eegdash 0.1.0__py3-none-any.whl → 0.2.1.dev178237806__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/__init__.py +7 -3
- eegdash/api.py +717 -0
- eegdash/data_config.py +7 -1
- eegdash/data_utils.py +215 -118
- eegdash/dataset.py +69 -0
- eegdash/features/__init__.py +37 -9
- eegdash/features/datasets.py +57 -21
- eegdash/features/decorators.py +10 -2
- eegdash/features/extractors.py +20 -21
- eegdash/features/feature_bank/complexity.py +4 -0
- eegdash/features/feature_bank/csp.py +2 -2
- eegdash/features/feature_bank/dimensionality.py +7 -3
- eegdash/features/feature_bank/signal.py +29 -3
- eegdash/features/inspect.py +48 -0
- eegdash/features/serialization.py +2 -3
- eegdash/features/utils.py +1 -1
- eegdash/mongodb.py +66 -0
- eegdash/preprocessing.py +65 -0
- eegdash/utils.py +11 -0
- {eegdash-0.1.0.dist-info → eegdash-0.2.1.dev178237806.dist-info}/METADATA +47 -7
- eegdash-0.2.1.dev178237806.dist-info/RECORD +28 -0
- {eegdash-0.1.0.dist-info → eegdash-0.2.1.dev178237806.dist-info}/WHEEL +1 -1
- {eegdash-0.1.0.dist-info → eegdash-0.2.1.dev178237806.dist-info}/licenses/LICENSE +1 -0
- eegdash/main.py +0 -416
- eegdash-0.1.0.dist-info/RECORD +0 -23
- {eegdash-0.1.0.dist-info → eegdash-0.2.1.dev178237806.dist-info}/top_level.txt +0 -0
eegdash/main.py
DELETED
|
@@ -1,416 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
import os
|
|
3
|
-
import tempfile
|
|
4
|
-
from collections import defaultdict
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
|
|
7
|
-
import mne
|
|
8
|
-
import numpy as np
|
|
9
|
-
import pymongo
|
|
10
|
-
import s3fs
|
|
11
|
-
import xarray as xr
|
|
12
|
-
from dotenv import load_dotenv
|
|
13
|
-
from joblib import Parallel, delayed
|
|
14
|
-
from pymongo import DeleteOne, InsertOne, MongoClient, UpdateOne
|
|
15
|
-
|
|
16
|
-
from braindecode.datasets import BaseConcatDataset, BaseDataset
|
|
17
|
-
|
|
18
|
-
from .data_config import config as data_config
|
|
19
|
-
from .data_utils import EEGBIDSDataset, EEGDashBaseDataset, EEGDashBaseRaw
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
class EEGDash:
|
|
23
|
-
AWS_BUCKET = "s3://openneuro.org"
|
|
24
|
-
|
|
25
|
-
def __init__(self, is_public=True):
|
|
26
|
-
# Load config file
|
|
27
|
-
# config_path = Path(__file__).parent / 'config.json'
|
|
28
|
-
# with open(config_path, 'r') as f:
|
|
29
|
-
# self.config = json.load(f)
|
|
30
|
-
|
|
31
|
-
self.config = data_config
|
|
32
|
-
if is_public:
|
|
33
|
-
DB_CONNECTION_STRING = "mongodb+srv://eegdash-user:mdzoMjQcHWTVnKDq@cluster0.vz35p.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
|
|
34
|
-
else:
|
|
35
|
-
load_dotenv()
|
|
36
|
-
DB_CONNECTION_STRING = os.getenv("DB_CONNECTION_STRING")
|
|
37
|
-
|
|
38
|
-
self.__client = pymongo.MongoClient(DB_CONNECTION_STRING)
|
|
39
|
-
self.__db = self.__client["eegdash"]
|
|
40
|
-
self.__collection = self.__db["records"]
|
|
41
|
-
|
|
42
|
-
self.is_public = is_public
|
|
43
|
-
self.filesystem = s3fs.S3FileSystem(
|
|
44
|
-
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
45
|
-
)
|
|
46
|
-
|
|
47
|
-
def find(self, *args):
|
|
48
|
-
results = self.__collection.find(*args)
|
|
49
|
-
|
|
50
|
-
# convert to list using get_item on each element
|
|
51
|
-
return [result for result in results]
|
|
52
|
-
|
|
53
|
-
def exist(self, query: dict):
|
|
54
|
-
accepted_query_fields = ["data_name", "dataset"]
|
|
55
|
-
assert all(field in accepted_query_fields for field in query.keys())
|
|
56
|
-
sessions = self.find(query)
|
|
57
|
-
return len(sessions) > 0
|
|
58
|
-
|
|
59
|
-
def _validate_input(self, record: dict):
|
|
60
|
-
input_types = {
|
|
61
|
-
"data_name": str,
|
|
62
|
-
"dataset": str,
|
|
63
|
-
"bidspath": str,
|
|
64
|
-
"subject": str,
|
|
65
|
-
"task": str,
|
|
66
|
-
"session": str,
|
|
67
|
-
"run": str,
|
|
68
|
-
"sampling_frequency": float,
|
|
69
|
-
"modality": str,
|
|
70
|
-
"nchans": int,
|
|
71
|
-
"ntimes": int,
|
|
72
|
-
"channel_types": list,
|
|
73
|
-
"channel_names": list,
|
|
74
|
-
}
|
|
75
|
-
if "data_name" not in record:
|
|
76
|
-
raise ValueError("Missing key: data_name")
|
|
77
|
-
# check if args are in the keys and has correct type
|
|
78
|
-
for key, value in record.items():
|
|
79
|
-
if key not in input_types:
|
|
80
|
-
raise ValueError(f"Invalid input: {key}")
|
|
81
|
-
if not isinstance(value, input_types[key]):
|
|
82
|
-
raise ValueError(f"Invalid input: {key}")
|
|
83
|
-
|
|
84
|
-
return record
|
|
85
|
-
|
|
86
|
-
def load_eeg_data_from_s3(self, s3path):
|
|
87
|
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".set") as tmp:
|
|
88
|
-
with self.filesystem.open(s3path) as s3_file:
|
|
89
|
-
tmp.write(s3_file.read())
|
|
90
|
-
tmp_path = tmp.name
|
|
91
|
-
eeg_data = self.load_eeg_data_from_bids_file(tmp_path)
|
|
92
|
-
os.unlink(tmp_path)
|
|
93
|
-
return eeg_data
|
|
94
|
-
|
|
95
|
-
def load_eeg_data_from_bids_file(self, bids_file, eeg_attrs=None):
|
|
96
|
-
"""
|
|
97
|
-
bids_file must be a file of the bids_dataset
|
|
98
|
-
"""
|
|
99
|
-
EEG = mne.io.read_raw_eeglab(bids_file)
|
|
100
|
-
eeg_data = EEG.get_data()
|
|
101
|
-
|
|
102
|
-
fs = EEG.info["sfreq"]
|
|
103
|
-
max_time = eeg_data.shape[1] / fs
|
|
104
|
-
time_steps = np.linspace(0, max_time, eeg_data.shape[1]).squeeze() # in seconds
|
|
105
|
-
|
|
106
|
-
channel_names = EEG.ch_names
|
|
107
|
-
|
|
108
|
-
eeg_xarray = xr.DataArray(
|
|
109
|
-
data=eeg_data,
|
|
110
|
-
dims=["channel", "time"],
|
|
111
|
-
coords={"time": time_steps, "channel": channel_names},
|
|
112
|
-
# attrs=attrs
|
|
113
|
-
)
|
|
114
|
-
return eeg_xarray
|
|
115
|
-
|
|
116
|
-
def get_raw_extensions(self, bids_file, bids_dataset: EEGBIDSDataset):
|
|
117
|
-
bids_file = Path(bids_file)
|
|
118
|
-
extensions = {
|
|
119
|
-
".set": [".set", ".fdt"], # eeglab
|
|
120
|
-
".edf": [".edf"], # european
|
|
121
|
-
".vhdr": [".eeg", ".vhdr", ".vmrk", ".dat", ".raw"], # brainvision
|
|
122
|
-
".bdf": [".bdf"], # biosemi
|
|
123
|
-
}
|
|
124
|
-
return [
|
|
125
|
-
str(bids_dataset.get_relative_bidspath(bids_file.with_suffix(suffix)))
|
|
126
|
-
for suffix in extensions[bids_file.suffix]
|
|
127
|
-
if bids_file.with_suffix(suffix).exists()
|
|
128
|
-
]
|
|
129
|
-
|
|
130
|
-
def load_eeg_attrs_from_bids_file(self, bids_dataset: EEGBIDSDataset, bids_file):
|
|
131
|
-
"""
|
|
132
|
-
bids_file must be a file of the bids_dataset
|
|
133
|
-
"""
|
|
134
|
-
if bids_file not in bids_dataset.files:
|
|
135
|
-
raise ValueError(f"{bids_file} not in {bids_dataset.dataset}")
|
|
136
|
-
|
|
137
|
-
# Initialize attrs with None values for all expected fields
|
|
138
|
-
attrs = {field: None for field in self.config["attributes"].keys()}
|
|
139
|
-
|
|
140
|
-
f = os.path.basename(bids_file)
|
|
141
|
-
dsnumber = bids_dataset.dataset
|
|
142
|
-
# extract openneuro path by finding the first occurrence of the dataset name in the filename and remove the path before that
|
|
143
|
-
openneuro_path = dsnumber + bids_file.split(dsnumber)[1]
|
|
144
|
-
|
|
145
|
-
# Update with actual values where available
|
|
146
|
-
try:
|
|
147
|
-
participants_tsv = bids_dataset.subject_participant_tsv(bids_file)
|
|
148
|
-
except Exception as e:
|
|
149
|
-
print(f"Error getting participants_tsv: {str(e)}")
|
|
150
|
-
participants_tsv = None
|
|
151
|
-
|
|
152
|
-
try:
|
|
153
|
-
eeg_json = bids_dataset.eeg_json(bids_file)
|
|
154
|
-
except Exception as e:
|
|
155
|
-
print(f"Error getting eeg_json: {str(e)}")
|
|
156
|
-
eeg_json = None
|
|
157
|
-
|
|
158
|
-
bids_dependencies_files = self.config["bids_dependencies_files"]
|
|
159
|
-
bidsdependencies = []
|
|
160
|
-
for extension in bids_dependencies_files:
|
|
161
|
-
try:
|
|
162
|
-
dep_path = bids_dataset.get_bids_metadata_files(bids_file, extension)
|
|
163
|
-
dep_path = [
|
|
164
|
-
str(bids_dataset.get_relative_bidspath(dep)) for dep in dep_path
|
|
165
|
-
]
|
|
166
|
-
bidsdependencies.extend(dep_path)
|
|
167
|
-
except Exception as e:
|
|
168
|
-
pass
|
|
169
|
-
|
|
170
|
-
bidsdependencies.extend(self.get_raw_extensions(bids_file, bids_dataset))
|
|
171
|
-
|
|
172
|
-
# Define field extraction functions with error handling
|
|
173
|
-
field_extractors = {
|
|
174
|
-
"data_name": lambda: f"{bids_dataset.dataset}_{f}",
|
|
175
|
-
"dataset": lambda: bids_dataset.dataset,
|
|
176
|
-
"bidspath": lambda: openneuro_path,
|
|
177
|
-
"subject": lambda: bids_dataset.get_bids_file_attribute(
|
|
178
|
-
"subject", bids_file
|
|
179
|
-
),
|
|
180
|
-
"task": lambda: bids_dataset.get_bids_file_attribute("task", bids_file),
|
|
181
|
-
"session": lambda: bids_dataset.get_bids_file_attribute(
|
|
182
|
-
"session", bids_file
|
|
183
|
-
),
|
|
184
|
-
"run": lambda: bids_dataset.get_bids_file_attribute("run", bids_file),
|
|
185
|
-
"modality": lambda: bids_dataset.get_bids_file_attribute(
|
|
186
|
-
"modality", bids_file
|
|
187
|
-
),
|
|
188
|
-
"sampling_frequency": lambda: bids_dataset.get_bids_file_attribute(
|
|
189
|
-
"sfreq", bids_file
|
|
190
|
-
),
|
|
191
|
-
"nchans": lambda: bids_dataset.get_bids_file_attribute("nchans", bids_file),
|
|
192
|
-
"ntimes": lambda: bids_dataset.get_bids_file_attribute("ntimes", bids_file),
|
|
193
|
-
"participant_tsv": lambda: participants_tsv,
|
|
194
|
-
"eeg_json": lambda: eeg_json,
|
|
195
|
-
"bidsdependencies": lambda: bidsdependencies,
|
|
196
|
-
}
|
|
197
|
-
|
|
198
|
-
# Dynamically populate attrs with error handling
|
|
199
|
-
for field, extractor in field_extractors.items():
|
|
200
|
-
try:
|
|
201
|
-
attrs[field] = extractor()
|
|
202
|
-
except Exception as e:
|
|
203
|
-
print(f"Error extracting {field}: {str(e)}")
|
|
204
|
-
attrs[field] = None
|
|
205
|
-
|
|
206
|
-
return attrs
|
|
207
|
-
|
|
208
|
-
def add_bids_dataset(self, dataset, data_dir, overwrite=True):
|
|
209
|
-
"""
|
|
210
|
-
Create new records for the dataset in the MongoDB database if not found
|
|
211
|
-
"""
|
|
212
|
-
if self.is_public:
|
|
213
|
-
raise ValueError("This operation is not allowed for public users")
|
|
214
|
-
|
|
215
|
-
if not overwrite and self.exist({"dataset": dataset}):
|
|
216
|
-
print(f"Dataset {dataset} already exists in the database")
|
|
217
|
-
return
|
|
218
|
-
try:
|
|
219
|
-
bids_dataset = EEGBIDSDataset(
|
|
220
|
-
data_dir=data_dir,
|
|
221
|
-
dataset=dataset,
|
|
222
|
-
)
|
|
223
|
-
except Exception as e:
|
|
224
|
-
print(f"Error creating bids dataset {dataset}: {str(e)}")
|
|
225
|
-
raise e
|
|
226
|
-
requests = []
|
|
227
|
-
for bids_file in bids_dataset.get_files():
|
|
228
|
-
try:
|
|
229
|
-
data_id = f"{dataset}_{os.path.basename(bids_file)}"
|
|
230
|
-
|
|
231
|
-
if self.exist({"data_name": data_id}):
|
|
232
|
-
if overwrite:
|
|
233
|
-
eeg_attrs = self.load_eeg_attrs_from_bids_file(
|
|
234
|
-
bids_dataset, bids_file
|
|
235
|
-
)
|
|
236
|
-
requests.append(self.update_request(eeg_attrs))
|
|
237
|
-
else:
|
|
238
|
-
eeg_attrs = self.load_eeg_attrs_from_bids_file(
|
|
239
|
-
bids_dataset, bids_file
|
|
240
|
-
)
|
|
241
|
-
requests.append(self.add_request(eeg_attrs))
|
|
242
|
-
except:
|
|
243
|
-
print("error adding record", bids_file)
|
|
244
|
-
|
|
245
|
-
print("Number of database requests", len(requests))
|
|
246
|
-
|
|
247
|
-
if requests:
|
|
248
|
-
result = self.__collection.bulk_write(requests, ordered=False)
|
|
249
|
-
print(f"Inserted: {result.inserted_count}")
|
|
250
|
-
print(f"Modified: {result.modified_count}")
|
|
251
|
-
print(f"Deleted: {result.deleted_count}")
|
|
252
|
-
print(f"Upserted: {result.upserted_count}")
|
|
253
|
-
print(f"Errors: {result.bulk_api_result.get('writeErrors', [])}")
|
|
254
|
-
|
|
255
|
-
def get(self, query: dict):
|
|
256
|
-
"""
|
|
257
|
-
query: {
|
|
258
|
-
'dataset': 'dsxxxx',
|
|
259
|
-
|
|
260
|
-
}"""
|
|
261
|
-
sessions = self.find(query)
|
|
262
|
-
results = []
|
|
263
|
-
if sessions:
|
|
264
|
-
print(f"Found {len(sessions)} records")
|
|
265
|
-
results = Parallel(
|
|
266
|
-
n_jobs=-1 if len(sessions) > 1 else 1, prefer="threads", verbose=1
|
|
267
|
-
)(
|
|
268
|
-
delayed(self.load_eeg_data_from_s3)(self.get_s3path(session))
|
|
269
|
-
for session in sessions
|
|
270
|
-
)
|
|
271
|
-
return results
|
|
272
|
-
|
|
273
|
-
def add_request(self, record: dict):
|
|
274
|
-
return InsertOne(record)
|
|
275
|
-
|
|
276
|
-
def add(self, record: dict):
|
|
277
|
-
try:
|
|
278
|
-
# input_record = self._validate_input(record)
|
|
279
|
-
self.__collection.insert_one(record)
|
|
280
|
-
# silent failing
|
|
281
|
-
except ValueError as e:
|
|
282
|
-
print(f"Failed to validate record: {record['data_name']}")
|
|
283
|
-
print(e)
|
|
284
|
-
except:
|
|
285
|
-
print(f"Error adding record: {record['data_name']}")
|
|
286
|
-
|
|
287
|
-
def update_request(self, record: dict):
|
|
288
|
-
return UpdateOne({"data_name": record["data_name"]}, {"$set": record})
|
|
289
|
-
|
|
290
|
-
def update(self, record: dict):
|
|
291
|
-
try:
|
|
292
|
-
self.__collection.update_one(
|
|
293
|
-
{"data_name": record["data_name"]}, {"$set": record}
|
|
294
|
-
)
|
|
295
|
-
except: # silent failure
|
|
296
|
-
print(f"Error updating record {record['data_name']}")
|
|
297
|
-
|
|
298
|
-
def remove_field(self, record, field):
|
|
299
|
-
self.__collection.update_one(
|
|
300
|
-
{"data_name": record["data_name"]}, {"$unset": {field: 1}}
|
|
301
|
-
)
|
|
302
|
-
|
|
303
|
-
def remove_field_from_db(self, field):
|
|
304
|
-
self.__collection.update_many({}, {"$unset": {field: 1}})
|
|
305
|
-
|
|
306
|
-
@property
|
|
307
|
-
def collection(self):
|
|
308
|
-
return self.__collection
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
class EEGDashDataset(BaseConcatDataset):
|
|
312
|
-
# CACHE_DIR = '.eegdash_cache'
|
|
313
|
-
def __init__(
|
|
314
|
-
self,
|
|
315
|
-
query: dict = None,
|
|
316
|
-
data_dir: str | list = None,
|
|
317
|
-
dataset: str | list = None,
|
|
318
|
-
description_fields: list[str] = [
|
|
319
|
-
"subject",
|
|
320
|
-
"session",
|
|
321
|
-
"run",
|
|
322
|
-
"task",
|
|
323
|
-
"age",
|
|
324
|
-
"gender",
|
|
325
|
-
"sex",
|
|
326
|
-
],
|
|
327
|
-
cache_dir: str = ".eegdash_cache",
|
|
328
|
-
**kwargs,
|
|
329
|
-
):
|
|
330
|
-
self.cache_dir = cache_dir
|
|
331
|
-
if query:
|
|
332
|
-
datasets = self.find_datasets(query, description_fields, **kwargs)
|
|
333
|
-
elif data_dir:
|
|
334
|
-
if type(data_dir) == str:
|
|
335
|
-
datasets = self.load_bids_dataset(dataset, data_dir, description_fields)
|
|
336
|
-
else:
|
|
337
|
-
assert len(data_dir) == len(dataset), (
|
|
338
|
-
"Number of datasets and their directories must match"
|
|
339
|
-
)
|
|
340
|
-
datasets = []
|
|
341
|
-
for i in range(len(data_dir)):
|
|
342
|
-
datasets.extend(
|
|
343
|
-
self.load_bids_dataset(
|
|
344
|
-
dataset[i], data_dir[i], description_fields
|
|
345
|
-
)
|
|
346
|
-
)
|
|
347
|
-
# convert to list using get_item on each element
|
|
348
|
-
super().__init__(datasets)
|
|
349
|
-
|
|
350
|
-
def find_key_in_nested_dict(self, data, target_key):
|
|
351
|
-
if isinstance(data, dict):
|
|
352
|
-
if target_key in data:
|
|
353
|
-
return data[target_key]
|
|
354
|
-
for value in data.values():
|
|
355
|
-
result = self.find_key_in_nested_dict(value, target_key)
|
|
356
|
-
if result is not None:
|
|
357
|
-
return result
|
|
358
|
-
return None
|
|
359
|
-
|
|
360
|
-
def find_datasets(self, query: dict, description_fields: list[str], **kwargs):
|
|
361
|
-
eegdashObj = EEGDash()
|
|
362
|
-
datasets = []
|
|
363
|
-
for record in eegdashObj.find(query):
|
|
364
|
-
description = {}
|
|
365
|
-
for field in description_fields:
|
|
366
|
-
value = self.find_key_in_nested_dict(record, field)
|
|
367
|
-
if value is not None:
|
|
368
|
-
description[field] = value
|
|
369
|
-
datasets.append(
|
|
370
|
-
EEGDashBaseDataset(
|
|
371
|
-
record, self.cache_dir, description=description, **kwargs
|
|
372
|
-
)
|
|
373
|
-
)
|
|
374
|
-
return datasets
|
|
375
|
-
|
|
376
|
-
def load_bids_dataset(
|
|
377
|
-
self,
|
|
378
|
-
dataset,
|
|
379
|
-
data_dir,
|
|
380
|
-
description_fields: list[str],
|
|
381
|
-
raw_format="eeglab",
|
|
382
|
-
**kwargs,
|
|
383
|
-
):
|
|
384
|
-
""" """
|
|
385
|
-
|
|
386
|
-
def get_base_dataset_from_bids_file(bids_dataset, bids_file):
|
|
387
|
-
record = eegdashObj.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
|
|
388
|
-
description = {}
|
|
389
|
-
for field in description_fields:
|
|
390
|
-
value = self.find_key_in_nested_dict(record, field)
|
|
391
|
-
if value is not None:
|
|
392
|
-
description[field] = value
|
|
393
|
-
return EEGDashBaseDataset(
|
|
394
|
-
record, self.cache_dir, description=description, **kwargs
|
|
395
|
-
)
|
|
396
|
-
|
|
397
|
-
bids_dataset = EEGBIDSDataset(
|
|
398
|
-
data_dir=data_dir,
|
|
399
|
-
dataset=dataset,
|
|
400
|
-
)
|
|
401
|
-
eegdashObj = EEGDash()
|
|
402
|
-
datasets = Parallel(n_jobs=-1, prefer="threads", verbose=1)(
|
|
403
|
-
delayed(get_base_dataset_from_bids_file)(bids_dataset, bids_file)
|
|
404
|
-
for bids_file in bids_dataset.get_files()
|
|
405
|
-
)
|
|
406
|
-
return datasets
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
def main():
|
|
410
|
-
eegdash = EEGDash()
|
|
411
|
-
record = eegdash.find({"dataset": "ds005511", "subject": "NDARUF236HM7"})
|
|
412
|
-
print(record)
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
if __name__ == "__main__":
|
|
416
|
-
main()
|
eegdash-0.1.0.dist-info/RECORD
DELETED
|
@@ -1,23 +0,0 @@
|
|
|
1
|
-
eegdash/__init__.py,sha256=dyNvSv7ORVDYDz0P-XBNj_SApMlOqwt8LHQqfeuPKCg,105
|
|
2
|
-
eegdash/data_config.py,sha256=sIwj7lnZ1hCjeFs-0CXeHn93btm9fX7mwgVTZVeVh-w,763
|
|
3
|
-
eegdash/data_utils.py,sha256=LqAJygSpPpYEIerAnWHuHP0OMjd7jQtzXIodbvb0568,19436
|
|
4
|
-
eegdash/main.py,sha256=CFI-Bro_oru5iRJdNQZ8IqeRPhrZKXj8wKoMdcrhFt8,14865
|
|
5
|
-
eegdash/features/__init__.py,sha256=Ijhc-bLwysyF_HTmdJwbYoTHbxj2wxArs1xSUzhm7Hc,604
|
|
6
|
-
eegdash/features/datasets.py,sha256=JB-VTfXTwfbxpgF9wq34gKK69YNCZPQwsnaKEXQisWk,17180
|
|
7
|
-
eegdash/features/decorators.py,sha256=iVsbdQXGoLi-V6M9BgP6P8i_UzUtIAWQlf8Qq_LdRqY,1247
|
|
8
|
-
eegdash/features/extractors.py,sha256=bITM4DXbW1Dq8Nm8hS3OrSGfRFV6-IwzkTzjiy_yg9k,6816
|
|
9
|
-
eegdash/features/serialization.py,sha256=ceGcEvKCg4OsWyLpdAyJsvU1-6UXcvVx2q6nq58vt8Y,2873
|
|
10
|
-
eegdash/features/utils.py,sha256=jjVNVLFSXFj3j7NWgEbUlt5faTrWKLLQY9ZYy0xLp_M,3782
|
|
11
|
-
eegdash/features/feature_bank/__init__.py,sha256=BKrM3aaggXrfey1yEjEBYaxOV5e3UK-o8oGeB30epOg,149
|
|
12
|
-
eegdash/features/feature_bank/complexity.py,sha256=WkLin-f1WTPUtcpkLDObY8nQYRsvpa08Xy9ly1k0hik,3017
|
|
13
|
-
eegdash/features/feature_bank/connectivity.py,sha256=bQ6KlxWm5GNpCS9ypLqBUr2L171Yq7wpBQT2tRQKTZ4,2159
|
|
14
|
-
eegdash/features/feature_bank/csp.py,sha256=O-kUijM47cOH7yfe7sYL9wT41w1dGaq6sOieh-h82pw,3300
|
|
15
|
-
eegdash/features/feature_bank/dimensionality.py,sha256=e8rKpAT_xtZRsBDuVbznFx_daWdQj89Z3Zkt61Hs5qk,3734
|
|
16
|
-
eegdash/features/feature_bank/signal.py,sha256=4jgIXRVS274puKfOnDNnqLoBP_yXRyP38iMnXRvobYo,2437
|
|
17
|
-
eegdash/features/feature_bank/spectral.py,sha256=bNB7skusePs1gX7NOU6yRlw_Gr4UOCkO_ylkCgybzug,3319
|
|
18
|
-
eegdash/features/feature_bank/utils.py,sha256=DGh-Q7-XFIittP7iBBxvsJaZrlVvuY5mw-G7q6C-PCI,1237
|
|
19
|
-
eegdash-0.1.0.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
|
|
20
|
-
eegdash-0.1.0.dist-info/METADATA,sha256=RixWQ9dqP1IQzz_HCAZL2Sp-at190rx4ocpvy2DVaio,8551
|
|
21
|
-
eegdash-0.1.0.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
|
|
22
|
-
eegdash-0.1.0.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
23
|
-
eegdash-0.1.0.dist-info/RECORD,,
|
|
File without changes
|