eegdash 0.0.8__py3-none-any.whl → 0.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eegdash
3
- Version: 0.0.8
3
+ Version: 0.0.9
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
6
  License: GNU General Public License
@@ -24,8 +24,8 @@ License: GNU General Public License
24
24
  along with this program; if not, write to the Free Software
25
25
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
26
26
 
27
- Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
28
- Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
27
+ Project-URL: Homepage, https://eegdash.org
28
+ Project-URL: Issues, https://github.com/sccn/EEGDash/issues
29
29
  Classifier: Programming Language :: Python :: 3
30
30
  Classifier: License :: OSI Approved :: MIT License
31
31
  Classifier: Operating System :: OS Independent
@@ -42,6 +42,11 @@ Requires-Dist: pymongo
42
42
  Requires-Dist: joblib
43
43
  Requires-Dist: braindecode
44
44
  Requires-Dist: mne-bids
45
+ Requires-Dist: pybids
46
+ Requires-Dist: pymatreader
47
+ Requires-Dist: pyarrow
48
+ Requires-Dist: tqdm
49
+ Requires-Dist: numba
45
50
  Dynamic: license-file
46
51
 
47
52
  # EEG-Dash
@@ -50,60 +55,21 @@ To leverage recent and ongoing advancements in large-scale computational methods
50
55
  ## Data source
51
56
  The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
52
57
 
53
- ## Available data
58
+ ## Featured data
54
59
 
55
- The following datasets are currently available on EEGDash.
60
+ The following HBN datasets are currently featured on EEGDash. Documentation about these datasets is available [here](https://neuromechanist.github.io/data/hbn/).
56
61
 
57
62
  | DatasetID | Participants | Files | Sessions | Population | Channels | Is 10-20? | Modality | Size |
58
63
  |---|---|---|---|---|---|---|---|---|
59
- | [ds002181](https://nemar.org/dataexplorer/detail?dataset_id=ds002181) | 20 | 949 | 1 | Healthy | 63 | 10-20 | Visual | 0.163 GB |
60
- | [ds002578](https://nemar.org/dataexplorer/detail?dataset_id=ds002578) | 2 | 22 | 1 | Healthy | 256 | 10-20 | Visual | 0.001 TB |
61
- | [ds002680](https://nemar.org/dataexplorer/detail?dataset_id=ds002680) | 14 | 4977 | 2 | Healthy | 0 | 10-20 | Visual | 0.01 TB |
62
- | [ds002691](https://nemar.org/dataexplorer/detail?dataset_id=ds002691) | 20 | 146 | 1 | Healthy | 32 | other | Visual | 0.001 TB |
63
- | [ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) | 18 | 582 | 1 | Healthy | 70 | other | Visual | 0.005 TB |
64
- | [ds003061](https://nemar.org/dataexplorer/detail?dataset_id=ds003061) | 13 | 282 | 1 | Not specified | 64 | 10-20 | Auditory | 0.002 TB |
65
- | [ds003690](https://nemar.org/dataexplorer/detail?dataset_id=ds003690) | 75 | 2630 | 1 | Healthy | 61 | 10-20 | Auditory | 0.023 TB |
66
- | [ds003805](https://nemar.org/dataexplorer/detail?dataset_id=ds003805) | 1 | 10 | 1 | Healthy | 19 | 10-20 | Multisensory | 0 TB |
67
- | [ds003838](https://nemar.org/dataexplorer/detail?dataset_id=ds003838) | 65 | 947 | 1 | Healthy | 63 | 10-20 | Auditory | 100.2 GB |
68
- | [ds004010](https://nemar.org/dataexplorer/detail?dataset_id=ds004010) | 24 | 102 | 1 | Healthy | 64 | other | Multisensory | 0.025 TB |
69
- | [ds004040](https://nemar.org/dataexplorer/detail?dataset_id=ds004040) | 13 | 160 | 2 | Healthy | 64 | 10-20 | Auditory | 0.012 TB |
70
- | [ds004350](https://nemar.org/dataexplorer/detail?dataset_id=ds004350) | 24 | 960 | 2 | Healthy | 64 | other | Visual | 0.023 TB |
71
- | [ds004362](https://nemar.org/dataexplorer/detail?dataset_id=ds004362) | 109 | 9162 | 1 | Healthy | 64 | 10-20 | Visual | 0.008 TB |
72
- | [ds004504](https://nemar.org/dataexplorer/detail?dataset_id=ds004504) | 88 | 269 | 1 | Dementia | 19 | 10-20 | Resting State | 2.6 GB |
73
- | [ds004554](https://nemar.org/dataexplorer/detail?dataset_id=ds004554) | 16 | 101 | 1 | Healthy | 99 | 10-20 | Visual | 0.009 TB |
74
- | [ds004635](https://nemar.org/dataexplorer/detail?dataset_id=ds004635) | 48 | 292 | 1 | Healthy | 129 | other | Multisensory | 26.1 GB |
75
- | [ds004657](https://nemar.org/dataexplorer/detail?dataset_id=ds004657) | 24 | 838 | 6 | Not specified | 64 | 10-20 | Motor | 43.1 GB |
76
- | [ds004660](https://nemar.org/dataexplorer/detail?dataset_id=ds004660) | 21 | 299 | 1 | Healthy | 32 | 10-20 | Multisensory | 7.2 GB |
77
- | [ds004661](https://nemar.org/dataexplorer/detail?dataset_id=ds004661) | 17 | 90 | 1 | Not specified | 64 | 10-20 | Multisensory | 1.4 GB |
78
- | [ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) | 52 | 762 | 1 | Healthy | 64 | ? | Auditory | 0 TB |
79
- | [ds004785](https://nemar.org/dataexplorer/detail?dataset_id=ds004785) | 17 | 74 | 1 | Healthy | 32 | ? | Motor | 0 TB |
80
- | [ds004841](https://nemar.org/dataexplorer/detail?dataset_id=ds004841) | 20 | 1034 | 2 | Not specified | 64 | 10-20 | Multisensory | 7.3 GB |
81
- | [ds004842](https://nemar.org/dataexplorer/detail?dataset_id=ds004842) | 14 | 719 | 2 | Not specified | 64 | ? | Multisensory | 5.2 GB |
82
- | [ds004843](https://nemar.org/dataexplorer/detail?dataset_id=ds004843) | 14 | 649 | 1 | Not specified | 64 | ? | Visual | 7.7 GB |
83
- | [ds004844](https://nemar.org/dataexplorer/detail?dataset_id=ds004844) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 22.3 GB |
84
- | [ds004849](https://nemar.org/dataexplorer/detail?dataset_id=ds004849) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
85
- | [ds004850](https://nemar.org/dataexplorer/detail?dataset_id=ds004850) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
86
- | [ds004851](https://nemar.org/dataexplorer/detail?dataset_id=ds004851) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
87
- | [ds004852](https://nemar.org/dataexplorer/detail?dataset_id=ds004852) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
88
- | [ds004853](https://nemar.org/dataexplorer/detail?dataset_id=ds004853) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
89
- | [ds004854](https://nemar.org/dataexplorer/detail?dataset_id=ds004854) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
90
- | [ds004855](https://nemar.org/dataexplorer/detail?dataset_id=ds004855) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
91
- | [ds005034](https://nemar.org/dataexplorer/detail?dataset_id=ds005034) | 25 | 406 | 2 | Healthy | 129 | ? | Visual | 61.4 GB |
92
- | [ds005079](https://nemar.org/dataexplorer/detail?dataset_id=ds005079) | 1 | 210 | 12 | Healthy | 64 | ? | Multisensory | 1.7 GB |
93
- | [ds005342](https://nemar.org/dataexplorer/detail?dataset_id=ds005342) | 32 | 134 | 1 | Healthy | 17 | ? | Visual | 2 GB |
94
- | [ds005410](https://nemar.org/dataexplorer/detail?dataset_id=ds005410) | 81 | 492 | 1 | Healthy | 63 | ? | ? | 19.8 GB |
95
64
  | [ds005505](https://nemar.org/dataexplorer/detail?dataset_id=ds005505) | 136 | 5393 | 1 | Healthy | 129 | other | Visual | 103 GB |
96
65
  | [ds005506](https://nemar.org/dataexplorer/detail?dataset_id=ds005506) | 150 | 5645 | 1 | Healthy | 129 | other | Visual | 112 GB |
97
66
  | [ds005507](https://nemar.org/dataexplorer/detail?dataset_id=ds005507) | 184 | 7273 | 1 | Healthy | 129 | other | Visual | 140 GB |
98
67
  | [ds005508](https://nemar.org/dataexplorer/detail?dataset_id=ds005508) | 324 | 13393 | 1 | Healthy | 129 | other | Visual | 230 GB |
99
- | [ds005509](https://nemar.org/dataexplorer/detail?dataset_id=ds005509) | 330 | 19980 | 1 | Healthy | 129 | other | Visual | 224 GB |
100
68
  | [ds005510](https://nemar.org/dataexplorer/detail?dataset_id=ds005510) | 135 | 4933 | 1 | Healthy | 129 | other | Visual | 91 GB |
101
- | [ds005511](https://nemar.org/dataexplorer/detail?dataset_id=ds005511) | 381 | 18604 | 1 | Healthy | 129 | other | Visual | 245 GB |
102
69
  | [ds005512](https://nemar.org/dataexplorer/detail?dataset_id=ds005512) | 257 | 9305 | 1 | Healthy | 129 | other | Visual | 157 GB |
103
70
  | [ds005514](https://nemar.org/dataexplorer/detail?dataset_id=ds005514) | 295 | 11565 | 1 | Healthy | 129 | other | Visual | 185 GB |
104
- | [ds005672](https://nemar.org/dataexplorer/detail?dataset_id=ds005672) | 3 | 18 | 1 | Healthy | 64 | 10-20 | Visual | 4.2 GB |
105
- | [ds005697](https://nemar.org/dataexplorer/detail?dataset_id=ds005697) | 52 | 210 | 1 | Healthy | 64 | 10-20 | Visual | 67 GB |
106
- | [ds005787](https://nemar.org/dataexplorer/detail?dataset_id=ds005787) | 30 | ? | 4 | Healthy | 64 | 10-20 | Visual | 185 GB |
71
+
72
+ A total of [246 other datasets](datasets.md) are also available through EEGDash.
107
73
 
108
74
  ## Data format
109
75
  EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
@@ -115,7 +81,7 @@ EEGDash datasets are processed using the popular [BrainDecode](https://braindeco
115
81
 
116
82
  ### Install
117
83
  Use your preferred Python environment manager with Python > 3.9 to install the package.
118
- * To install the eegdash package, use the following temporary command (a direct pip install eegdash option will be available soon): `pip install -i https://test.pypi.org/simple/eegdash`
84
+ * To install the eegdash package, use the following command: `pip install eegdash`
119
85
  * To verify the installation, start a Python session and type: `from eegdash import EEGDash`
120
86
 
121
87
  ### Data access
@@ -0,0 +1,22 @@
1
+ eegdash/__init__.py,sha256=DrliW5AazWcHJBznrmrS_YF8n8K48csOzfWWIvB6Esw,41
2
+ eegdash/data_config.py,sha256=1ecgAPP4ryKJAZNX40MFLioZuG4bKTwsx-QW7L9K5nw,676
3
+ eegdash/data_utils.py,sha256=NUQgMM98h6FNh6mncmWRrFEVS8s4yGx2Jg2brK_Wmv8,19256
4
+ eegdash/main.py,sha256=mWlvJcVzkPtXbBf_bTTj86C3b-xI_alsmtk6Ez-gXRY,14171
5
+ eegdash/features/__init__.py,sha256=6982FfzIkZ7nsAkE5d1RIDjsAEUYr8g2QWPyHpHr-Ak,604
6
+ eegdash/features/datasets.py,sha256=6X6T_B8jBcuFQ-DL2TMe87ejUJuQj1cdfL3Ydt5-UZE,17177
7
+ eegdash/features/decorators.py,sha256=9jdYifJhazTyklWMuUhsGgX_wW9_Ji6xY00tFPDiwFE,1266
8
+ eegdash/features/extractors.py,sha256=kKhMXicAAunTCUHDvA_j275AS79E9pQTuaeMZ9aAB9o,6815
9
+ eegdash/features/serialization.py,sha256=vLk5xtBqdv7UnTas_lyI6tlswkQFjV_-TaWMW2g8DLQ,2873
10
+ eegdash/features/utils.py,sha256=yIqdT4DLsdf5zD8HE8bnn8hbaliUVB2v2xR0uTGPA_M,3781
11
+ eegdash/features/feature_bank/__init__.py,sha256=uBHFHLmS4-bY5fL9whO1d15AiwMxB-U14sWFcArAL4o,149
12
+ eegdash/features/feature_bank/complexity.py,sha256=w-0X_LPO2PlyGFfy10EwkoiKtgJ5KJk1cC7lnBDGVOM,3018
13
+ eegdash/features/feature_bank/connectivity.py,sha256=egh5Iw-bnjNITuzEUnfxaqLKUB_tGxDROAgbk2MHvWg,2808
14
+ eegdash/features/feature_bank/csp.py,sha256=I2u65vj_Vb-yF8iwUosuWzWbLTXm5_67_LOGrsqP6EU,3301
15
+ eegdash/features/feature_bank/dimensionality.py,sha256=3-t4OLSMs1Khc-QYVz8L_jvjKjxLh6Wa_w6HeYhuX0U,3735
16
+ eegdash/features/feature_bank/signal.py,sha256=eaTO_cPSytwLjadHShA4DqbZH8Q5QENXVnfOwyvPuWg,2437
17
+ eegdash/features/feature_bank/spectral.py,sha256=NkKmkS9hoiJkyn4oXwRwOSwTyxtIHxe12KVIYTjeXb0,3723
18
+ eegdash-0.0.9.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
19
+ eegdash-0.0.9.dist-info/METADATA,sha256=MFXDJ87JQjHXB03QELbLtHcMWL5wZ0OnRDXCexMZ-Yc,8555
20
+ eegdash-0.0.9.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
21
+ eegdash-0.0.9.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
22
+ eegdash-0.0.9.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.0.2)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,8 +0,0 @@
1
- eegdash/__init__.py,sha256=DrliW5AazWcHJBznrmrS_YF8n8K48csOzfWWIvB6Esw,41
2
- eegdash/data_utils.py,sha256=1ETB2rW-6HvXdli75pHW9yz3xjEZN7IqApKHn9XKHv4,19205
3
- eegdash/main.py,sha256=QfFLzbs8iXmaJj4x_ylhFuEAuOCEKIKV6h_a__XPZ6Y,12048
4
- eegdash-0.0.8.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
5
- eegdash-0.0.8.dist-info/METADATA,sha256=X3AsZ23uPQY71alITDp4cOHOvgD7QmlGVagiKHj4cjE,13881
6
- eegdash-0.0.8.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
7
- eegdash-0.0.8.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
8
- eegdash-0.0.8.dist-info/RECORD,,