150
158
  ## Education -- Coming soon...
151
159
 
@@ -159,4 +167,3 @@ EEG-DaSh is a collaborative initiative between the United States and Israel, sup
159
167
 
160
168
 
161
169
 
162
-
@@ -0,0 +1,35 @@
1
+ eegdash/__init__.py,sha256=GbvcGXcShlfNeEcbZkUCwStg_JfSpIiU5o9YEAVlGi0,284
2
+ eegdash/api.py,sha256=xuNi5mP8zFmTETbRkYajSS7ba320HaDeX7XzcR_t3ZU,40216
3
+ eegdash/bids_eeg_metadata.py,sha256=LZrGPGVdnGUbZlD4M_aAW4kEItzwTTeZFicH-jyqDyc,9712
4
+ eegdash/const.py,sha256=qdFBEL9kIrsj9CdxbXhBkR61R3CrTGSaj5Iq0YOACIs,7313
5
+ eegdash/data_utils.py,sha256=DZ-B03VleA9-mOUzGXcS4N18dVC2uFkFGXMFsKK8nUc,34166
6
+ eegdash/mongodb.py,sha256=GD3WgA253oFgpzOHrYaj4P1mRjNtDMT5Oj4kVvHswjI,2006
7
+ eegdash/paths.py,sha256=246xkectTxDAYcREs1Qma_F1Y-oSmLlb0hn0F2Za5Ss,866
8
+ eegdash/utils.py,sha256=7TfQ9D0LrAJ7FgnSXEvWgeHWK2QqaqS-_WcWXD86ObQ,408
9
+ eegdash/dataset/__init__.py,sha256=Qmzki5G8GaFlzTb10e4SmC3WkKuJyo1Ckii15tCEHAo,157
10
+ eegdash/dataset/dataset.py,sha256=YuyzmqN5M0itimzUD1NF1hcDwkb6fg91dRZtK6HbYOc,6521
11
+ eegdash/dataset/dataset_summary.csv,sha256=XF0vdHz77DFyVLTaET8lL5gQQ4r-q1xAfSDWH5GTPLA,23655
12
+ eegdash/dataset/registry.py,sha256=genOqAuf9cQBnHhPqRwfLP7S1XsnkLot6sLyJozPtf4,4150
13
+ eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
14
+ eegdash/features/datasets.py,sha256=kU1DO70ArSIy-LF1hHD2NN4iT-kJrI0mVpSkyV_OSeI,18301
15
+ eegdash/features/decorators.py,sha256=v0qaJz_dcX703p1fvFYbAIXmwK3d8naYGlq7fRVKn_w,1313
16
+ eegdash/features/extractors.py,sha256=H7h6tP3dKoRcjDJpWWAo0ppmokCq5QlhqMcehYwYV9s,6845
17
+ eegdash/features/inspect.py,sha256=PmbWhx5H_WqpnorUpWONUSkUtaIHkZblRa_Xyk7Szyc,1569
18
+ eegdash/features/serialization.py,sha256=snXuHVd0CoT2ese0iWi5RwZrVHCGc0oCZ8-SXqGY88I,2848
19
+ eegdash/features/utils.py,sha256=eM6DdyOpdVfNh7dSPykJ0WaTDtaGvkCQWAmW0G8v60Y,3784
20
+ eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
21
+ eegdash/features/feature_bank/complexity.py,sha256=iy9uaLInsYdxKZlXHTWlgEpP9fVI-v9TqLGfnS15-Eg,3258
22
+ eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
23
+ eegdash/features/feature_bank/csp.py,sha256=jKPrmqBj7FliybNbg035cVZddvVSkhk9OazcscDpipU,3303
24
+ eegdash/features/feature_bank/dimensionality.py,sha256=j_Ds71Y1AbV2uLFQj8EuXQ4kzofLBlQtPV5snMkF7i4,3965
25
+ eegdash/features/feature_bank/signal.py,sha256=3Tb8z9gX7iZipxQJ9DSyy30JfdmW58kgvimSyZX74p8,3404
26
+ eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
27
+ eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
28
+ eegdash/hbn/__init__.py,sha256=U8mK64napnKU746C5DOwkX7W7sg3iW5kb_cVv2pfFq0,394
29
+ eegdash/hbn/preprocessing.py,sha256=7S_TTRKPKEk47tTnh2D6WExBt4cctAMxUxGDjJqq5lU,2221
30
+ eegdash/hbn/windows.py,sha256=DU_QruLOHQOttZbXCgtO4mjKaG3E5STWjMQ0_s-g0gw,9929
31
+ eegdash-0.3.9.dev114.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
32
+ eegdash-0.3.9.dev114.dist-info/METADATA,sha256=HXQkpMeyev4hRj14J_H-ekM0Qz4fv0qP0g8C1iDe4Q4,10342
33
+ eegdash-0.3.9.dev114.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ eegdash-0.3.9.dev114.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
35
+ eegdash-0.3.9.dev114.dist-info/RECORD,,
eegdash/data_config.py DELETED
@@ -1,34 +0,0 @@
1
- config = {
2
- "required_fields": ["data_name"],
3
- # Default set of user-facing primary record attributes expected in the database. Records
4
- # where any of these are missing will be loaded with the respective attribute set to None.
5
- # Additional fields may be returned if they are present in the database, notably bidsdependencies.
6
- "attributes": {
7
- "data_name": "str",
8
- "dataset": "str",
9
- "bidspath": "str",
10
- "subject": "str",
11
- "task": "str",
12
- "session": "str",
13
- "run": "str",
14
- "sampling_frequency": "float",
15
- "modality": "str",
16
- "nchans": "int",
17
- "ntimes": "int", # note: this is really the number of seconds in the data, rounded down
18
- },
19
- # queryable descriptive fields for a given recording
20
- "description_fields": ["subject", "session", "run", "task", "age", "gender", "sex"],
21
- # list of filenames that may be present in the BIDS dataset directory that are used
22
- # to load and interpret a given BIDS recording.
23
- "bids_dependencies_files": [
24
- "dataset_description.json",
25
- "participants.tsv",
26
- "events.tsv",
27
- "events.json",
28
- "eeg.json",
29
- "electrodes.tsv",
30
- "channels.tsv",
31
- "coordsystem.json",
32
- ],
33
- "accepted_query_fields": ["data_name", "dataset"],
34
- }
eegdash/dataset.py DELETED
@@ -1,118 +0,0 @@
1
- import logging
2
- from pathlib import Path
3
-
4
- from mne.utils import warn
5
-
6
- from .api import EEGDashDataset
7
- from .const import RELEASE_TO_OPENNEURO_DATASET_MAP, SUBJECT_MINI_RELEASE_MAP
8
- from .registry import register_openneuro_datasets
9
-
10
- logger = logging.getLogger("eegdash")
11
-
12
-
13
- class EEGChallengeDataset(EEGDashDataset):
14
- def __init__(
15
- self,
16
- release: str,
17
- cache_dir: str,
18
- mini: bool = True,
19
- query: dict | None = None,
20
- s3_bucket: str | None = "s3://nmdatasets/NeurIPS25",
21
- **kwargs,
22
- ):
23
- """Create a new EEGDashDataset from a given query or local BIDS dataset directory
24
- and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
25
- instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
26
-
27
- Parameters
28
- ----------
29
- release: str
30
- Release name. Can be one of ["R1", ..., "R11"]
31
- mini: bool, default True
32
- Whether to use the mini-release version of the dataset. It is recommended
33
- to use the mini version for faster training and evaluation.
34
- query : dict | None
35
- Optionally a dictionary that specifies a query to be executed,
36
- in addition to the dataset (automatically inferred from the release argument).
37
- See EEGDash.find() for details on the query format.
38
- cache_dir : str
39
- A directory where the dataset will be cached locally.
40
- s3_bucket : str | None
41
- An optional S3 bucket URI to use instead of the
42
- default OpenNeuro bucket for loading data files.
43
- kwargs : dict
44
- Additional keyword arguments to be passed to the EEGDashDataset
45
- constructor.
46
-
47
- """
48
- self.release = release
49
- self.mini = mini
50
-
51
- if release not in RELEASE_TO_OPENNEURO_DATASET_MAP:
52
- raise ValueError(
53
- f"Unknown release: {release}, expected one of {list(RELEASE_TO_OPENNEURO_DATASET_MAP.keys())}"
54
- )
55
-
56
- dataset_parameters = []
57
- if isinstance(release, str):
58
- dataset_parameters.append(RELEASE_TO_OPENNEURO_DATASET_MAP[release])
59
- else:
60
- raise ValueError(
61
- f"Unknown release type: {type(release)}, the expected type is str."
62
- )
63
-
64
- if query and "dataset" in query:
65
- raise ValueError(
66
- "Query using the parameters `dataset` with the class EEGChallengeDataset is not possible."
67
- "Please use the release argument instead, or the object EEGDashDataset instead."
68
- )
69
-
70
- if self.mini:
71
- # Disallow mixing subject selection with mini=True since mini already
72
- # applies a predefined subject subset.
73
- if (query and "subject" in query) or ("subject" in kwargs):
74
- raise ValueError(
75
- "Query using the parameters `subject` with the class EEGChallengeDataset and `mini==True` is not possible."
76
- "Please don't use the `subject` selection twice."
77
- "Set `mini=False` to use the `subject` selection."
78
- )
79
- kwargs["subject"] = SUBJECT_MINI_RELEASE_MAP[release]
80
- s3_bucket = f"{s3_bucket}/{release}_mini_L100_bdf"
81
- else:
82
- s3_bucket = f"{s3_bucket}/{release}_L100_bdf"
83
-
84
- warn(
85
- "\n\n"
86
- "[EEGChallengeDataset] EEG 2025 Competition Data Notice:\n"
87
- "-------------------------------------------------------\n"
88
- "This object loads the HBN dataset that has been preprocessed for the EEG Challenge:\n"
89
- " - Downsampled from 500Hz to 100Hz\n"
90
- " - Bandpass filtered (0.5–50 Hz)\n"
91
- "\n"
92
- "For full preprocessing details, see:\n"
93
- " https://github.com/eeg2025/downsample-datasets\n"
94
- "\n"
95
- "IMPORTANT: The data accessed via `EEGChallengeDataset` is NOT identical to what you get from `EEGDashDataset` directly.\n"
96
- "If you are participating in the competition, always use `EEGChallengeDataset` to ensure consistency with the challenge data.\n"
97
- "\n",
98
- UserWarning,
99
- module="eegdash",
100
- )
101
-
102
- super().__init__(
103
- dataset=RELEASE_TO_OPENNEURO_DATASET_MAP[release],
104
- query=query,
105
- cache_dir=cache_dir,
106
- s3_bucket=s3_bucket,
107
- **kwargs,
108
- )
109
-
110
-
111
- registered_classes = register_openneuro_datasets(
112
- summary_file=Path(__file__).with_name("dataset_summary.csv"),
113
- base_class=EEGDashDataset,
114
- namespace=globals(),
115
- )
116
-
117
-
118
- __all__ = ["EEGChallengeDataset"] + list(registered_classes.keys())
@@ -1,256 +0,0 @@
1
- dataset,n_records,n_subjects,n_tasks,nchans_set,sampling_freqs,duration_hours_total,size,size_bytes,s3_item_count
2
- ds002718,18,18,1,74,250,14.844,4.31 GB,4624315408,0
3
- ds005505,1342,136,10,129,500,125.366,103.11 GB,110708824369,0
4
- ds004745,6,6,1,,1000,0.0,242.08 MB,253839725,0
5
- ds005514,2885,295,10,129,500,213.008,185.03 GB,198677728665,0
6
- ds005512,2320,257,10,129,500,196.205,157.19 GB,168778507427,0
7
- ds005510,1227,135,10,129,500,112.464,90.80 GB,97492961757,0
8
- ds005511,3100,381,10,"6,129",500,285.629,244.83 GB,262883881898,0
9
- ds005509,3326,330,10,129,500,274.559,224.17 GB,240701124393,0
10
- ds005508,3342,324,10,129,500,269.281,229.81 GB,246753736933,0
11
- ds005507,1812,184,10,129,500,168.649,139.37 GB,149646718160,0
12
- ds005506,1405,150,10,129,500,127.896,111.88 GB,120126449650,0
13
- test,2,1,1,64,500,20.556,0 B,0,0
14
- ds004854,1,1,1,64,128,0.535,79.21 MB,83057080,0
15
- ds004853,1,1,1,64,128,0.535,79.21 MB,83057080,0
16
- ds004844,68,17,1,64,1024,21.252,22.33 GB,23976121966,0
17
- ds004843,92,14,1,64,256,29.834,7.66 GB,8229205795,0
18
- ds004842,102,14,1,64,256,20.102,5.21 GB,5589054270,0
19
- ds004852,1,1,1,64,128,0.535,79.21 MB,83057106,0
20
- ds004851,1,1,1,64,128,0.535,56.59 GB,60765064414,0
21
- ds004850,1,1,1,64,128,0.535,79.21 MB,83057078,0
22
- ds004855,1,1,1,64,128,0.535,79.21 MB,83057076,0
23
- ds004849,1,1,1,64,128,0.535,79.21 MB,83057084,0
24
- ds004841,147,20,1,64,256,29.054,7.31 GB,7846934401,0
25
- ds004661,17,17,1,64,128,10.137,1.40 GB,1505577392,0
26
- ds004660,42,21,1,32,"2048,512",23.962,7.25 GB,7782408710,0
27
- ds004657,119,24,1,64,"1024,8192",27.205,43.06 GB,46237302701,0
28
- ds004362,1526,109,1,64,"128,160",48.592,11.14 GB,11961862159,0
29
- ds004010,24,24,1,64,1000,26.457,23.14 GB,24844863976,0
30
- ds002181,226,226,1,125,500,7.676,150.89 MB,158222084,0
31
- ds004554,16,16,1,99,1000,0.024,8.79 GB,9432865762,0
32
- ds005697,50,50,1,"65,69",1000,77.689,66.58 GB,71486411402,0
33
- ds004350,240,24,5,64,256,41.265,26.83 GB,28810754598,0
34
- ds004785,17,17,1,32,500,0.019,351.17 MB,368224136,0
35
- ds004504,88,88,1,19,500,19.608,5.38 GB,5780997160,0
36
- ds004635,55,55,1,129,1000,20.068,30.56 GB,32817659781,0
37
- ds005787,448,19,1,"64,66","1000,500",23.733,27.09 GB,29087512003,0
38
- ds005079,60,1,15,65,500,3.25,1.68 GB,1809231997,0
39
- ds005342,32,32,1,17,250,33.017,2.03 GB,2181610593,0
40
- ds005034,100,25,2,129,1000,37.525,61.36 GB,65885315479,0
41
- ds002680,350,14,1,31,1000,21.244,9.22 GB,9902152149,0
42
- ds003805,1,1,1,19,500,0.033,16.96 MB,17781347,0
43
- ds003838,130,65,2,63,1000,136.757,253.29 GB,271965704312,0
44
- ds002691,20,20,1,32,250,6.721,776.76 MB,814491068,0
45
- ds003690,375,75,3,"64,66",500,46.771,21.46 GB,23043491552,0
46
- ds004040,4,2,1,64,512,4.229,11.59 GB,12440304224,0
47
- ds003061,39,13,1,79,256,8.196,2.26 GB,2421951821,0
48
- ds005672,3,3,1,"65,69",1000,4.585,4.23 GB,4545641306,0
49
- ds005410,81,81,1,63,1000,22.976,19.76 GB,21213481224,0
50
- ds003753,25,25,1,64,500,10.104,4.62 GB,4965253148,0
51
- ds005565,24,24,1,,500,11.436,2.62 GB,2816607296,0
52
- ds002893,52,49,1,33,"250,250.0293378038558",36.114,7.70 GB,8263047991,0
53
- ds002578,2,2,1,256,256,1.455,1.33 GB,1429254677,0
54
- ds005089,36,36,1,63,1000,68.82,68.01 GB,73021312961,0
55
- ds003822,25,25,1,64,500,12.877,5.82 GB,6248744522,0
56
- ds003670,62,25,1,32,2000,72.772,97.53 GB,104721234854,0
57
- ds005048,35,35,1,,250,5.203,355.91 MB,373200880,0
58
- ds004574,146,146,1,"63,64,66",500,31.043,13.48 GB,14470034208,0
59
- ds004519,40,40,1,62,250,0.067,12.56 GB,13486848019,0
60
- ds004602,546,182,3,128,"250,500",87.11,73.91 GB,79364456958,0
61
- ds004784,6,1,6,128,512,0.518,10.82 GB,11621460277,0
62
- ds004771,61,61,1,34,256,0.022,1.36 GB,1462195517,0
63
- ds003518,137,110,1,64,500,89.888,39.51 GB,42423490194,0
64
- ds005207,39,20,1,"6,10,12,14,15,16,17,18","128,250",422.881,69.12 GB,74214619739,0
65
- ds005866,60,60,1,,500,15.976,3.57 GB,3837211623,0
66
- ds003523,221,91,1,64,500,84.586,37.54 GB,40304852370,0
67
- ds004347,48,24,1,64,"128,512",6.389,2.69 GB,2890549319,0
68
- ds004588,42,42,1,24,300,4.957,601.76 MB,630994652,0
69
- ds005811,448,19,1,62,"1000,500",23.733,24.12 GB,25902600444,0
70
- ds003987,69,23,1,64,500.0930232558139,52.076,26.41 GB,28362707915,0
71
- ds004317,50,50,1,60,500,37.767,18.29 GB,19639199743,0
72
- ds004033,36,18,2,64,500,42.645,19.81 GB,21270391452,0
73
- ds004315,50,50,1,60,500,21.104,9.81 GB,10532856899,0
74
- ds003474,122,122,1,64,500,36.61,16.64 GB,17867805967,0
75
- ds003509,84,56,1,64,500,48.535,22.34 GB,23988721823,0
76
- ds005868,48,48,1,,500,13.094,2.93 GB,3146417813,0
77
- ds003516,25,25,1,47,500,22.57,13.46 GB,14451393616,0
78
- ds004942,62,62,1,65,1000,28.282,25.05 GB,26899933549,0
79
- ds004348,18,9,2,34,200,35.056,12.30 GB,13210476025,0
80
- ds004625,543,32,9,120,500,28.397,62.46 GB,67069111978,0
81
- ds003517,34,17,1,64,500,13.273,6.48 GB,6952992399,0
82
- ds004368,40,39,1,63,128,0.033,997.14 MB,1045574811,0
83
- ds004584,149,149,1,"63,64,66",500,6.641,2.87 GB,3078216874,0
84
- ds003506,84,56,1,64,500,35.381,16.21 GB,17400039992,0
85
- ds003570,40,40,1,64,2048,26.208,36.12 GB,38783075272,0
86
- ds003490,75,50,1,64,500,12.76,5.85 GB,6276775630,0
87
- ds004117,85,23,1,69,"1000,250,500,500.059",15.941,5.80 GB,6230776574,0
88
- ds004505,25,25,1,120,250,30.398,522.56 GB,561092363916,0
89
- ds004580,147,147,1,"63,64,66",500,36.514,15.84 GB,17008438640,0
90
- ds004532,137,110,1,64,500,49.651,22.09 GB,23719572304,0
91
- ds004902,218,71,2,61,"500,5000",18.118,8.29 GB,8898600609,0
92
- ds004295,26,26,1,66,"1024,512",34.313,31.51 GB,33831372141,0
93
- ds003519,54,27,1,64,500,20.504,8.96 GB,9623156762,0
94
- ds003458,23,23,1,64,500,10.447,4.72 GB,5065250805,0
95
- ds003004,34,34,1,"134,180,189,196,201,206,207,208,209,211,212,213,214,215,218,219,220,221,222,223,224,226,227,229,231,232,235",256,49.072,35.63 GB,38255333087,0
96
- ds004200,20,20,1,37,1000,14.123,7.21 GB,7740555648,0
97
- ds004015,36,36,1,18,500,47.29,6.03 GB,6475870225,0
98
- ds004595,53,53,1,64,500,17.078,7.89 GB,8470863296,0
99
- ds004626,52,52,1,68,1000,21.359,19.87 GB,21336341431,0
100
- ds004475,30,30,1,"113,115,118,119,120,122,123,124,125,126,127,128",512,26.899,112.74 GB,121053900746,0
101
- ds004515,54,54,1,64,500,20.61,9.48 GB,10177384081,0
102
- ds004883,516,172,3,128,500,137.855,122.80 GB,131858855599,0
103
- ds003739,120,30,4,128,256,20.574,10.94 GB,11742611182,0
104
- ds004389,260,26,4,42,10000,30.932,376.50 GB,404264486093,0
105
- ds004367,40,40,1,68,1200,24.81,27.98 GB,30039343808,0
106
- ds004369,41,41,1,4,500,37.333,8.01 GB,8596739356,0
107
- ds004579,139,139,1,"63,64,66",500,55.703,24.12 GB,25896737812,0
108
- ds005416,23,23,1,64,1000,24.68,21.30 GB,22869325264,0
109
- ds001785,54,18,3,63,"1000,1024",14.644,27.86 GB,29915397068,0
110
- ds001971,273,20,1,108,512,46.183,31.98 GB,34339201543,0
111
- ds004388,399,40,3,67,10000,43.327,682.54 GB,732876226489,0
112
- ds003478,243,122,1,64,500,23.57,10.65 GB,11430531312,0
113
- ds004306,15,12,1,124,1024,18.183,79.11 GB,84945921180,0
114
- ds005305,165,165,1,64,"2048,512",14.136,6.41 GB,6887595053,0
115
- ds005114,223,91,1,64,500,125.701,56.47 GB,60630838923,0
116
- ds003039,16,16,1,64,500,14.82,7.82 GB,8401240820,0
117
- ds003602,699,118,6,35,1000,159.35,73.21 GB,78609742568,0
118
- ds003655,156,156,1,19,500,130.923,20.26 GB,21756905870,0
119
- ds003522,200,96,1,64,500,57.079,25.36 GB,27225424004,0
120
- ds003801,20,20,1,24,250,13.689,1.15 GB,1233075452,0
121
- ds005296,62,62,1,,500,37.205,8.53 GB,9154623627,0
122
- ds004561,23,23,1,62,10000,11.379,97.96 GB,105188606283,0
123
- ds005131,63,58,2,64,500,52.035,22.35 GB,23996524256,0
124
- ds005028,66,11,3,,,0.0,1.46 GB,1563795662,0
125
- ds005170,225,5,1,,,0.0,261.77 GB,281068716313,0
126
- ds004840,51,9,3,8,"1024,256,512",11.306,1.75 GB,1876219715,0
127
- ds004718,51,51,1,64,1000,21.836,108.98 GB,117013849037,0
128
- ds002725,105,21,5,30,1000,0.0,15.32 GB,16447829856,0
129
- ds004408,380,19,1,128,512,20.026,18.70 GB,20083249915,0
130
- ds004796,235,79,3,,1000,0.0,240.21 GB,257923739221,0
131
- ds004511,134,45,3,139,3000,48.922,202.28 GB,217194709208,0
132
- ds004817,20,20,1,63,1000,0.0,25.34 GB,27207910489,0
133
- ds003190,280,19,1,0,256,29.891,1.27 GB,1361816737,0
134
- ds004917,24,24,1,,,0.0,36.47 GB,39162637090,0
135
- ds004357,16,16,1,63,1000,0.0,69.56 GB,74685825960,0
136
- ds005397,26,26,1,64,500,27.923,12.10 GB,12993735747,0
137
- ds003846,60,19,1,64,500,24.574,11.36 GB,12193814091,0
138
- ds004024,497,13,3,64,20000,55.503,1021.22 GB,1096522006089,0
139
- ds005815,137,26,4,30,"1000,500",38.618,9.91 GB,10642000219,0
140
- ds005429,61,15,3,64,"2500,5000",14.474,16.47 GB,17685373747,0
141
- ds003702,47,47,1,61,500,0.0,60.93 GB,65421860496,0
142
- ds004577,130,103,1,"19,21,24",200,22.974,652.76 MB,684471843,0
143
- ds003574,18,18,1,64,500,0.0,14.79 GB,15876358782,0
144
- ds005779,250,19,16,"64,67,70",5000,16.65,88.67 GB,95206991747,0
145
- ds005185,356,20,3,8,500,0.0,783.25 GB,841005525524,0
146
- ds001787,40,24,1,64,256,27.607,5.69 GB,6112379157,0
147
- ds003505,37,19,2,128,2048,0.0,90.13 GB,96777780296,0
148
- ds005340,15,15,1,2,10000,35.297,19.14 GB,20556600898,0
149
- ds005363,43,43,1,64,1000,43.085,17.71 GB,19011101429,0
150
- ds005121,39,34,1,58,512,41.498,9.04 GB,9711092185,0
151
- ds004256,53,53,2,64,500,42.337,18.18 GB,19516271706,0
152
- ds005420,72,37,2,20,500,5.485,372.11 MB,390189484,0
153
- ds002034,167,14,4,64,512,37.248,10.10 GB,10842685551,0
154
- ds003825,50,50,1,"63,128",1000,0.0,55.34 GB,59421076202,0
155
- ds004587,114,103,1,59,10000,25.491,219.34 GB,235517890780,0
156
- ds004598,20,9,1,,10000,0.0,26.66 GB,28629940214,0
157
- ds005383,240,30,1,30,200,8.327,17.43 GB,18712238212,0
158
- ds003195,20,10,2,19,200,4.654,121.08 MB,126957549,0
159
- ds005403,32,32,1,62,10000,13.383,135.65 GB,145656630881,0
160
- ds004621,167,42,4,,1000,0.0,77.39 GB,83096459121,0
161
- ds005863,357,127,4,27,500,0.0,10.59 GB,11371790189,0
162
- ds005594,16,16,1,64,1000,12.934,10.89 GB,11695589464,0
163
- ds002336,54,10,6,,5000,0.0,17.98 GB,19300632853,0
164
- ds004043,20,20,1,63,1000,0.0,30.44 GB,32685724275,0
165
- ds005106,42,42,1,32,500,0.012,12.62 GB,13547440607,0
166
- ds004284,18,18,1,129,1000,9.454,16.49 GB,17703523636,0
167
- ds005620,202,21,3,"64,65",5000,21.811,77.30 GB,83002663223,0
168
- ds002720,165,18,10,19,1000,0.0,2.39 GB,2566221024,0
169
- ds005307,73,7,1,"72,104",10000,1.335,18.59 GB,19956343711,0
170
- ds002094,43,20,3,30,5000,18.593,39.45 GB,42356287674,0
171
- ds002833,80,20,1,257,1000,11.604,39.77 GB,42698182133,0
172
- ds002218,18,18,1,0,256,16.52,1.95 GB,2089183870,0
173
- ds005021,36,36,1,64,1024,0.0,83.20 GB,89337424472,0
174
- ds004264,21,21,1,31,1000,0.0,3.30 GB,3546307489,0
175
- ds004446,237,30,1,129,1000,33.486,29.23 GB,31382984441,0
176
- ds004980,17,17,1,64,"499.9911824,499.9912809,499.991385,499.9914353,499.9914553,499.9915179,499.9917272,499.9917286,499.9917378,499.9919292,499.9919367,499.9923017,499.9923795,500",36.846,15.82 GB,16989514798,0
177
- ds002722,94,19,5,32,1000,0.0,6.10 GB,6545819602,0
178
- ds003944,82,82,1,61,"1000,3000.00030000003",6.999,6.15 GB,6606397067,0
179
- ds004279,60,56,1,64,1000,53.729,25.22 GB,27082275780,0
180
- ds005876,29,29,1,32,1000,16.017,7.61 GB,8170007441,0
181
- ds003816,1077,48,8,127,1000,159.313,53.97 GB,57953346429,0
182
- ds005385,3264,608,2,64,1000,169.62,74.07 GB,79529430923,0
183
- ds004572,516,52,10,58,1000,52.624,43.56 GB,46777273840,0
184
- ds005095,48,48,1,63,1000,16.901,14.28 GB,15336165645,0
185
- ds004460,40,20,1,160,1000,27.494,61.36 GB,65881325046,0
186
- ds005189,30,30,1,61,1000,0.0,17.03 GB,18283103870,0
187
- ds005274,22,22,1,6,500,0.0,71.91 MB,75400374,0
188
- ds004075,116,29,4,,1000,0.0,7.39 GB,7936060172,0
189
- ds004447,418,22,1,"128,129",1000,23.554,20.73 GB,22253514308,0
190
- ds004952,245,10,1,128,1000,123.411,696.72 GB,748095804444,0
191
- ds002724,96,10,4,32,1000,0.0,8.52 GB,9150248444,0
192
- ds005571,45,24,2,64,5000,0.0,62.77 GB,67394456730,0
193
- ds004262,21,21,1,31,1000,0.0,3.48 GB,3731654700,0
194
- ds005273,33,33,1,63,1000,58.055,44.42 GB,47690882240,0
195
- ds004520,33,33,1,62,250,0.055,10.41 GB,11175908145,0
196
- ds004444,465,30,1,129,1000,55.687,48.62 GB,52204973958,0
197
- ds004582,73,73,1,59,10000,34.244,294.22 GB,315915939478,0
198
- ds002723,44,8,6,32,1000,0.0,2.60 GB,2791985215,0
199
- ds003751,38,38,1,128,250,19.95,4.71 GB,5057922307,0
200
- ds003421,80,20,1,257,1000,11.604,76.77 GB,82433418198,0
201
- ds002158,117,20,1,,,0.0,428.59 GB,460190030981,0
202
- ds004951,23,11,1,63,1000,29.563,22.00 GB,23627352274,0
203
- ds004802,38,38,1,65,"2048,512",0.0,29.34 GB,31504070800,0
204
- ds004816,20,20,1,63,1000,0.0,23.31 GB,25028989553,0
205
- ds005873,2850,125,1,2,256,11935.09,117.21 GB,125851664268,0
206
- ds003194,29,15,2,"19,21",200,7.178,189.15 MB,198333904,0
207
- ds004356,24,22,1,34,10000,0.0,213.08 GB,228796286136,0
208
- ds004381,437,18,1,"4,5,7,8,10",20000,11.965,12.36 GB,13275540742,0
209
- ds004196,4,4,1,64,512,1.511,9.33 GB,10022898106,0
210
- ds005692,59,30,1,24,5000,112.206,92.81 GB,99649237201,0
211
- ds002338,85,17,4,,5000,0.0,25.89 GB,27802574037,0
212
- ds004022,21,7,1,"16,18",500,0.0,634.93 MB,665774359,0
213
- ds004603,37,37,1,64,1024,30.653,39.13 GB,42020115207,0
214
- ds004752,136,15,1,"0,8,10,19,20,21,23","200,2000,4000,4096",0.302,11.95 GB,12829882725,0
215
- ds003768,255,33,2,,,0.0,89.24 GB,95819107191,0
216
- ds003947,61,61,1,61,"1000,3000.00030000003",5.266,12.54 GB,13466591394,0
217
- ds005530,21,17,1,10,500,154.833,6.47 GB,6949642931,0
218
- ds005555,256,128,1,"2,8,9,11,12,13",256,2002.592,33.45 GB,35921410419,0
219
- ds004477,9,9,1,79,2048,13.557,22.34 GB,23990303639,0
220
- ds005688,89,20,5,4,"10000,20000",2.502,8.42 GB,9036021093,0
221
- ds003766,124,31,4,129,1000,39.973,152.77 GB,164033759919,0
222
- ds005540,103,59,1,64,"1200,600",0.0,70.40 GB,75594345013,0
223
- ds004152,21,21,1,31,1000,0.0,4.77 GB,5118976537,0
224
- ds003626,30,10,1,,,0.0,24.99 GB,26828585815,0
225
- ds002814,168,21,1,68,1200,0.0,48.57 GB,52151006842,0
226
- ds003645,108,18,1,,,0.0,105.89 GB,113698969765,0
227
- ds005586,23,23,1,60,1000,33.529,28.68 GB,30791089319,0
228
- ds003810,50,10,1,15,125,0.0,69.31 MB,72674251,0
229
- ds003969,392,98,4,64,"1024,2048",66.512,54.46 GB,58479195149,0
230
- ds004000,86,43,2,128,2048,0.0,22.50 GB,24161100810,0
231
- ds004995,20,20,1,,,0.0,27.60 GB,29637643188,0
232
- ds003638,57,57,1,64,512,40.597,16.31 GB,17516109722,0
233
- ds004521,34,34,1,62,250,0.057,10.68 GB,11470006201,0
234
- ds001849,120,20,1,30,5000,0.0,44.51 GB,47790431085,0
235
- ds004252,1,1,1,,,0.0,4.31 GB,4630172409,0
236
- ds004448,280,56,1,129,1000,43.732,38.17 GB,40980948240,0
237
- ds005795,39,34,2,72,500,0.0,6.43 GB,6902188541,0
238
- ds004018,32,16,1,63,1000,0.0,10.56 GB,11334174765,0
239
- ds004324,26,26,1,28,500,19.216,2.46 GB,2637689107,0
240
- ds003887,24,24,1,128,1000,0.0,80.10 GB,86007307086,0
241
- ds004860,31,31,1,32,"2048,512",0.0,3.79 GB,4065632222,0
242
- ds002721,185,31,6,19,1000,0.0,3.35 GB,3598851749,0
243
- ds003555,30,30,1,,1024,0.0,28.27 GB,30359240949,0
244
- ds005486,445,159,1,,"25000,5000",0.0,371.04 GB,398401152773,0
245
- ds005520,69,23,3,67,1000,60.73,275.98 GB,296326427308,0
246
- ds005262,186,12,1,,,0.0,688.75 MB,722211079,0
247
- ds002778,46,31,1,40,512,2.518,545.00 MB,571471228,0
248
- ds003885,24,24,1,128,1000,0.0,82.21 GB,88277188455,0
249
- ds005406,29,29,1,63,1000,15.452,13.26 GB,14241905076,0
250
- ds003710,48,13,1,32,5000,9.165,10.18 GB,10934708022,0
251
- ds003343,59,20,1,16,500,6.551,663.50 MB,695729345,0
252
- ds005345,26,26,1,64,500,0.0,405.13 GB,435000970369,0
253
- ds004067,84,80,1,63,2000,0.0,100.79 GB,108218050644,0
254
- ds001810,263,47,1,64,512,91.205,109.70 GB,117790096766,0
255
- ds005515,2516,533,8,129,500,198.849,160.55 GB,172385741878,0
256
- ds005516,3397,430,8,129,500,256.932,219.39 GB,235564761634,0
@@ -1,31 +0,0 @@
1
- eegdash/__init__.py,sha256=HsLvuhKCSBkLH92aEyiBDdz5LDS08IVwVZ6To-YayXs,247
2
- eegdash/api.py,sha256=h_ve1QE7PQ41mTAjYoczQ6KouchFIxx9IlmDfpkD0Bg,38949
3
- eegdash/const.py,sha256=syrXxcqFyl4dxAetOuhPyCYZ2xgilsLunJRVzx9TCeA,5806
4
- eegdash/data_config.py,sha256=OS6ERO-jHrnEOfMJUehY7ieABdsRw_qWzOKJ4pzSfqw,1323
5
- eegdash/data_utils.py,sha256=mi9pscui-BPpRH9ovRtGWiSwHG5QN6K_IvJdYaING2I,27679
6
- eegdash/dataset.py,sha256=6Tgj_1j4DNoaPoMnhtancDtPG6bxODnbPlXkDzGjtrQ,4716
7
- eegdash/dataset_summary.csv,sha256=9Rw9PawiQ9a_OBRJYKarrzb4UFSGpkGULhYB0MYUieE,14740
8
- eegdash/mongodb.py,sha256=GD3WgA253oFgpzOHrYaj4P1mRjNtDMT5Oj4kVvHswjI,2006
9
- eegdash/preprocessing.py,sha256=7S_TTRKPKEk47tTnh2D6WExBt4cctAMxUxGDjJqq5lU,2221
10
- eegdash/registry.py,sha256=jBR2tGE4YJL4yhbZcn2CN4jaC-ttyVN0wmsCR1uWzoU,4329
11
- eegdash/utils.py,sha256=wU9CBQZLW_LIQIBwhgQm5bU4X-rSsVNPdeF2iE4QGJ4,410
12
- eegdash/features/__init__.py,sha256=BXNhjvL4_SSFAY1lcP9nyGpkbJNtoOMH4AHlF6OyABo,4078
13
- eegdash/features/datasets.py,sha256=kU1DO70ArSIy-LF1hHD2NN4iT-kJrI0mVpSkyV_OSeI,18301
14
- eegdash/features/decorators.py,sha256=v0qaJz_dcX703p1fvFYbAIXmwK3d8naYGlq7fRVKn_w,1313
15
- eegdash/features/extractors.py,sha256=H7h6tP3dKoRcjDJpWWAo0ppmokCq5QlhqMcehYwYV9s,6845
16
- eegdash/features/inspect.py,sha256=PmbWhx5H_WqpnorUpWONUSkUtaIHkZblRa_Xyk7Szyc,1569
17
- eegdash/features/serialization.py,sha256=snXuHVd0CoT2ese0iWi5RwZrVHCGc0oCZ8-SXqGY88I,2848
18
- eegdash/features/utils.py,sha256=eM6DdyOpdVfNh7dSPykJ0WaTDtaGvkCQWAmW0G8v60Y,3784
19
- eegdash/features/feature_bank/__init__.py,sha256=YsMXLC1FEtHL3IEw9pYw1fc5IY0x_hr2qWQowI5gZj8,2991
20
- eegdash/features/feature_bank/complexity.py,sha256=iy9uaLInsYdxKZlXHTWlgEpP9fVI-v9TqLGfnS15-Eg,3258
21
- eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
22
- eegdash/features/feature_bank/csp.py,sha256=jKPrmqBj7FliybNbg035cVZddvVSkhk9OazcscDpipU,3303
23
- eegdash/features/feature_bank/dimensionality.py,sha256=j_Ds71Y1AbV2uLFQj8EuXQ4kzofLBlQtPV5snMkF7i4,3965
24
- eegdash/features/feature_bank/signal.py,sha256=3Tb8z9gX7iZipxQJ9DSyy30JfdmW58kgvimSyZX74p8,3404
25
- eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
26
- eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
27
- eegdash-0.3.7.dev183881899.dist-info/licenses/LICENSE,sha256=asisR-xupy_NrQBFXnx6yqXeZcYWLvbAaiETl25iXT0,931
28
- eegdash-0.3.7.dev183881899.dist-info/METADATA,sha256=c5B6QRTX3EpZq4NnkSPMxPVtf2RHQnOMp9rGSMd3DQc,10059
29
- eegdash-0.3.7.dev183881899.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
- eegdash-0.3.7.dev183881899.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
31
- eegdash-0.3.7.dev183881899.dist-info/RECORD,,
File without changes