eegdash 0.0.8__py3-none-any.whl → 0.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/data_config.py +28 -0
- eegdash/data_utils.py +55 -56
- eegdash/features/__init__.py +25 -0
- eegdash/features/datasets.py +453 -0
- eegdash/features/decorators.py +43 -0
- eegdash/features/extractors.py +209 -0
- eegdash/features/feature_bank/__init__.py +6 -0
- eegdash/features/feature_bank/complexity.py +97 -0
- eegdash/features/feature_bank/connectivity.py +99 -0
- eegdash/features/feature_bank/csp.py +102 -0
- eegdash/features/feature_bank/dimensionality.py +108 -0
- eegdash/features/feature_bank/signal.py +103 -0
- eegdash/features/feature_bank/spectral.py +134 -0
- eegdash/features/serialization.py +87 -0
- eegdash/features/utils.py +114 -0
- eegdash/main.py +98 -50
- {eegdash-0.0.8.dist-info → eegdash-0.0.9.dist-info}/METADATA +13 -47
- eegdash-0.0.9.dist-info/RECORD +22 -0
- {eegdash-0.0.8.dist-info → eegdash-0.0.9.dist-info}/WHEEL +1 -1
- eegdash-0.0.8.dist-info/RECORD +0 -8
- {eegdash-0.0.8.dist-info → eegdash-0.0.9.dist-info}/licenses/LICENSE +0 -0
- {eegdash-0.0.8.dist-info → eegdash-0.0.9.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eegdash
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.9
|
|
4
4
|
Summary: EEG data for machine learning
|
|
5
5
|
Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
|
|
6
6
|
License: GNU General Public License
|
|
@@ -24,8 +24,8 @@ License: GNU General Public License
|
|
|
24
24
|
along with this program; if not, write to the Free Software
|
|
25
25
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
|
|
26
26
|
|
|
27
|
-
Project-URL: Homepage, https://
|
|
28
|
-
Project-URL: Issues, https://github.com/sccn/
|
|
27
|
+
Project-URL: Homepage, https://eegdash.org
|
|
28
|
+
Project-URL: Issues, https://github.com/sccn/EEGDash/issues
|
|
29
29
|
Classifier: Programming Language :: Python :: 3
|
|
30
30
|
Classifier: License :: OSI Approved :: MIT License
|
|
31
31
|
Classifier: Operating System :: OS Independent
|
|
@@ -42,6 +42,11 @@ Requires-Dist: pymongo
|
|
|
42
42
|
Requires-Dist: joblib
|
|
43
43
|
Requires-Dist: braindecode
|
|
44
44
|
Requires-Dist: mne-bids
|
|
45
|
+
Requires-Dist: pybids
|
|
46
|
+
Requires-Dist: pymatreader
|
|
47
|
+
Requires-Dist: pyarrow
|
|
48
|
+
Requires-Dist: tqdm
|
|
49
|
+
Requires-Dist: numba
|
|
45
50
|
Dynamic: license-file
|
|
46
51
|
|
|
47
52
|
# EEG-Dash
|
|
@@ -50,60 +55,21 @@ To leverage recent and ongoing advancements in large-scale computational methods
|
|
|
50
55
|
## Data source
|
|
51
56
|
The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
|
|
52
57
|
|
|
53
|
-
##
|
|
58
|
+
## Featured data
|
|
54
59
|
|
|
55
|
-
The following datasets are currently
|
|
60
|
+
The following HBN datasets are currently featured on EEGDash. Documentation about these datasets is available [here](https://neuromechanist.github.io/data/hbn/).
|
|
56
61
|
|
|
57
62
|
| DatasetID | Participants | Files | Sessions | Population | Channels | Is 10-20? | Modality | Size |
|
|
58
63
|
|---|---|---|---|---|---|---|---|---|
|
|
59
|
-
| [ds002181](https://nemar.org/dataexplorer/detail?dataset_id=ds002181) | 20 | 949 | 1 | Healthy | 63 | 10-20 | Visual | 0.163 GB |
|
|
60
|
-
| [ds002578](https://nemar.org/dataexplorer/detail?dataset_id=ds002578) | 2 | 22 | 1 | Healthy | 256 | 10-20 | Visual | 0.001 TB |
|
|
61
|
-
| [ds002680](https://nemar.org/dataexplorer/detail?dataset_id=ds002680) | 14 | 4977 | 2 | Healthy | 0 | 10-20 | Visual | 0.01 TB |
|
|
62
|
-
| [ds002691](https://nemar.org/dataexplorer/detail?dataset_id=ds002691) | 20 | 146 | 1 | Healthy | 32 | other | Visual | 0.001 TB |
|
|
63
|
-
| [ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) | 18 | 582 | 1 | Healthy | 70 | other | Visual | 0.005 TB |
|
|
64
|
-
| [ds003061](https://nemar.org/dataexplorer/detail?dataset_id=ds003061) | 13 | 282 | 1 | Not specified | 64 | 10-20 | Auditory | 0.002 TB |
|
|
65
|
-
| [ds003690](https://nemar.org/dataexplorer/detail?dataset_id=ds003690) | 75 | 2630 | 1 | Healthy | 61 | 10-20 | Auditory | 0.023 TB |
|
|
66
|
-
| [ds003805](https://nemar.org/dataexplorer/detail?dataset_id=ds003805) | 1 | 10 | 1 | Healthy | 19 | 10-20 | Multisensory | 0 TB |
|
|
67
|
-
| [ds003838](https://nemar.org/dataexplorer/detail?dataset_id=ds003838) | 65 | 947 | 1 | Healthy | 63 | 10-20 | Auditory | 100.2 GB |
|
|
68
|
-
| [ds004010](https://nemar.org/dataexplorer/detail?dataset_id=ds004010) | 24 | 102 | 1 | Healthy | 64 | other | Multisensory | 0.025 TB |
|
|
69
|
-
| [ds004040](https://nemar.org/dataexplorer/detail?dataset_id=ds004040) | 13 | 160 | 2 | Healthy | 64 | 10-20 | Auditory | 0.012 TB |
|
|
70
|
-
| [ds004350](https://nemar.org/dataexplorer/detail?dataset_id=ds004350) | 24 | 960 | 2 | Healthy | 64 | other | Visual | 0.023 TB |
|
|
71
|
-
| [ds004362](https://nemar.org/dataexplorer/detail?dataset_id=ds004362) | 109 | 9162 | 1 | Healthy | 64 | 10-20 | Visual | 0.008 TB |
|
|
72
|
-
| [ds004504](https://nemar.org/dataexplorer/detail?dataset_id=ds004504) | 88 | 269 | 1 | Dementia | 19 | 10-20 | Resting State | 2.6 GB |
|
|
73
|
-
| [ds004554](https://nemar.org/dataexplorer/detail?dataset_id=ds004554) | 16 | 101 | 1 | Healthy | 99 | 10-20 | Visual | 0.009 TB |
|
|
74
|
-
| [ds004635](https://nemar.org/dataexplorer/detail?dataset_id=ds004635) | 48 | 292 | 1 | Healthy | 129 | other | Multisensory | 26.1 GB |
|
|
75
|
-
| [ds004657](https://nemar.org/dataexplorer/detail?dataset_id=ds004657) | 24 | 838 | 6 | Not specified | 64 | 10-20 | Motor | 43.1 GB |
|
|
76
|
-
| [ds004660](https://nemar.org/dataexplorer/detail?dataset_id=ds004660) | 21 | 299 | 1 | Healthy | 32 | 10-20 | Multisensory | 7.2 GB |
|
|
77
|
-
| [ds004661](https://nemar.org/dataexplorer/detail?dataset_id=ds004661) | 17 | 90 | 1 | Not specified | 64 | 10-20 | Multisensory | 1.4 GB |
|
|
78
|
-
| [ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) | 52 | 762 | 1 | Healthy | 64 | ? | Auditory | 0 TB |
|
|
79
|
-
| [ds004785](https://nemar.org/dataexplorer/detail?dataset_id=ds004785) | 17 | 74 | 1 | Healthy | 32 | ? | Motor | 0 TB |
|
|
80
|
-
| [ds004841](https://nemar.org/dataexplorer/detail?dataset_id=ds004841) | 20 | 1034 | 2 | Not specified | 64 | 10-20 | Multisensory | 7.3 GB |
|
|
81
|
-
| [ds004842](https://nemar.org/dataexplorer/detail?dataset_id=ds004842) | 14 | 719 | 2 | Not specified | 64 | ? | Multisensory | 5.2 GB |
|
|
82
|
-
| [ds004843](https://nemar.org/dataexplorer/detail?dataset_id=ds004843) | 14 | 649 | 1 | Not specified | 64 | ? | Visual | 7.7 GB |
|
|
83
|
-
| [ds004844](https://nemar.org/dataexplorer/detail?dataset_id=ds004844) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 22.3 GB |
|
|
84
|
-
| [ds004849](https://nemar.org/dataexplorer/detail?dataset_id=ds004849) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
85
|
-
| [ds004850](https://nemar.org/dataexplorer/detail?dataset_id=ds004850) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
86
|
-
| [ds004851](https://nemar.org/dataexplorer/detail?dataset_id=ds004851) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
87
|
-
| [ds004852](https://nemar.org/dataexplorer/detail?dataset_id=ds004852) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
88
|
-
| [ds004853](https://nemar.org/dataexplorer/detail?dataset_id=ds004853) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
89
|
-
| [ds004854](https://nemar.org/dataexplorer/detail?dataset_id=ds004854) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
90
|
-
| [ds004855](https://nemar.org/dataexplorer/detail?dataset_id=ds004855) | 17 | 481 | 4 | Not specified | 64 | ? | Multisensory | 0.077 GB |
|
|
91
|
-
| [ds005034](https://nemar.org/dataexplorer/detail?dataset_id=ds005034) | 25 | 406 | 2 | Healthy | 129 | ? | Visual | 61.4 GB |
|
|
92
|
-
| [ds005079](https://nemar.org/dataexplorer/detail?dataset_id=ds005079) | 1 | 210 | 12 | Healthy | 64 | ? | Multisensory | 1.7 GB |
|
|
93
|
-
| [ds005342](https://nemar.org/dataexplorer/detail?dataset_id=ds005342) | 32 | 134 | 1 | Healthy | 17 | ? | Visual | 2 GB |
|
|
94
|
-
| [ds005410](https://nemar.org/dataexplorer/detail?dataset_id=ds005410) | 81 | 492 | 1 | Healthy | 63 | ? | ? | 19.8 GB |
|
|
95
64
|
| [ds005505](https://nemar.org/dataexplorer/detail?dataset_id=ds005505) | 136 | 5393 | 1 | Healthy | 129 | other | Visual | 103 GB |
|
|
96
65
|
| [ds005506](https://nemar.org/dataexplorer/detail?dataset_id=ds005506) | 150 | 5645 | 1 | Healthy | 129 | other | Visual | 112 GB |
|
|
97
66
|
| [ds005507](https://nemar.org/dataexplorer/detail?dataset_id=ds005507) | 184 | 7273 | 1 | Healthy | 129 | other | Visual | 140 GB |
|
|
98
67
|
| [ds005508](https://nemar.org/dataexplorer/detail?dataset_id=ds005508) | 324 | 13393 | 1 | Healthy | 129 | other | Visual | 230 GB |
|
|
99
|
-
| [ds005509](https://nemar.org/dataexplorer/detail?dataset_id=ds005509) | 330 | 19980 | 1 | Healthy | 129 | other | Visual | 224 GB |
|
|
100
68
|
| [ds005510](https://nemar.org/dataexplorer/detail?dataset_id=ds005510) | 135 | 4933 | 1 | Healthy | 129 | other | Visual | 91 GB |
|
|
101
|
-
| [ds005511](https://nemar.org/dataexplorer/detail?dataset_id=ds005511) | 381 | 18604 | 1 | Healthy | 129 | other | Visual | 245 GB |
|
|
102
69
|
| [ds005512](https://nemar.org/dataexplorer/detail?dataset_id=ds005512) | 257 | 9305 | 1 | Healthy | 129 | other | Visual | 157 GB |
|
|
103
70
|
| [ds005514](https://nemar.org/dataexplorer/detail?dataset_id=ds005514) | 295 | 11565 | 1 | Healthy | 129 | other | Visual | 185 GB |
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
| [ds005787](https://nemar.org/dataexplorer/detail?dataset_id=ds005787) | 30 | ? | 4 | Healthy | 64 | 10-20 | Visual | 185 GB |
|
|
71
|
+
|
|
72
|
+
A total of [246 other datasets](datasets.md) are also available through EEGDash.
|
|
107
73
|
|
|
108
74
|
## Data format
|
|
109
75
|
EEGDash queries return a **Pytorch Dataset** formatted to facilitate machine learning (ML) and deep learning (DL) applications. PyTorch Datasets are the best format for EEGDash queries because they provide an efficient, scalable, and flexible structure for machine learning (ML) and deep learning (DL) applications. They allow seamless integration with PyTorch’s DataLoader, enabling efficient batching, shuffling, and parallel data loading, which is essential for training deep learning models on large EEG datasets.
|
|
@@ -115,7 +81,7 @@ EEGDash datasets are processed using the popular [BrainDecode](https://braindeco
|
|
|
115
81
|
|
|
116
82
|
### Install
|
|
117
83
|
Use your preferred Python environment manager with Python > 3.9 to install the package.
|
|
118
|
-
* To install the eegdash package, use the following
|
|
84
|
+
* To install the eegdash package, use the following command: `pip install eegdash`
|
|
119
85
|
* To verify the installation, start a Python session and type: `from eegdash import EEGDash`
|
|
120
86
|
|
|
121
87
|
### Data access
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
eegdash/__init__.py,sha256=DrliW5AazWcHJBznrmrS_YF8n8K48csOzfWWIvB6Esw,41
|
|
2
|
+
eegdash/data_config.py,sha256=1ecgAPP4ryKJAZNX40MFLioZuG4bKTwsx-QW7L9K5nw,676
|
|
3
|
+
eegdash/data_utils.py,sha256=NUQgMM98h6FNh6mncmWRrFEVS8s4yGx2Jg2brK_Wmv8,19256
|
|
4
|
+
eegdash/main.py,sha256=mWlvJcVzkPtXbBf_bTTj86C3b-xI_alsmtk6Ez-gXRY,14171
|
|
5
|
+
eegdash/features/__init__.py,sha256=6982FfzIkZ7nsAkE5d1RIDjsAEUYr8g2QWPyHpHr-Ak,604
|
|
6
|
+
eegdash/features/datasets.py,sha256=6X6T_B8jBcuFQ-DL2TMe87ejUJuQj1cdfL3Ydt5-UZE,17177
|
|
7
|
+
eegdash/features/decorators.py,sha256=9jdYifJhazTyklWMuUhsGgX_wW9_Ji6xY00tFPDiwFE,1266
|
|
8
|
+
eegdash/features/extractors.py,sha256=kKhMXicAAunTCUHDvA_j275AS79E9pQTuaeMZ9aAB9o,6815
|
|
9
|
+
eegdash/features/serialization.py,sha256=vLk5xtBqdv7UnTas_lyI6tlswkQFjV_-TaWMW2g8DLQ,2873
|
|
10
|
+
eegdash/features/utils.py,sha256=yIqdT4DLsdf5zD8HE8bnn8hbaliUVB2v2xR0uTGPA_M,3781
|
|
11
|
+
eegdash/features/feature_bank/__init__.py,sha256=uBHFHLmS4-bY5fL9whO1d15AiwMxB-U14sWFcArAL4o,149
|
|
12
|
+
eegdash/features/feature_bank/complexity.py,sha256=w-0X_LPO2PlyGFfy10EwkoiKtgJ5KJk1cC7lnBDGVOM,3018
|
|
13
|
+
eegdash/features/feature_bank/connectivity.py,sha256=egh5Iw-bnjNITuzEUnfxaqLKUB_tGxDROAgbk2MHvWg,2808
|
|
14
|
+
eegdash/features/feature_bank/csp.py,sha256=I2u65vj_Vb-yF8iwUosuWzWbLTXm5_67_LOGrsqP6EU,3301
|
|
15
|
+
eegdash/features/feature_bank/dimensionality.py,sha256=3-t4OLSMs1Khc-QYVz8L_jvjKjxLh6Wa_w6HeYhuX0U,3735
|
|
16
|
+
eegdash/features/feature_bank/signal.py,sha256=eaTO_cPSytwLjadHShA4DqbZH8Q5QENXVnfOwyvPuWg,2437
|
|
17
|
+
eegdash/features/feature_bank/spectral.py,sha256=NkKmkS9hoiJkyn4oXwRwOSwTyxtIHxe12KVIYTjeXb0,3723
|
|
18
|
+
eegdash-0.0.9.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
|
|
19
|
+
eegdash-0.0.9.dist-info/METADATA,sha256=MFXDJ87JQjHXB03QELbLtHcMWL5wZ0OnRDXCexMZ-Yc,8555
|
|
20
|
+
eegdash-0.0.9.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
21
|
+
eegdash-0.0.9.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
22
|
+
eegdash-0.0.9.dist-info/RECORD,,
|
eegdash-0.0.8.dist-info/RECORD
DELETED
|
@@ -1,8 +0,0 @@
|
|
|
1
|
-
eegdash/__init__.py,sha256=DrliW5AazWcHJBznrmrS_YF8n8K48csOzfWWIvB6Esw,41
|
|
2
|
-
eegdash/data_utils.py,sha256=1ETB2rW-6HvXdli75pHW9yz3xjEZN7IqApKHn9XKHv4,19205
|
|
3
|
-
eegdash/main.py,sha256=QfFLzbs8iXmaJj4x_ylhFuEAuOCEKIKV6h_a__XPZ6Y,12048
|
|
4
|
-
eegdash-0.0.8.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
|
|
5
|
-
eegdash-0.0.8.dist-info/METADATA,sha256=X3AsZ23uPQY71alITDp4cOHOvgD7QmlGVagiKHj4cjE,13881
|
|
6
|
-
eegdash-0.0.8.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
|
|
7
|
-
eegdash-0.0.8.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
|
|
8
|
-
eegdash-0.0.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|