eegdash 0.3.7.dev104__py3-none-any.whl → 0.3.7.dev107__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/__init__.py +4 -4
- eegdash/api.py +483 -429
- eegdash/bids_eeg_metadata.py +254 -0
- eegdash/const.py +48 -0
- eegdash/data_utils.py +175 -43
- eegdash/dataset/__init__.py +4 -0
- eegdash/{dataset.py → dataset/dataset.py} +53 -10
- eegdash/{registry.py → dataset/registry.py} +3 -3
- eegdash/utils.py +1 -1
- {eegdash-0.3.7.dev104.dist-info → eegdash-0.3.7.dev107.dist-info}/METADATA +1 -1
- {eegdash-0.3.7.dev104.dist-info → eegdash-0.3.7.dev107.dist-info}/RECORD +14 -14
- eegdash/data_config.py +0 -34
- eegdash/dataset_summary.csv +0 -256
- {eegdash-0.3.7.dev104.dist-info → eegdash-0.3.7.dev107.dist-info}/WHEEL +0 -0
- {eegdash-0.3.7.dev104.dist-info → eegdash-0.3.7.dev107.dist-info}/licenses/LICENSE +0 -0
- {eegdash-0.3.7.dev104.dist-info → eegdash-0.3.7.dev107.dist-info}/top_level.txt +0 -0
eegdash/api.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
|
3
3
|
import tempfile
|
|
4
4
|
from pathlib import Path
|
|
5
5
|
from typing import Any, Mapping
|
|
6
|
+
from urllib.parse import urlsplit
|
|
6
7
|
|
|
7
8
|
import mne
|
|
8
9
|
import numpy as np
|
|
@@ -11,61 +12,58 @@ import xarray as xr
|
|
|
11
12
|
from dotenv import load_dotenv
|
|
12
13
|
from joblib import Parallel, delayed
|
|
13
14
|
from mne.utils import warn
|
|
14
|
-
from mne_bids import get_bids_path_from_fname, read_raw_bids
|
|
15
|
+
from mne_bids import find_matching_paths, get_bids_path_from_fname, read_raw_bids
|
|
15
16
|
from pymongo import InsertOne, UpdateOne
|
|
16
17
|
from s3fs import S3FileSystem
|
|
17
18
|
|
|
18
19
|
from braindecode.datasets import BaseConcatDataset
|
|
19
20
|
|
|
20
|
-
from .
|
|
21
|
-
|
|
22
|
-
|
|
21
|
+
from .bids_eeg_metadata import (
|
|
22
|
+
build_query_from_kwargs,
|
|
23
|
+
load_eeg_attrs_from_bids_file,
|
|
24
|
+
merge_participants_fields,
|
|
25
|
+
normalize_key,
|
|
26
|
+
)
|
|
27
|
+
from .const import (
|
|
28
|
+
ALLOWED_QUERY_FIELDS,
|
|
29
|
+
RELEASE_TO_OPENNEURO_DATASET_MAP,
|
|
30
|
+
)
|
|
31
|
+
from .const import config as data_config
|
|
32
|
+
from .data_utils import (
|
|
33
|
+
EEGBIDSDataset,
|
|
34
|
+
EEGDashBaseDataset,
|
|
35
|
+
)
|
|
23
36
|
from .mongodb import MongoConnectionManager
|
|
24
37
|
|
|
25
38
|
logger = logging.getLogger("eegdash")
|
|
26
39
|
|
|
27
40
|
|
|
28
41
|
class EEGDash:
|
|
29
|
-
"""
|
|
42
|
+
"""High-level interface to the EEGDash metadata database.
|
|
30
43
|
|
|
31
|
-
|
|
32
|
-
EEGDash database (or
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
While this class provides basic support for loading EEG data, please see
|
|
36
|
-
the EEGDashDataset class for a more complete way to retrieve and work with full
|
|
37
|
-
datasets.
|
|
44
|
+
Provides methods to query, insert, and update metadata records stored in the
|
|
45
|
+
EEGDash MongoDB database (public or private). Also includes utilities to load
|
|
46
|
+
EEG data from S3 for matched records.
|
|
38
47
|
|
|
48
|
+
For working with collections of
|
|
49
|
+
recordings as PyTorch datasets, prefer :class:`EEGDashDataset`.
|
|
39
50
|
"""
|
|
40
51
|
|
|
41
|
-
_ALLOWED_QUERY_FIELDS = {
|
|
42
|
-
"data_name",
|
|
43
|
-
"dataset",
|
|
44
|
-
"subject",
|
|
45
|
-
"task",
|
|
46
|
-
"session",
|
|
47
|
-
"run",
|
|
48
|
-
"modality",
|
|
49
|
-
"sampling_frequency",
|
|
50
|
-
"nchans",
|
|
51
|
-
"ntimes",
|
|
52
|
-
}
|
|
53
|
-
|
|
54
52
|
def __init__(self, *, is_public: bool = True, is_staging: bool = False) -> None:
|
|
55
|
-
"""Create new
|
|
53
|
+
"""Create a new EEGDash client.
|
|
56
54
|
|
|
57
55
|
Parameters
|
|
58
56
|
----------
|
|
59
|
-
is_public: bool
|
|
60
|
-
|
|
61
|
-
private database instance
|
|
62
|
-
(or
|
|
63
|
-
is_staging: bool
|
|
64
|
-
If True
|
|
65
|
-
production database (
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
57
|
+
is_public : bool, default True
|
|
58
|
+
Connect to the public MongoDB database. If ``False``, connect to a
|
|
59
|
+
private database instance using the ``DB_CONNECTION_STRING`` environment
|
|
60
|
+
variable (or value from a ``.env`` file).
|
|
61
|
+
is_staging : bool, default False
|
|
62
|
+
If ``True``, use the staging database (``eegdashstaging``); otherwise
|
|
63
|
+
use the production database (``eegdash``).
|
|
64
|
+
|
|
65
|
+
Examples
|
|
66
|
+
--------
|
|
69
67
|
>>> eegdash = EEGDash()
|
|
70
68
|
|
|
71
69
|
"""
|
|
@@ -106,23 +104,25 @@ class EEGDash:
|
|
|
106
104
|
|
|
107
105
|
Parameters
|
|
108
106
|
----------
|
|
109
|
-
query: dict, optional
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
107
|
+
query : dict, optional
|
|
108
|
+
Complete MongoDB query dictionary. This is a positional-only
|
|
109
|
+
argument.
|
|
110
|
+
**kwargs
|
|
111
|
+
User-friendly field filters that are converted to a MongoDB query.
|
|
112
|
+
Values can be scalars (e.g., ``"sub-01"``) or sequences (translated
|
|
113
|
+
to ``$in`` queries).
|
|
114
114
|
|
|
115
115
|
Returns
|
|
116
116
|
-------
|
|
117
|
-
list
|
|
118
|
-
|
|
117
|
+
list of dict
|
|
118
|
+
DB records that match the query.
|
|
119
119
|
|
|
120
120
|
"""
|
|
121
121
|
final_query: dict[str, Any] | None = None
|
|
122
122
|
|
|
123
123
|
# Accept explicit empty dict {} to mean "match all"
|
|
124
124
|
raw_query = query if isinstance(query, dict) else None
|
|
125
|
-
kwargs_query =
|
|
125
|
+
kwargs_query = build_query_from_kwargs(**kwargs) if kwargs else None
|
|
126
126
|
|
|
127
127
|
# Determine presence, treating {} as a valid raw query
|
|
128
128
|
has_raw = isinstance(raw_query, dict)
|
|
@@ -239,59 +239,12 @@ class EEGDash:
|
|
|
239
239
|
return record
|
|
240
240
|
|
|
241
241
|
def _build_query_from_kwargs(self, **kwargs) -> dict[str, Any]:
|
|
242
|
-
"""
|
|
242
|
+
"""Internal helper to build a validated MongoDB query from keyword args.
|
|
243
243
|
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
- For list/tuple/set values: strip strings, drop None/empties, deduplicate, and use `$in`
|
|
247
|
-
- Preserve scalars as exact matches
|
|
244
|
+
This delegates to the module-level builder used across the package and
|
|
245
|
+
is exposed here for testing and convenience.
|
|
248
246
|
"""
|
|
249
|
-
|
|
250
|
-
unknown_fields = set(kwargs.keys()) - self._ALLOWED_QUERY_FIELDS
|
|
251
|
-
if unknown_fields:
|
|
252
|
-
raise ValueError(
|
|
253
|
-
f"Unsupported query field(s): {', '.join(sorted(unknown_fields))}. "
|
|
254
|
-
f"Allowed fields are: {', '.join(sorted(self._ALLOWED_QUERY_FIELDS))}"
|
|
255
|
-
)
|
|
256
|
-
|
|
257
|
-
# 2. Construct the query dictionary
|
|
258
|
-
query = {}
|
|
259
|
-
for key, value in kwargs.items():
|
|
260
|
-
# None is not a valid constraint
|
|
261
|
-
if value is None:
|
|
262
|
-
raise ValueError(
|
|
263
|
-
f"Received None for query parameter '{key}'. Provide a concrete value."
|
|
264
|
-
)
|
|
265
|
-
|
|
266
|
-
# Handle list-like values as multi-constraints
|
|
267
|
-
if isinstance(value, (list, tuple, set)):
|
|
268
|
-
cleaned: list[Any] = []
|
|
269
|
-
for item in value:
|
|
270
|
-
if item is None:
|
|
271
|
-
continue
|
|
272
|
-
if isinstance(item, str):
|
|
273
|
-
item = item.strip()
|
|
274
|
-
if not item:
|
|
275
|
-
continue
|
|
276
|
-
cleaned.append(item)
|
|
277
|
-
# Deduplicate while preserving order
|
|
278
|
-
cleaned = list(dict.fromkeys(cleaned))
|
|
279
|
-
if not cleaned:
|
|
280
|
-
raise ValueError(
|
|
281
|
-
f"Received an empty list for query parameter '{key}'. This is not supported."
|
|
282
|
-
)
|
|
283
|
-
query[key] = {"$in": cleaned}
|
|
284
|
-
else:
|
|
285
|
-
# Scalars: trim strings and validate
|
|
286
|
-
if isinstance(value, str):
|
|
287
|
-
value = value.strip()
|
|
288
|
-
if not value:
|
|
289
|
-
raise ValueError(
|
|
290
|
-
f"Received an empty string for query parameter '{key}'."
|
|
291
|
-
)
|
|
292
|
-
query[key] = value
|
|
293
|
-
|
|
294
|
-
return query
|
|
247
|
+
return build_query_from_kwargs(**kwargs)
|
|
295
248
|
|
|
296
249
|
# --- Query merging and conflict detection helpers ---
|
|
297
250
|
def _extract_simple_constraint(self, query: dict[str, Any], key: str):
|
|
@@ -324,8 +277,8 @@ class EEGDash:
|
|
|
324
277
|
return
|
|
325
278
|
|
|
326
279
|
# Only consider fields we generally allow; skip meta operators like $and
|
|
327
|
-
raw_keys = set(raw_query.keys()) &
|
|
328
|
-
kw_keys = set(kwargs_query.keys()) &
|
|
280
|
+
raw_keys = set(raw_query.keys()) & ALLOWED_QUERY_FIELDS
|
|
281
|
+
kw_keys = set(kwargs_query.keys()) & ALLOWED_QUERY_FIELDS
|
|
329
282
|
dup_keys = raw_keys & kw_keys
|
|
330
283
|
for key in dup_keys:
|
|
331
284
|
rc = self._extract_simple_constraint(raw_query, key)
|
|
@@ -360,44 +313,95 @@ class EEGDash:
|
|
|
360
313
|
)
|
|
361
314
|
|
|
362
315
|
def load_eeg_data_from_s3(self, s3path: str) -> xr.DataArray:
|
|
363
|
-
"""Load
|
|
316
|
+
"""Load EEG data from an S3 URI into an ``xarray.DataArray``.
|
|
317
|
+
|
|
318
|
+
Preserves the original filename, downloads sidecar files when applicable
|
|
319
|
+
(e.g., ``.fdt`` for EEGLAB, ``.vmrk``/``.eeg`` for BrainVision), and uses
|
|
320
|
+
MNE's direct readers.
|
|
364
321
|
|
|
365
322
|
Parameters
|
|
366
323
|
----------
|
|
367
324
|
s3path : str
|
|
368
|
-
An S3 URI (should start with "s3://")
|
|
325
|
+
An S3 URI (should start with "s3://").
|
|
369
326
|
|
|
370
327
|
Returns
|
|
371
328
|
-------
|
|
372
329
|
xr.DataArray
|
|
373
|
-
|
|
330
|
+
EEG data with dimensions ``("channel", "time")``.
|
|
374
331
|
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
>>> mydata = eegdash.load_eeg_data_from_s3(mypath)
|
|
332
|
+
Raises
|
|
333
|
+
------
|
|
334
|
+
ValueError
|
|
335
|
+
If the file extension is unsupported.
|
|
380
336
|
|
|
381
337
|
"""
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
338
|
+
# choose a temp dir so sidecars can be colocated
|
|
339
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
340
|
+
# Derive local filenames from the S3 key to keep base name consistent
|
|
341
|
+
s3_key = urlsplit(s3path).path # e.g., "/dsXXXX/sub-.../..._eeg.set"
|
|
342
|
+
basename = Path(s3_key).name
|
|
343
|
+
ext = Path(basename).suffix.lower()
|
|
344
|
+
local_main = Path(tmpdir) / basename
|
|
345
|
+
|
|
346
|
+
# Download main file
|
|
347
|
+
with (
|
|
348
|
+
self.filesystem.open(s3path, mode="rb") as fsrc,
|
|
349
|
+
open(local_main, "wb") as fdst,
|
|
350
|
+
):
|
|
351
|
+
fdst.write(fsrc.read())
|
|
352
|
+
|
|
353
|
+
# Determine and fetch any required sidecars
|
|
354
|
+
sidecars: list[str] = []
|
|
355
|
+
if ext == ".set": # EEGLAB
|
|
356
|
+
sidecars = [".fdt"]
|
|
357
|
+
elif ext == ".vhdr": # BrainVision
|
|
358
|
+
sidecars = [".vmrk", ".eeg", ".dat", ".raw"]
|
|
359
|
+
|
|
360
|
+
for sc_ext in sidecars:
|
|
361
|
+
sc_key = s3_key[: -len(ext)] + sc_ext
|
|
362
|
+
sc_uri = f"s3://{urlsplit(s3path).netloc}{sc_key}"
|
|
363
|
+
try:
|
|
364
|
+
# If sidecar exists, download next to the main file
|
|
365
|
+
info = self.filesystem.info(sc_uri)
|
|
366
|
+
if info:
|
|
367
|
+
sc_local = Path(tmpdir) / Path(sc_key).name
|
|
368
|
+
with (
|
|
369
|
+
self.filesystem.open(sc_uri, mode="rb") as fsrc,
|
|
370
|
+
open(sc_local, "wb") as fdst,
|
|
371
|
+
):
|
|
372
|
+
fdst.write(fsrc.read())
|
|
373
|
+
except Exception:
|
|
374
|
+
# Sidecar not present; skip silently
|
|
375
|
+
pass
|
|
376
|
+
|
|
377
|
+
# Read using appropriate MNE reader
|
|
378
|
+
raw = mne.io.read_raw(str(local_main), preload=True, verbose=False)
|
|
379
|
+
|
|
380
|
+
data = raw.get_data()
|
|
381
|
+
fs = raw.info["sfreq"]
|
|
382
|
+
max_time = data.shape[1] / fs
|
|
383
|
+
time_steps = np.linspace(0, max_time, data.shape[1]).squeeze()
|
|
384
|
+
channel_names = raw.ch_names
|
|
385
|
+
|
|
386
|
+
return xr.DataArray(
|
|
387
|
+
data=data,
|
|
388
|
+
dims=["channel", "time"],
|
|
389
|
+
coords={"time": time_steps, "channel": channel_names},
|
|
390
|
+
)
|
|
389
391
|
|
|
390
392
|
def load_eeg_data_from_bids_file(self, bids_file: str) -> xr.DataArray:
|
|
391
|
-
"""Load EEG data from a local file
|
|
393
|
+
"""Load EEG data from a local BIDS-formatted file.
|
|
392
394
|
|
|
393
395
|
Parameters
|
|
394
396
|
----------
|
|
395
397
|
bids_file : str
|
|
396
|
-
Path to
|
|
398
|
+
Path to a BIDS-compliant EEG file (e.g., ``*_eeg.edf``, ``*_eeg.bdf``,
|
|
399
|
+
``*_eeg.vhdr``, ``*_eeg.set``).
|
|
397
400
|
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
+
Returns
|
|
402
|
+
-------
|
|
403
|
+
xr.DataArray
|
|
404
|
+
EEG data with dimensions ``("channel", "time")``.
|
|
401
405
|
|
|
402
406
|
"""
|
|
403
407
|
bids_path = get_bids_path_from_fname(bids_file, verbose=False)
|
|
@@ -417,140 +421,25 @@ class EEGDash:
|
|
|
417
421
|
)
|
|
418
422
|
return eeg_xarray
|
|
419
423
|
|
|
420
|
-
def get_raw_extensions(
|
|
421
|
-
self, bids_file: str, bids_dataset: EEGBIDSDataset
|
|
422
|
-
) -> list[str]:
|
|
423
|
-
"""Helper to find paths to additional "sidecar" files that may be associated
|
|
424
|
-
with a given main data file in a BIDS dataset; paths are returned as relative to
|
|
425
|
-
the parent dataset path.
|
|
426
|
-
|
|
427
|
-
For example, if the input file is a .set file, this will return the relative path
|
|
428
|
-
to a corresponding .fdt file (if any).
|
|
429
|
-
"""
|
|
430
|
-
bids_file = Path(bids_file)
|
|
431
|
-
extensions = {
|
|
432
|
-
".set": [".set", ".fdt"], # eeglab
|
|
433
|
-
".edf": [".edf"], # european
|
|
434
|
-
".vhdr": [".eeg", ".vhdr", ".vmrk", ".dat", ".raw"], # brainvision
|
|
435
|
-
".bdf": [".bdf"], # biosemi
|
|
436
|
-
}
|
|
437
|
-
return [
|
|
438
|
-
str(bids_dataset.get_relative_bidspath(bids_file.with_suffix(suffix)))
|
|
439
|
-
for suffix in extensions[bids_file.suffix]
|
|
440
|
-
if bids_file.with_suffix(suffix).exists()
|
|
441
|
-
]
|
|
442
|
-
|
|
443
|
-
def load_eeg_attrs_from_bids_file(
|
|
444
|
-
self, bids_dataset: EEGBIDSDataset, bids_file: str
|
|
445
|
-
) -> dict[str, Any]:
|
|
446
|
-
"""Build the metadata record for a given BIDS file (single recording) in a BIDS dataset.
|
|
447
|
-
|
|
448
|
-
Attributes are at least the ones defined in data_config attributes (set to None if missing),
|
|
449
|
-
but are typically a superset, and include, among others, the paths to relevant
|
|
450
|
-
meta-data files needed to load and interpret the file in question.
|
|
451
|
-
|
|
452
|
-
Parameters
|
|
453
|
-
----------
|
|
454
|
-
bids_dataset : EEGBIDSDataset
|
|
455
|
-
The BIDS dataset object containing the file.
|
|
456
|
-
bids_file : str
|
|
457
|
-
The path to the BIDS file within the dataset.
|
|
458
|
-
|
|
459
|
-
Returns
|
|
460
|
-
-------
|
|
461
|
-
dict:
|
|
462
|
-
A dictionary representing the metadata record for the given file. This is the
|
|
463
|
-
same format as the records stored in the database.
|
|
464
|
-
|
|
465
|
-
"""
|
|
466
|
-
if bids_file not in bids_dataset.files:
|
|
467
|
-
raise ValueError(f"{bids_file} not in {bids_dataset.dataset}")
|
|
468
|
-
|
|
469
|
-
# Initialize attrs with None values for all expected fields
|
|
470
|
-
attrs = {field: None for field in self.config["attributes"].keys()}
|
|
471
|
-
|
|
472
|
-
file = Path(bids_file).name
|
|
473
|
-
dsnumber = bids_dataset.dataset
|
|
474
|
-
# extract openneuro path by finding the first occurrence of the dataset name in the filename and remove the path before that
|
|
475
|
-
openneuro_path = dsnumber + bids_file.split(dsnumber)[1]
|
|
476
|
-
|
|
477
|
-
# Update with actual values where available
|
|
478
|
-
try:
|
|
479
|
-
participants_tsv = bids_dataset.subject_participant_tsv(bids_file)
|
|
480
|
-
except Exception as e:
|
|
481
|
-
logger.error("Error getting participants_tsv: %s", str(e))
|
|
482
|
-
participants_tsv = None
|
|
483
|
-
|
|
484
|
-
try:
|
|
485
|
-
eeg_json = bids_dataset.eeg_json(bids_file)
|
|
486
|
-
except Exception as e:
|
|
487
|
-
logger.error("Error getting eeg_json: %s", str(e))
|
|
488
|
-
eeg_json = None
|
|
489
|
-
|
|
490
|
-
bids_dependencies_files = self.config["bids_dependencies_files"]
|
|
491
|
-
bidsdependencies = []
|
|
492
|
-
for extension in bids_dependencies_files:
|
|
493
|
-
try:
|
|
494
|
-
dep_path = bids_dataset.get_bids_metadata_files(bids_file, extension)
|
|
495
|
-
dep_path = [
|
|
496
|
-
str(bids_dataset.get_relative_bidspath(dep)) for dep in dep_path
|
|
497
|
-
]
|
|
498
|
-
bidsdependencies.extend(dep_path)
|
|
499
|
-
except Exception:
|
|
500
|
-
pass
|
|
501
|
-
|
|
502
|
-
bidsdependencies.extend(self.get_raw_extensions(bids_file, bids_dataset))
|
|
503
|
-
|
|
504
|
-
# Define field extraction functions with error handling
|
|
505
|
-
field_extractors = {
|
|
506
|
-
"data_name": lambda: f"{bids_dataset.dataset}_{file}",
|
|
507
|
-
"dataset": lambda: bids_dataset.dataset,
|
|
508
|
-
"bidspath": lambda: openneuro_path,
|
|
509
|
-
"subject": lambda: bids_dataset.get_bids_file_attribute(
|
|
510
|
-
"subject", bids_file
|
|
511
|
-
),
|
|
512
|
-
"task": lambda: bids_dataset.get_bids_file_attribute("task", bids_file),
|
|
513
|
-
"session": lambda: bids_dataset.get_bids_file_attribute(
|
|
514
|
-
"session", bids_file
|
|
515
|
-
),
|
|
516
|
-
"run": lambda: bids_dataset.get_bids_file_attribute("run", bids_file),
|
|
517
|
-
"modality": lambda: bids_dataset.get_bids_file_attribute(
|
|
518
|
-
"modality", bids_file
|
|
519
|
-
),
|
|
520
|
-
"sampling_frequency": lambda: bids_dataset.get_bids_file_attribute(
|
|
521
|
-
"sfreq", bids_file
|
|
522
|
-
),
|
|
523
|
-
"nchans": lambda: bids_dataset.get_bids_file_attribute("nchans", bids_file),
|
|
524
|
-
"ntimes": lambda: bids_dataset.get_bids_file_attribute("ntimes", bids_file),
|
|
525
|
-
"participant_tsv": lambda: participants_tsv,
|
|
526
|
-
"eeg_json": lambda: eeg_json,
|
|
527
|
-
"bidsdependencies": lambda: bidsdependencies,
|
|
528
|
-
}
|
|
529
|
-
|
|
530
|
-
# Dynamically populate attrs with error handling
|
|
531
|
-
for field, extractor in field_extractors.items():
|
|
532
|
-
try:
|
|
533
|
-
attrs[field] = extractor()
|
|
534
|
-
except Exception as e:
|
|
535
|
-
logger.error("Error extracting %s : %s", field, str(e))
|
|
536
|
-
attrs[field] = None
|
|
537
|
-
|
|
538
|
-
return attrs
|
|
539
|
-
|
|
540
424
|
def add_bids_dataset(
|
|
541
425
|
self, dataset: str, data_dir: str, overwrite: bool = True
|
|
542
426
|
) -> None:
|
|
543
|
-
"""
|
|
544
|
-
under the given dataset name.
|
|
427
|
+
"""Scan a local BIDS dataset and upsert records into MongoDB.
|
|
545
428
|
|
|
546
429
|
Parameters
|
|
547
430
|
----------
|
|
548
|
-
dataset : str
|
|
549
|
-
|
|
431
|
+
dataset : str
|
|
432
|
+
Dataset identifier (e.g., ``"ds002718"``).
|
|
550
433
|
data_dir : str
|
|
551
|
-
|
|
552
|
-
overwrite : bool
|
|
553
|
-
|
|
434
|
+
Path to the local BIDS dataset directory.
|
|
435
|
+
overwrite : bool, default True
|
|
436
|
+
If ``True``, update existing records when encountered; otherwise,
|
|
437
|
+
skip records that already exist.
|
|
438
|
+
|
|
439
|
+
Raises
|
|
440
|
+
------
|
|
441
|
+
ValueError
|
|
442
|
+
If called on a public client ``(is_public=True)``.
|
|
554
443
|
|
|
555
444
|
"""
|
|
556
445
|
if self.is_public:
|
|
@@ -565,7 +454,7 @@ class EEGDash:
|
|
|
565
454
|
dataset=dataset,
|
|
566
455
|
)
|
|
567
456
|
except Exception as e:
|
|
568
|
-
logger.error("Error creating bids dataset %s:
|
|
457
|
+
logger.error("Error creating bids dataset %s: %s", dataset, str(e))
|
|
569
458
|
raise e
|
|
570
459
|
requests = []
|
|
571
460
|
for bids_file in bids_dataset.get_files():
|
|
@@ -574,15 +463,13 @@ class EEGDash:
|
|
|
574
463
|
|
|
575
464
|
if self.exist({"data_name": data_id}):
|
|
576
465
|
if overwrite:
|
|
577
|
-
eeg_attrs =
|
|
466
|
+
eeg_attrs = load_eeg_attrs_from_bids_file(
|
|
578
467
|
bids_dataset, bids_file
|
|
579
468
|
)
|
|
580
|
-
requests.append(self.
|
|
469
|
+
requests.append(self._update_request(eeg_attrs))
|
|
581
470
|
else:
|
|
582
|
-
eeg_attrs =
|
|
583
|
-
|
|
584
|
-
)
|
|
585
|
-
requests.append(self.add_request(eeg_attrs))
|
|
471
|
+
eeg_attrs = load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
|
|
472
|
+
requests.append(self._add_request(eeg_attrs))
|
|
586
473
|
except Exception as e:
|
|
587
474
|
logger.error("Error adding record %s", bids_file)
|
|
588
475
|
logger.error(str(e))
|
|
@@ -598,22 +485,22 @@ class EEGDash:
|
|
|
598
485
|
logger.info("Errors: %s ", result.bulk_api_result.get("writeErrors", []))
|
|
599
486
|
|
|
600
487
|
def get(self, query: dict[str, Any]) -> list[xr.DataArray]:
|
|
601
|
-
"""
|
|
602
|
-
the `find()` method for details on the query format.
|
|
488
|
+
"""Download and return EEG data arrays for records matching a query.
|
|
603
489
|
|
|
604
490
|
Parameters
|
|
605
491
|
----------
|
|
606
492
|
query : dict
|
|
607
|
-
|
|
608
|
-
document that is used to match records in the MongoDB collection.
|
|
493
|
+
MongoDB query used to select records.
|
|
609
494
|
|
|
610
495
|
Returns
|
|
611
496
|
-------
|
|
612
|
-
|
|
497
|
+
list of xr.DataArray
|
|
498
|
+
EEG data for each matching record, with dimensions ``("channel", "time")``.
|
|
613
499
|
|
|
614
500
|
Notes
|
|
615
501
|
-----
|
|
616
|
-
Retrieval
|
|
502
|
+
Retrieval runs in parallel. Downloaded files are read and discarded
|
|
503
|
+
(no on-disk caching here).
|
|
617
504
|
|
|
618
505
|
"""
|
|
619
506
|
sessions = self.find(query)
|
|
@@ -623,12 +510,40 @@ class EEGDash:
|
|
|
623
510
|
results = Parallel(
|
|
624
511
|
n_jobs=-1 if len(sessions) > 1 else 1, prefer="threads", verbose=1
|
|
625
512
|
)(
|
|
626
|
-
delayed(self.load_eeg_data_from_s3)(self.
|
|
513
|
+
delayed(self.load_eeg_data_from_s3)(self._get_s3path(session))
|
|
627
514
|
for session in sessions
|
|
628
515
|
)
|
|
629
516
|
return results
|
|
630
517
|
|
|
631
|
-
def
|
|
518
|
+
def _get_s3path(self, record: Mapping[str, Any] | str) -> str:
|
|
519
|
+
"""Build an S3 URI from a DB record or a relative path.
|
|
520
|
+
|
|
521
|
+
Parameters
|
|
522
|
+
----------
|
|
523
|
+
record : dict or str
|
|
524
|
+
Either a DB record containing a ``'bidspath'`` key, or a relative
|
|
525
|
+
path string under the OpenNeuro bucket.
|
|
526
|
+
|
|
527
|
+
Returns
|
|
528
|
+
-------
|
|
529
|
+
str
|
|
530
|
+
Fully qualified S3 URI.
|
|
531
|
+
|
|
532
|
+
Raises
|
|
533
|
+
------
|
|
534
|
+
ValueError
|
|
535
|
+
If a mapping is provided but ``'bidspath'`` is missing.
|
|
536
|
+
|
|
537
|
+
"""
|
|
538
|
+
if isinstance(record, str):
|
|
539
|
+
rel = record
|
|
540
|
+
else:
|
|
541
|
+
rel = record.get("bidspath")
|
|
542
|
+
if not rel:
|
|
543
|
+
raise ValueError("Record missing 'bidspath' for S3 path resolution")
|
|
544
|
+
return f"s3://openneuro.org/{rel}"
|
|
545
|
+
|
|
546
|
+
def _add_request(self, record: dict):
|
|
632
547
|
"""Internal helper method to create a MongoDB insertion request for a record."""
|
|
633
548
|
return InsertOne(record)
|
|
634
549
|
|
|
@@ -642,12 +557,19 @@ class EEGDash:
|
|
|
642
557
|
except:
|
|
643
558
|
logger.error("Error adding record: %s ", record["data_name"])
|
|
644
559
|
|
|
645
|
-
def
|
|
560
|
+
def _update_request(self, record: dict):
|
|
646
561
|
"""Internal helper method to create a MongoDB update request for a record."""
|
|
647
562
|
return UpdateOne({"data_name": record["data_name"]}, {"$set": record})
|
|
648
563
|
|
|
649
564
|
def update(self, record: dict):
|
|
650
|
-
"""Update a single record in the MongoDB collection.
|
|
565
|
+
"""Update a single record in the MongoDB collection.
|
|
566
|
+
|
|
567
|
+
Parameters
|
|
568
|
+
----------
|
|
569
|
+
record : dict
|
|
570
|
+
Record content to set at the matching ``data_name``.
|
|
571
|
+
|
|
572
|
+
"""
|
|
651
573
|
try:
|
|
652
574
|
self.__collection.update_one(
|
|
653
575
|
{"data_name": record["data_name"]}, {"$set": record}
|
|
@@ -655,15 +577,33 @@ class EEGDash:
|
|
|
655
577
|
except: # silent failure
|
|
656
578
|
logger.error("Error updating record: %s", record["data_name"])
|
|
657
579
|
|
|
580
|
+
def exists(self, query: dict[str, Any]) -> bool:
|
|
581
|
+
"""Alias for :meth:`exist` provided for API clarity."""
|
|
582
|
+
return self.exist(query)
|
|
583
|
+
|
|
658
584
|
def remove_field(self, record, field):
|
|
659
|
-
"""Remove a specific field from a record in the MongoDB collection.
|
|
585
|
+
"""Remove a specific field from a record in the MongoDB collection.
|
|
586
|
+
|
|
587
|
+
Parameters
|
|
588
|
+
----------
|
|
589
|
+
record : dict
|
|
590
|
+
Record identifying object with ``data_name``.
|
|
591
|
+
field : str
|
|
592
|
+
Field name to remove.
|
|
593
|
+
|
|
594
|
+
"""
|
|
660
595
|
self.__collection.update_one(
|
|
661
596
|
{"data_name": record["data_name"]}, {"$unset": {field: 1}}
|
|
662
597
|
)
|
|
663
598
|
|
|
664
599
|
def remove_field_from_db(self, field):
|
|
665
|
-
"""
|
|
666
|
-
|
|
600
|
+
"""Remove a field from all records (destructive).
|
|
601
|
+
|
|
602
|
+
Parameters
|
|
603
|
+
----------
|
|
604
|
+
field : str
|
|
605
|
+
Field name to remove from every document.
|
|
606
|
+
|
|
667
607
|
"""
|
|
668
608
|
self.__collection.update_many({}, {"$unset": {field: 1}})
|
|
669
609
|
|
|
@@ -673,11 +613,13 @@ class EEGDash:
|
|
|
673
613
|
return self.__collection
|
|
674
614
|
|
|
675
615
|
def close(self):
|
|
676
|
-
"""
|
|
616
|
+
"""Backward-compatibility no-op; connections are managed globally.
|
|
617
|
+
|
|
618
|
+
Notes
|
|
619
|
+
-----
|
|
620
|
+
Connections are managed by :class:`MongoConnectionManager`. Use
|
|
621
|
+
:meth:`close_all_connections` to explicitly close all clients.
|
|
677
622
|
|
|
678
|
-
Note: Since MongoDB clients are now managed by a singleton,
|
|
679
|
-
this method no longer closes connections. Use close_all_connections()
|
|
680
|
-
class method to close all connections if needed.
|
|
681
623
|
"""
|
|
682
624
|
# Individual instances no longer close the shared client
|
|
683
625
|
pass
|
|
@@ -688,7 +630,7 @@ class EEGDash:
|
|
|
688
630
|
MongoConnectionManager.close_all()
|
|
689
631
|
|
|
690
632
|
def __del__(self):
|
|
691
|
-
"""
|
|
633
|
+
"""Destructor; no explicit action needed due to global connection manager."""
|
|
692
634
|
# No longer needed since we're using singleton pattern
|
|
693
635
|
pass
|
|
694
636
|
|
|
@@ -708,17 +650,16 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
708
650
|
"sex",
|
|
709
651
|
],
|
|
710
652
|
s3_bucket: str | None = None,
|
|
711
|
-
eeg_dash_instance=None,
|
|
712
653
|
records: list[dict] | None = None,
|
|
713
|
-
|
|
654
|
+
download: bool = True,
|
|
714
655
|
n_jobs: int = -1,
|
|
656
|
+
eeg_dash_instance: EEGDash | None = None,
|
|
715
657
|
**kwargs,
|
|
716
658
|
):
|
|
717
659
|
"""Create a new EEGDashDataset from a given query or local BIDS dataset directory
|
|
718
660
|
and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
|
|
719
661
|
instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
|
|
720
662
|
|
|
721
|
-
|
|
722
663
|
Querying Examples:
|
|
723
664
|
------------------
|
|
724
665
|
# Find by single subject
|
|
@@ -734,57 +675,91 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
734
675
|
|
|
735
676
|
Parameters
|
|
736
677
|
----------
|
|
678
|
+
cache_dir : str | Path
|
|
679
|
+
Directory where data are cached locally. If not specified, a default
|
|
680
|
+
cache directory under the user cache is used.
|
|
737
681
|
query : dict | None
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
A directory where the dataset will be cached locally.
|
|
744
|
-
data_dir : str | None
|
|
745
|
-
Optionally a string specifying a local BIDS dataset directory from which to load the EEG data files. Exactly one
|
|
746
|
-
of query or data_dir must be provided.
|
|
747
|
-
dataset : str | None
|
|
748
|
-
If data_dir is given, a name for the dataset to be loaded.
|
|
682
|
+
Raw MongoDB query to filter records. If provided, it is merged with
|
|
683
|
+
keyword filtering arguments (see ``**kwargs``) using logical AND.
|
|
684
|
+
You must provide at least a ``dataset`` (either in ``query`` or
|
|
685
|
+
as a keyword argument). Only fields in ``ALLOWED_QUERY_FIELDS`` are
|
|
686
|
+
considered for filtering.
|
|
749
687
|
description_fields : list[str]
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
subject metadata fields such as "subject", "session", "run", "task", etc.;
|
|
753
|
-
see also data_config.description_fields for the default set of fields.
|
|
688
|
+
Fields to extract from each record and include in dataset descriptions
|
|
689
|
+
(e.g., "subject", "session", "run", "task").
|
|
754
690
|
s3_bucket : str | None
|
|
755
|
-
|
|
756
|
-
default OpenNeuro bucket
|
|
691
|
+
Optional S3 bucket URI (e.g., "s3://mybucket") to use instead of the
|
|
692
|
+
default OpenNeuro bucket when downloading data files.
|
|
757
693
|
records : list[dict] | None
|
|
758
|
-
|
|
759
|
-
|
|
760
|
-
|
|
761
|
-
If
|
|
762
|
-
|
|
694
|
+
Pre-fetched metadata records. If provided, the dataset is constructed
|
|
695
|
+
directly from these records and no MongoDB query is performed.
|
|
696
|
+
download : bool, default True
|
|
697
|
+
If False, load from local BIDS files only. Local data are expected
|
|
698
|
+
under ``cache_dir / dataset``; no DB or S3 access is attempted.
|
|
763
699
|
n_jobs : int
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
700
|
+
Number of parallel jobs to use where applicable (-1 uses all cores).
|
|
701
|
+
eeg_dash_instance : EEGDash | None
|
|
702
|
+
Optional existing EEGDash client to reuse for DB queries. If None,
|
|
703
|
+
a new client is created on demand, not used in the case of no download.
|
|
704
|
+
**kwargs : dict
|
|
705
|
+
Additional keyword arguments serving two purposes:
|
|
706
|
+
- Filtering: any keys present in ``ALLOWED_QUERY_FIELDS`` are treated
|
|
707
|
+
as query filters (e.g., ``dataset``, ``subject``, ``task``, ...).
|
|
708
|
+
- Dataset options: remaining keys are forwarded to the
|
|
709
|
+
``EEGDashBaseDataset`` constructor.
|
|
768
710
|
|
|
769
711
|
"""
|
|
712
|
+
# Parameters that don't need validation
|
|
713
|
+
_suppress_comp_warning: bool = kwargs.pop("_suppress_comp_warning", False)
|
|
714
|
+
self.s3_bucket = s3_bucket
|
|
715
|
+
self.records = records
|
|
716
|
+
self.download = download
|
|
717
|
+
self.n_jobs = n_jobs
|
|
718
|
+
self.eeg_dash_instance = eeg_dash_instance or EEGDash()
|
|
719
|
+
|
|
770
720
|
self.cache_dir = Path(cache_dir or platformdirs.user_cache_dir("EEGDash"))
|
|
721
|
+
|
|
771
722
|
if not self.cache_dir.exists():
|
|
772
723
|
warn(f"Cache directory does not exist, creating it: {self.cache_dir}")
|
|
773
724
|
self.cache_dir.mkdir(exist_ok=True, parents=True)
|
|
774
|
-
self.s3_bucket = s3_bucket
|
|
775
|
-
self.eeg_dash = eeg_dash_instance
|
|
776
725
|
|
|
777
726
|
# Separate query kwargs from other kwargs passed to the BaseDataset constructor
|
|
778
727
|
self.query = query or {}
|
|
779
728
|
self.query.update(
|
|
780
|
-
{k: v for k, v in kwargs.items() if k in
|
|
729
|
+
{k: v for k, v in kwargs.items() if k in ALLOWED_QUERY_FIELDS}
|
|
781
730
|
)
|
|
782
731
|
base_dataset_kwargs = {k: v for k, v in kwargs.items() if k not in self.query}
|
|
783
732
|
if "dataset" not in self.query:
|
|
784
|
-
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
|
|
733
|
+
# If explicit records are provided, infer dataset from records
|
|
734
|
+
if isinstance(records, list) and records and isinstance(records[0], dict):
|
|
735
|
+
inferred = records[0].get("dataset")
|
|
736
|
+
if inferred:
|
|
737
|
+
self.query["dataset"] = inferred
|
|
738
|
+
else:
|
|
739
|
+
raise ValueError("You must provide a 'dataset' argument")
|
|
740
|
+
else:
|
|
741
|
+
raise ValueError("You must provide a 'dataset' argument")
|
|
742
|
+
|
|
743
|
+
# Decide on a dataset subfolder name for cache isolation. If using
|
|
744
|
+
# challenge/preprocessed buckets (e.g., BDF, mini subsets), append
|
|
745
|
+
# informative suffixes to avoid overlapping with the original dataset.
|
|
746
|
+
dataset_folder = self.query["dataset"]
|
|
747
|
+
if self.s3_bucket:
|
|
748
|
+
suffixes: list[str] = []
|
|
749
|
+
bucket_lower = str(self.s3_bucket).lower()
|
|
750
|
+
if "bdf" in bucket_lower:
|
|
751
|
+
suffixes.append("bdf")
|
|
752
|
+
if "mini" in bucket_lower:
|
|
753
|
+
suffixes.append("mini")
|
|
754
|
+
if suffixes:
|
|
755
|
+
dataset_folder = f"{dataset_folder}-{'-'.join(suffixes)}"
|
|
756
|
+
|
|
757
|
+
self.data_dir = self.cache_dir / dataset_folder
|
|
758
|
+
|
|
759
|
+
if (
|
|
760
|
+
not _suppress_comp_warning
|
|
761
|
+
and self.query["dataset"] in RELEASE_TO_OPENNEURO_DATASET_MAP.values()
|
|
762
|
+
):
|
|
788
763
|
warn(
|
|
789
764
|
"If you are not participating in the competition, you can ignore this warning!"
|
|
790
765
|
"\n\n"
|
|
@@ -800,70 +775,207 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
800
775
|
UserWarning,
|
|
801
776
|
module="eegdash",
|
|
802
777
|
)
|
|
803
|
-
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
778
|
+
if records is not None:
|
|
779
|
+
self.records = records
|
|
780
|
+
datasets = [
|
|
781
|
+
EEGDashBaseDataset(
|
|
782
|
+
record,
|
|
783
|
+
self.cache_dir,
|
|
784
|
+
self.s3_bucket,
|
|
785
|
+
**base_dataset_kwargs,
|
|
786
|
+
)
|
|
787
|
+
for record in self.records
|
|
788
|
+
]
|
|
789
|
+
elif not download: # only assume local data is complete if not downloading
|
|
790
|
+
if not self.data_dir.exists():
|
|
791
|
+
raise ValueError(
|
|
792
|
+
f"Offline mode is enabled, but local data_dir {self.data_dir} does not exist."
|
|
793
|
+
)
|
|
794
|
+
records = self._find_local_bids_records(self.data_dir, self.query)
|
|
795
|
+
# Try to enrich from local participants.tsv to restore requested fields
|
|
796
|
+
try:
|
|
797
|
+
bids_ds = EEGBIDSDataset(
|
|
798
|
+
data_dir=str(self.data_dir), dataset=self.query["dataset"]
|
|
799
|
+
) # type: ignore[index]
|
|
800
|
+
except Exception:
|
|
801
|
+
bids_ds = None
|
|
802
|
+
|
|
803
|
+
datasets = []
|
|
804
|
+
for record in records:
|
|
805
|
+
# Start with entity values from filename
|
|
806
|
+
desc: dict[str, Any] = {
|
|
807
|
+
k: record.get(k)
|
|
808
|
+
for k in ("subject", "session", "run", "task")
|
|
809
|
+
if record.get(k) is not None
|
|
810
|
+
}
|
|
811
|
+
|
|
812
|
+
if bids_ds is not None:
|
|
813
|
+
try:
|
|
814
|
+
rel_from_dataset = Path(record["bidspath"]).relative_to(
|
|
815
|
+
record["dataset"]
|
|
816
|
+
) # type: ignore[index]
|
|
817
|
+
local_file = (self.data_dir / rel_from_dataset).as_posix()
|
|
818
|
+
part_row = bids_ds.subject_participant_tsv(local_file)
|
|
819
|
+
desc = merge_participants_fields(
|
|
820
|
+
description=desc,
|
|
821
|
+
participants_row=part_row
|
|
822
|
+
if isinstance(part_row, dict)
|
|
823
|
+
else None,
|
|
824
|
+
description_fields=description_fields,
|
|
825
|
+
)
|
|
826
|
+
except Exception:
|
|
827
|
+
pass
|
|
807
828
|
|
|
808
|
-
|
|
809
|
-
if records is not None:
|
|
810
|
-
self.records = records
|
|
811
|
-
datasets = [
|
|
829
|
+
datasets.append(
|
|
812
830
|
EEGDashBaseDataset(
|
|
813
|
-
record,
|
|
814
|
-
self.cache_dir,
|
|
815
|
-
self.s3_bucket,
|
|
831
|
+
record=record,
|
|
832
|
+
cache_dir=self.cache_dir,
|
|
833
|
+
s3_bucket=self.s3_bucket,
|
|
834
|
+
description=desc,
|
|
816
835
|
**base_dataset_kwargs,
|
|
817
836
|
)
|
|
818
|
-
for record in self.records
|
|
819
|
-
]
|
|
820
|
-
elif offline_mode: # only assume local data is complete if in offline mode
|
|
821
|
-
if self.data_dir.exists():
|
|
822
|
-
# This path loads from a local directory and is not affected by DB query logic
|
|
823
|
-
datasets = self.load_bids_daxtaset(
|
|
824
|
-
dataset=self.query["dataset"],
|
|
825
|
-
data_dir=self.data_dir,
|
|
826
|
-
description_fields=description_fields,
|
|
827
|
-
s3_bucket=s3_bucket,
|
|
828
|
-
n_jobs=n_jobs,
|
|
829
|
-
**base_dataset_kwargs,
|
|
830
|
-
)
|
|
831
|
-
else:
|
|
832
|
-
raise ValueError(
|
|
833
|
-
f"Offline mode is enabled, but local data_dir {self.data_dir} does not exist."
|
|
834
|
-
)
|
|
835
|
-
elif self.query:
|
|
836
|
-
# This is the DB query path that we are improving
|
|
837
|
-
datasets = self._find_datasets(
|
|
838
|
-
query=self.eeg_dash._build_query_from_kwargs(**self.query),
|
|
839
|
-
description_fields=description_fields,
|
|
840
|
-
base_dataset_kwargs=base_dataset_kwargs,
|
|
841
|
-
)
|
|
842
|
-
# We only need filesystem if we need to access S3
|
|
843
|
-
self.filesystem = S3FileSystem(
|
|
844
|
-
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
845
|
-
)
|
|
846
|
-
else:
|
|
847
|
-
raise ValueError(
|
|
848
|
-
"You must provide either 'records', a 'data_dir', or a query/keyword arguments for filtering."
|
|
849
837
|
)
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
838
|
+
elif self.query:
|
|
839
|
+
# This is the DB query path that we are improving
|
|
840
|
+
datasets = self._find_datasets(
|
|
841
|
+
query=build_query_from_kwargs(**self.query),
|
|
842
|
+
description_fields=description_fields,
|
|
843
|
+
base_dataset_kwargs=base_dataset_kwargs,
|
|
844
|
+
)
|
|
845
|
+
# We only need filesystem if we need to access S3
|
|
846
|
+
self.filesystem = S3FileSystem(
|
|
847
|
+
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
848
|
+
)
|
|
849
|
+
else:
|
|
850
|
+
raise ValueError(
|
|
851
|
+
"You must provide either 'records', a 'data_dir', or a query/keyword arguments for filtering."
|
|
852
|
+
)
|
|
853
853
|
|
|
854
854
|
super().__init__(datasets)
|
|
855
855
|
|
|
856
|
-
def
|
|
857
|
-
|
|
858
|
-
|
|
856
|
+
def _find_local_bids_records(
|
|
857
|
+
self, dataset_root: Path, filters: dict[str, Any]
|
|
858
|
+
) -> list[dict]:
|
|
859
|
+
"""Discover local BIDS EEG files and build minimal records.
|
|
860
|
+
|
|
861
|
+
This helper enumerates EEG recordings under ``dataset_root`` via
|
|
862
|
+
``mne_bids.find_matching_paths`` and applies entity filters to produce a
|
|
863
|
+
list of records suitable for ``EEGDashBaseDataset``. No network access
|
|
864
|
+
is performed and files are not read.
|
|
865
|
+
|
|
866
|
+
Parameters
|
|
867
|
+
----------
|
|
868
|
+
dataset_root : Path
|
|
869
|
+
Local dataset directory. May be the plain dataset folder (e.g.,
|
|
870
|
+
``ds005509``) or a suffixed cache variant (e.g.,
|
|
871
|
+
``ds005509-bdf-mini``).
|
|
872
|
+
filters : dict of {str, Any}
|
|
873
|
+
Query filters. Must include ``'dataset'`` with the dataset id (without
|
|
874
|
+
local suffixes). May include BIDS entities ``'subject'``,
|
|
875
|
+
``'session'``, ``'task'``, and ``'run'``. Each value can be a scalar
|
|
876
|
+
or a sequence of scalars.
|
|
877
|
+
|
|
878
|
+
Returns
|
|
879
|
+
-------
|
|
880
|
+
records : list of dict
|
|
881
|
+
One record per matched EEG file with at least:
|
|
882
|
+
|
|
883
|
+
- ``'data_name'``
|
|
884
|
+
- ``'dataset'`` (dataset id, without suffixes)
|
|
885
|
+
- ``'bidspath'`` (normalized to start with the dataset id)
|
|
886
|
+
- ``'subject'``, ``'session'``, ``'task'``, ``'run'`` (may be None)
|
|
887
|
+
- ``'bidsdependencies'`` (empty list)
|
|
888
|
+
- ``'modality'`` (``"eeg"``)
|
|
889
|
+
- ``'sampling_frequency'``, ``'nchans'``, ``'ntimes'`` (minimal
|
|
890
|
+
defaults for offline usage)
|
|
891
|
+
|
|
892
|
+
Notes
|
|
893
|
+
-----
|
|
894
|
+
- Matching uses ``datatypes=['eeg']`` and ``suffixes=['eeg']``.
|
|
895
|
+
- ``bidspath`` is constructed as
|
|
896
|
+
``<dataset_id> / <relative_path_from_dataset_root>`` to ensure the
|
|
897
|
+
first path component is the dataset id (without local cache suffixes).
|
|
898
|
+
- Minimal defaults are set for ``sampling_frequency``, ``nchans``, and
|
|
899
|
+
``ntimes`` to satisfy dataset length requirements offline.
|
|
900
|
+
|
|
859
901
|
"""
|
|
902
|
+
dataset_id = filters["dataset"]
|
|
903
|
+
arg_map = {
|
|
904
|
+
"subjects": "subject",
|
|
905
|
+
"sessions": "session",
|
|
906
|
+
"tasks": "task",
|
|
907
|
+
"runs": "run",
|
|
908
|
+
}
|
|
909
|
+
matching_args: dict[str, list[str]] = {}
|
|
910
|
+
for finder_key, entity_key in arg_map.items():
|
|
911
|
+
entity_val = filters.get(entity_key)
|
|
912
|
+
if entity_val is None:
|
|
913
|
+
continue
|
|
914
|
+
if isinstance(entity_val, (list, tuple, set)):
|
|
915
|
+
entity_vals = list(entity_val)
|
|
916
|
+
if not entity_vals:
|
|
917
|
+
continue
|
|
918
|
+
matching_args[finder_key] = entity_vals
|
|
919
|
+
else:
|
|
920
|
+
matching_args[finder_key] = [entity_val]
|
|
921
|
+
|
|
922
|
+
matched_paths = find_matching_paths(
|
|
923
|
+
root=str(dataset_root),
|
|
924
|
+
datatypes=["eeg"],
|
|
925
|
+
suffixes=["eeg"],
|
|
926
|
+
ignore_json=True,
|
|
927
|
+
**matching_args,
|
|
928
|
+
)
|
|
929
|
+
records_out: list[dict] = []
|
|
930
|
+
|
|
931
|
+
for bids_path in matched_paths:
|
|
932
|
+
# Build bidspath as dataset_id / relative_path_from_dataset_root (POSIX)
|
|
933
|
+
rel_from_root = (
|
|
934
|
+
Path(bids_path.fpath)
|
|
935
|
+
.resolve()
|
|
936
|
+
.relative_to(Path(bids_path.root).resolve())
|
|
937
|
+
)
|
|
938
|
+
bidspath = f"{dataset_id}/{rel_from_root.as_posix()}"
|
|
939
|
+
|
|
940
|
+
rec = {
|
|
941
|
+
"data_name": f"{dataset_id}_{Path(bids_path.fpath).name}",
|
|
942
|
+
"dataset": dataset_id,
|
|
943
|
+
"bidspath": bidspath,
|
|
944
|
+
"subject": (bids_path.subject or None),
|
|
945
|
+
"session": (bids_path.session or None),
|
|
946
|
+
"task": (bids_path.task or None),
|
|
947
|
+
"run": (bids_path.run or None),
|
|
948
|
+
# minimal fields to satisfy BaseDataset from eegdash
|
|
949
|
+
"bidsdependencies": [], # not needed to just run.
|
|
950
|
+
"modality": "eeg",
|
|
951
|
+
# minimal numeric defaults for offline length calculation
|
|
952
|
+
"sampling_frequency": None,
|
|
953
|
+
"nchans": None,
|
|
954
|
+
"ntimes": None,
|
|
955
|
+
}
|
|
956
|
+
records_out.append(rec)
|
|
957
|
+
|
|
958
|
+
return records_out
|
|
959
|
+
|
|
960
|
+
def _find_key_in_nested_dict(self, data: Any, target_key: str) -> Any:
|
|
961
|
+
"""Recursively search for target_key in nested dicts/lists with normalized matching.
|
|
962
|
+
|
|
963
|
+
This makes lookups tolerant to naming differences like "p-factor" vs "p_factor".
|
|
964
|
+
Returns the first match or None.
|
|
965
|
+
"""
|
|
966
|
+
norm_target = normalize_key(target_key)
|
|
860
967
|
if isinstance(data, dict):
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
if
|
|
866
|
-
return
|
|
968
|
+
for k, v in data.items():
|
|
969
|
+
if normalize_key(k) == norm_target:
|
|
970
|
+
return v
|
|
971
|
+
res = self._find_key_in_nested_dict(v, target_key)
|
|
972
|
+
if res is not None:
|
|
973
|
+
return res
|
|
974
|
+
elif isinstance(data, list):
|
|
975
|
+
for item in data:
|
|
976
|
+
res = self._find_key_in_nested_dict(item, target_key)
|
|
977
|
+
if res is not None:
|
|
978
|
+
return res
|
|
867
979
|
return None
|
|
868
980
|
|
|
869
981
|
def _find_datasets(
|
|
@@ -892,15 +1004,23 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
892
1004
|
|
|
893
1005
|
"""
|
|
894
1006
|
datasets: list[EEGDashBaseDataset] = []
|
|
895
|
-
|
|
896
|
-
self.records = self.eeg_dash.find(query)
|
|
1007
|
+
self.records = self.eeg_dash_instance.find(query)
|
|
897
1008
|
|
|
898
1009
|
for record in self.records:
|
|
899
|
-
description = {}
|
|
1010
|
+
description: dict[str, Any] = {}
|
|
1011
|
+
# Requested fields first (normalized matching)
|
|
900
1012
|
for field in description_fields:
|
|
901
|
-
value = self.
|
|
1013
|
+
value = self._find_key_in_nested_dict(record, field)
|
|
902
1014
|
if value is not None:
|
|
903
1015
|
description[field] = value
|
|
1016
|
+
# Merge all participants.tsv columns generically
|
|
1017
|
+
part = self._find_key_in_nested_dict(record, "participant_tsv")
|
|
1018
|
+
if isinstance(part, dict):
|
|
1019
|
+
description = merge_participants_fields(
|
|
1020
|
+
description=description,
|
|
1021
|
+
participants_row=part,
|
|
1022
|
+
description_fields=description_fields,
|
|
1023
|
+
)
|
|
904
1024
|
datasets.append(
|
|
905
1025
|
EEGDashBaseDataset(
|
|
906
1026
|
record,
|
|
@@ -911,69 +1031,3 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
911
1031
|
)
|
|
912
1032
|
)
|
|
913
1033
|
return datasets
|
|
914
|
-
|
|
915
|
-
def load_bids_dataset(
|
|
916
|
-
self,
|
|
917
|
-
dataset: str,
|
|
918
|
-
data_dir: str | Path,
|
|
919
|
-
description_fields: list[str],
|
|
920
|
-
s3_bucket: str | None = None,
|
|
921
|
-
n_jobs: int = -1,
|
|
922
|
-
**kwargs,
|
|
923
|
-
):
|
|
924
|
-
"""Helper method to load a single local BIDS dataset and return it as a list of
|
|
925
|
-
EEGDashBaseDatasets (one for each recording in the dataset).
|
|
926
|
-
|
|
927
|
-
Parameters
|
|
928
|
-
----------
|
|
929
|
-
dataset : str
|
|
930
|
-
A name for the dataset to be loaded (e.g., "ds002718").
|
|
931
|
-
data_dir : str
|
|
932
|
-
The path to the local BIDS dataset directory.
|
|
933
|
-
description_fields : list[str]
|
|
934
|
-
A list of fields to be extracted from the dataset records
|
|
935
|
-
and included in the returned dataset description(s).
|
|
936
|
-
s3_bucket : str | None
|
|
937
|
-
The S3 bucket to upload the dataset files to (if any).
|
|
938
|
-
n_jobs : int
|
|
939
|
-
The number of jobs to run in parallel (default is -1, meaning using all processors).
|
|
940
|
-
|
|
941
|
-
"""
|
|
942
|
-
bids_dataset = EEGBIDSDataset(
|
|
943
|
-
data_dir=data_dir,
|
|
944
|
-
dataset=dataset,
|
|
945
|
-
)
|
|
946
|
-
datasets = Parallel(n_jobs=n_jobs, prefer="threads", verbose=1)(
|
|
947
|
-
delayed(self.get_base_dataset_from_bids_file)(
|
|
948
|
-
bids_dataset=bids_dataset,
|
|
949
|
-
bids_file=bids_file,
|
|
950
|
-
s3_bucket=s3_bucket,
|
|
951
|
-
description_fields=description_fields,
|
|
952
|
-
**kwargs,
|
|
953
|
-
)
|
|
954
|
-
for bids_file in bids_dataset.get_files()
|
|
955
|
-
)
|
|
956
|
-
return datasets
|
|
957
|
-
|
|
958
|
-
def get_base_dataset_from_bids_file(
|
|
959
|
-
self,
|
|
960
|
-
bids_dataset: "EEGBIDSDataset",
|
|
961
|
-
bids_file: str,
|
|
962
|
-
s3_bucket: str | None,
|
|
963
|
-
description_fields: list[str],
|
|
964
|
-
**kwargs,
|
|
965
|
-
) -> "EEGDashBaseDataset":
|
|
966
|
-
"""Instantiate a single EEGDashBaseDataset given a local BIDS file (metadata only)."""
|
|
967
|
-
record = self.eeg_dash.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
|
|
968
|
-
description = {}
|
|
969
|
-
for field in description_fields:
|
|
970
|
-
value = self.find_key_in_nested_dict(record, field)
|
|
971
|
-
if value is not None:
|
|
972
|
-
description[field] = value
|
|
973
|
-
return EEGDashBaseDataset(
|
|
974
|
-
record,
|
|
975
|
-
self.cache_dir,
|
|
976
|
-
s3_bucket,
|
|
977
|
-
description=description,
|
|
978
|
-
**kwargs,
|
|
979
|
-
)
|