eegdash 0.3.3.dev61__py3-none-any.whl → 0.5.0.dev180784713__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eegdash/__init__.py +19 -6
- eegdash/api.py +336 -539
- eegdash/bids_eeg_metadata.py +495 -0
- eegdash/const.py +349 -0
- eegdash/dataset/__init__.py +28 -0
- eegdash/dataset/base.py +311 -0
- eegdash/dataset/bids_dataset.py +641 -0
- eegdash/dataset/dataset.py +692 -0
- eegdash/dataset/dataset_summary.csv +255 -0
- eegdash/dataset/registry.py +287 -0
- eegdash/downloader.py +197 -0
- eegdash/features/__init__.py +15 -13
- eegdash/features/datasets.py +329 -138
- eegdash/features/decorators.py +105 -13
- eegdash/features/extractors.py +233 -63
- eegdash/features/feature_bank/__init__.py +12 -12
- eegdash/features/feature_bank/complexity.py +22 -20
- eegdash/features/feature_bank/connectivity.py +27 -28
- eegdash/features/feature_bank/csp.py +3 -1
- eegdash/features/feature_bank/dimensionality.py +6 -6
- eegdash/features/feature_bank/signal.py +29 -30
- eegdash/features/feature_bank/spectral.py +40 -44
- eegdash/features/feature_bank/utils.py +8 -0
- eegdash/features/inspect.py +126 -15
- eegdash/features/serialization.py +58 -17
- eegdash/features/utils.py +90 -16
- eegdash/hbn/__init__.py +28 -0
- eegdash/hbn/preprocessing.py +105 -0
- eegdash/hbn/windows.py +428 -0
- eegdash/logging.py +54 -0
- eegdash/mongodb.py +55 -24
- eegdash/paths.py +52 -0
- eegdash/utils.py +29 -1
- eegdash-0.5.0.dev180784713.dist-info/METADATA +121 -0
- eegdash-0.5.0.dev180784713.dist-info/RECORD +38 -0
- eegdash-0.5.0.dev180784713.dist-info/licenses/LICENSE +29 -0
- eegdash/data_config.py +0 -34
- eegdash/data_utils.py +0 -687
- eegdash/dataset.py +0 -69
- eegdash/preprocessing.py +0 -63
- eegdash-0.3.3.dev61.dist-info/METADATA +0 -192
- eegdash-0.3.3.dev61.dist-info/RECORD +0 -28
- eegdash-0.3.3.dev61.dist-info/licenses/LICENSE +0 -23
- {eegdash-0.3.3.dev61.dist-info → eegdash-0.5.0.dev180784713.dist-info}/WHEEL +0 -0
- {eegdash-0.3.3.dev61.dist-info → eegdash-0.5.0.dev180784713.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: eegdash
|
|
3
|
+
Version: 0.5.0.dev180784713
|
|
4
|
+
Summary: EEG data for machine learning
|
|
5
|
+
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@ucsd.edu>, Aviv Dotan <avivdot@bgu.post.ac.il>, Oren Shriki <shrikio@bgu.ac.il>, Bruno Aristimunha <b.aristimunha@gmail.com>
|
|
6
|
+
License-Expression: BSD-3-Clause
|
|
7
|
+
Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
|
|
8
|
+
Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
|
|
9
|
+
Classifier: Operating System :: OS Independent
|
|
10
|
+
Classifier: Intended Audience :: Science/Research
|
|
11
|
+
Classifier: Intended Audience :: Developers
|
|
12
|
+
Classifier: Programming Language :: Python
|
|
13
|
+
Classifier: Topic :: Software Development
|
|
14
|
+
Classifier: Topic :: Scientific/Engineering
|
|
15
|
+
Classifier: Development Status :: 3 - Alpha
|
|
16
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
17
|
+
Classifier: Operating System :: POSIX
|
|
18
|
+
Classifier: Operating System :: Unix
|
|
19
|
+
Classifier: Operating System :: MacOS
|
|
20
|
+
Classifier: Programming Language :: Python :: 3
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
24
|
+
Requires-Python: >=3.10
|
|
25
|
+
Description-Content-Type: text/markdown
|
|
26
|
+
License-File: LICENSE
|
|
27
|
+
Requires-Dist: braindecode>=1.0
|
|
28
|
+
Requires-Dist: mne_bids>=0.17.0
|
|
29
|
+
Requires-Dist: numba
|
|
30
|
+
Requires-Dist: pymongo
|
|
31
|
+
Requires-Dist: s3fs
|
|
32
|
+
Requires-Dist: tqdm
|
|
33
|
+
Requires-Dist: pymatreader
|
|
34
|
+
Requires-Dist: eeglabio
|
|
35
|
+
Requires-Dist: tabulate
|
|
36
|
+
Requires-Dist: rich
|
|
37
|
+
Requires-Dist: pyarrow
|
|
38
|
+
Provides-Extra: tests
|
|
39
|
+
Requires-Dist: pytest; extra == "tests"
|
|
40
|
+
Requires-Dist: pytest-cov; extra == "tests"
|
|
41
|
+
Requires-Dist: pytest-sugar; extra == "tests"
|
|
42
|
+
Requires-Dist: codecov; extra == "tests"
|
|
43
|
+
Requires-Dist: pytest_cases; extra == "tests"
|
|
44
|
+
Requires-Dist: pytest-benchmark; extra == "tests"
|
|
45
|
+
Provides-Extra: dev
|
|
46
|
+
Requires-Dist: pre-commit; extra == "dev"
|
|
47
|
+
Requires-Dist: ipykernel; extra == "dev"
|
|
48
|
+
Provides-Extra: docs
|
|
49
|
+
Requires-Dist: sphinx; extra == "docs"
|
|
50
|
+
Requires-Dist: sphinx_design; extra == "docs"
|
|
51
|
+
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
52
|
+
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
53
|
+
Requires-Dist: pydata-sphinx-theme; extra == "docs"
|
|
54
|
+
Requires-Dist: sphinx-autobuild; extra == "docs"
|
|
55
|
+
Requires-Dist: sphinx-copybutton; extra == "docs"
|
|
56
|
+
Requires-Dist: sphinx-sitemap; extra == "docs"
|
|
57
|
+
Requires-Dist: numpydoc; extra == "docs"
|
|
58
|
+
Requires-Dist: memory_profiler; extra == "docs"
|
|
59
|
+
Requires-Dist: ipython; extra == "docs"
|
|
60
|
+
Requires-Dist: lightgbm; extra == "docs"
|
|
61
|
+
Requires-Dist: plotly; extra == "docs"
|
|
62
|
+
Requires-Dist: nbformat; extra == "docs"
|
|
63
|
+
Requires-Dist: graphviz; extra == "docs"
|
|
64
|
+
Requires-Dist: neato; extra == "docs"
|
|
65
|
+
Provides-Extra: digestion
|
|
66
|
+
Requires-Dist: pybids; extra == "digestion"
|
|
67
|
+
Requires-Dist: gql[requests]; extra == "digestion"
|
|
68
|
+
Requires-Dist: requests_toolbelt; extra == "digestion"
|
|
69
|
+
Requires-Dist: beautifulsoup4; extra == "digestion"
|
|
70
|
+
Provides-Extra: all
|
|
71
|
+
Requires-Dist: eegdash[docs]; extra == "all"
|
|
72
|
+
Requires-Dist: eegdash[dev]; extra == "all"
|
|
73
|
+
Requires-Dist: eegdash[tests]; extra == "all"
|
|
74
|
+
Requires-Dist: eegdash[digestion]; extra == "all"
|
|
75
|
+
Dynamic: license-file
|
|
76
|
+
|
|
77
|
+
# EEG-Dash
|
|
78
|
+
|
|
79
|
+
[](https://pypi.org/project/eegdash/)
|
|
80
|
+
[](https://sccn.github.io/eegdash)
|
|
81
|
+
|
|
82
|
+
[](LICENSE)
|
|
83
|
+
[](https://pypi.org/project/eegdash/)
|
|
84
|
+
[](https://pepy.tech/project/eegdash)
|
|
85
|
+
<!-- [](https://codecov.io/gh/eegdash/eegdash) -->
|
|
86
|
+
|
|
87
|
+
To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
|
|
88
|
+
|
|
89
|
+
## Data source
|
|
90
|
+
|
|
91
|
+
The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
|
|
92
|
+
|
|
93
|
+
## Data format
|
|
94
|
+
|
|
95
|
+
EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
|
|
96
|
+
|
|
97
|
+
## Data preprocessing
|
|
98
|
+
|
|
99
|
+
EEGDash datasets are processed using the popular [braindecode](https://braindecode.org/stable/index.html) library. In fact, EEGDash datasets are braindecode datasets, which are themselves PyTorch datasets. This means that any preprocessing possible on braindecode datasets is also possible on EEGDash datasets. Refer to [braindecode](https://braindecode.org/stable/index.html) tutorials for guidance on preprocessing EEG data.
|
|
100
|
+
|
|
101
|
+
## EEG-Dash usage
|
|
102
|
+
|
|
103
|
+
### Install
|
|
104
|
+
Use your preferred Python environment manager with Python > 3.10 to install the package.
|
|
105
|
+
* To install the eegdash package, use the following command: `pip install eegdash`
|
|
106
|
+
* To verify the installation, start a Python session and type: `from eegdash import EEGDash`
|
|
107
|
+
|
|
108
|
+
Please check our tutorial webpages to explore what you can do with [eegdash](https://eegdash.org/)!
|
|
109
|
+
|
|
110
|
+
## Education -- Coming soon...
|
|
111
|
+
|
|
112
|
+
We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. Events for 2025 will be announced via the EEGLABNEWS mailing list. Be sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
|
|
113
|
+
|
|
114
|
+
## About EEG-DaSh
|
|
115
|
+
|
|
116
|
+
EEG-DaSh is a collaborative initiative between the United States and Israel, supported by the National Science Foundation (NSF). The partnership brings together experts from the Swartz Center for Computational Neuroscience (SCCN) at the University of California San Diego (UCSD) and Ben-Gurion University (BGU) in Israel.
|
|
117
|
+
|
|
118
|
+

|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
eegdash/__init__.py,sha256=XIfT0jQ7YupLYXzSnpUCgpXdvzfKDjQ4BH7WFWTqNKc,696
|
|
2
|
+
eegdash/api.py,sha256=3ym00j1UGd0jANqe2XkSiPpzgaqwy5nTM4gVkMYIuBI,18218
|
|
3
|
+
eegdash/bids_eeg_metadata.py,sha256=8s6cWT9CDfx8IINmWapqY3HUce3M6IX_ulcxpuPaOV4,16668
|
|
4
|
+
eegdash/const.py,sha256=N5uANk96QOHsgP6e3LExtth3CZsXaS9Vhbz0P9Ynm94,9052
|
|
5
|
+
eegdash/downloader.py,sha256=05eoM-ESpxVWLEN1rWZOjE60kXIWXIvjtz724gUEks0,6016
|
|
6
|
+
eegdash/logging.py,sha256=HMyvuF5CFF4q1RJQvpFvW9aTUGUwb9wHdInxu9JIHfA,1453
|
|
7
|
+
eegdash/mongodb.py,sha256=RWCWfyGQL6-6umInTA_mWHKaZujz5QDeS4FG6wvOpq8,3455
|
|
8
|
+
eegdash/paths.py,sha256=w08sWTXMdXmXV4V9mB2vWymLybayviM3eEuMRKb4piY,1493
|
|
9
|
+
eegdash/utils.py,sha256=S7YXsH4biQ7HOR03l6TP1H-AAnNVmVlTDwng6r3p5Xs,1268
|
|
10
|
+
eegdash/dataset/__init__.py,sha256=EXmCtcIWz2_iq7-04AzOPmOxfv1hvUGnrSRgu_Je800,975
|
|
11
|
+
eegdash/dataset/base.py,sha256=52n9YEYuXxWpDZT54qf-gXzVkjpdHsceABR_cEvLJl0,11709
|
|
12
|
+
eegdash/dataset/bids_dataset.py,sha256=ZnU3rIRHNB8G0WBmr7VKXn4Q54oTiGT1qzvl8zC__80,22223
|
|
13
|
+
eegdash/dataset/dataset.py,sha256=-PZL1E6RUMm-aIbl9ihu50BhvEwDDmRF0Aeb1hz_5b4,27596
|
|
14
|
+
eegdash/dataset/dataset_summary.csv,sha256=YJX-BitOyo-5nsHBd3ECIY1u7lFBjMQAFfCUPLYEgpo,25289
|
|
15
|
+
eegdash/dataset/registry.py,sha256=5TOCWalA0RV7omRoYS0OzdcSaOTvXvqos74_Vj2jv0M,9127
|
|
16
|
+
eegdash/features/__init__.py,sha256=q_3AzqDyn4hrMMxoqGMBylcoQWj_5hqTT8QZ5hitcGU,4180
|
|
17
|
+
eegdash/features/datasets.py,sha256=79Xey6SouPHMKybF78madVl5i7P0f03jnostBV6Dr7M,24880
|
|
18
|
+
eegdash/features/decorators.py,sha256=eKAkTmKdi-0eQQhznIj1Q6oQHZpeQdmLOAbFwu8t0Mo,4040
|
|
19
|
+
eegdash/features/extractors.py,sha256=pjP2IRkBKrg_111XmXd6YHN15NmdVWASEHHsXeI3CLc,12286
|
|
20
|
+
eegdash/features/inspect.py,sha256=DTiCihpkVpoG1bXclSA4dRMZFz1tXO--aRRh9TzrICE,5040
|
|
21
|
+
eegdash/features/serialization.py,sha256=f981K8DcfaLZ0q98IBrXeAbMHnPmKBbp7cFiXZnjezw,4194
|
|
22
|
+
eegdash/features/utils.py,sha256=SuvPE6N_ccm-Ar4g-1dgVj1qaW2bV9hNQivtz946hlY,6487
|
|
23
|
+
eegdash/features/feature_bank/__init__.py,sha256=jHATIeSWbGY9myaEjociG_JyuWueeOT2v0pTzN8sV9Y,3021
|
|
24
|
+
eegdash/features/feature_bank/complexity.py,sha256=W7spJCN8ZlWXyNJeJrBj4faEWXSI6pZU-NQKPVAW0PE,3281
|
|
25
|
+
eegdash/features/feature_bank/connectivity.py,sha256=BqreMOuHrYdRYJ-wg2NcyM29mugwlzLM9_HTSgcFfE0,2161
|
|
26
|
+
eegdash/features/feature_bank/csp.py,sha256=RBNfnkpIRaLoijICFNA3bbb8qUAF3ym4AsB0ODof0n0,3405
|
|
27
|
+
eegdash/features/feature_bank/dimensionality.py,sha256=vTSh_lSWGKM4C4dkf2Myvg0JyXJcO6Xkfw1IijO-FhM,3995
|
|
28
|
+
eegdash/features/feature_bank/signal.py,sha256=BnpJrAf-OT8UAM7Xkzuo-ZfEFz3Qf1ncGwMj02HbhvQ,3365
|
|
29
|
+
eegdash/features/feature_bank/spectral.py,sha256=NrQcsQOHqzOiyTi_ZctpCF2-VNluvrr-soPtc0dHrco,3126
|
|
30
|
+
eegdash/features/feature_bank/utils.py,sha256=zCdkfDMLWJhPjBqb5Xz0jLKg8gm3qQDY1G1rZTLuCaM,1354
|
|
31
|
+
eegdash/hbn/__init__.py,sha256=14PHuYa2A2jHwsQ96UjDXbSU5kXfcTbyKrcnO-wRtxM,780
|
|
32
|
+
eegdash/hbn/preprocessing.py,sha256=psB1KY_6XKWpmUh2_S127_9vi0zujpK3LDyOD7qZ0S0,3786
|
|
33
|
+
eegdash/hbn/windows.py,sha256=uZ22961nX6kD441137Vl1uZVd2DkVdb6ajtqIjk2084,14394
|
|
34
|
+
eegdash-0.5.0.dev180784713.dist-info/licenses/LICENSE,sha256=KTCi0XpjBV4oLW1Gun_VhkllNBAIodRYy3oqwcRaLbs,1533
|
|
35
|
+
eegdash-0.5.0.dev180784713.dist-info/METADATA,sha256=pZR8WmwjIxfeg-dBjR7icVn4EVpj6skgsTooQEbeKk0,7017
|
|
36
|
+
eegdash-0.5.0.dev180784713.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
37
|
+
eegdash-0.5.0.dev180784713.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
38
|
+
eegdash-0.5.0.dev180784713.dist-info/RECORD,,
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
BSD 3-Clause License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024-2025, EEGDash contributors
|
|
4
|
+
All rights reserved.
|
|
5
|
+
|
|
6
|
+
Redistribution and use in source and binary forms, with or without
|
|
7
|
+
modification, are permitted provided that the following conditions are met:
|
|
8
|
+
|
|
9
|
+
1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
list of conditions and the following disclaimer.
|
|
11
|
+
|
|
12
|
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
and/or other materials provided with the distribution.
|
|
15
|
+
|
|
16
|
+
3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
contributors may be used to endorse or promote products derived from
|
|
18
|
+
this software without specific prior written permission.
|
|
19
|
+
|
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
eegdash/data_config.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
config = {
|
|
2
|
-
"required_fields": ["data_name"],
|
|
3
|
-
# Default set of user-facing primary record attributes expected in the database. Records
|
|
4
|
-
# where any of these are missing will be loaded with the respective attribute set to None.
|
|
5
|
-
# Additional fields may be returned if they are present in the database, notably bidsdependencies.
|
|
6
|
-
"attributes": {
|
|
7
|
-
"data_name": "str",
|
|
8
|
-
"dataset": "str",
|
|
9
|
-
"bidspath": "str",
|
|
10
|
-
"subject": "str",
|
|
11
|
-
"task": "str",
|
|
12
|
-
"session": "str",
|
|
13
|
-
"run": "str",
|
|
14
|
-
"sampling_frequency": "float",
|
|
15
|
-
"modality": "str",
|
|
16
|
-
"nchans": "int",
|
|
17
|
-
"ntimes": "int", # note: this is really the number of seconds in the data, rounded down
|
|
18
|
-
},
|
|
19
|
-
# queryable descriptive fields for a given recording
|
|
20
|
-
"description_fields": ["subject", "session", "run", "task", "age", "gender", "sex"],
|
|
21
|
-
# list of filenames that may be present in the BIDS dataset directory that are used
|
|
22
|
-
# to load and interpret a given BIDS recording.
|
|
23
|
-
"bids_dependencies_files": [
|
|
24
|
-
"dataset_description.json",
|
|
25
|
-
"participants.tsv",
|
|
26
|
-
"events.tsv",
|
|
27
|
-
"events.json",
|
|
28
|
-
"eeg.json",
|
|
29
|
-
"electrodes.tsv",
|
|
30
|
-
"channels.tsv",
|
|
31
|
-
"coordsystem.json",
|
|
32
|
-
],
|
|
33
|
-
"accepted_query_fields": ["data_name", "dataset"],
|
|
34
|
-
}
|