eegdash 0.0.7__py3-none-any.whl → 0.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

@@ -0,0 +1,22 @@
1
+ eegdash/__init__.py,sha256=DrliW5AazWcHJBznrmrS_YF8n8K48csOzfWWIvB6Esw,41
2
+ eegdash/data_config.py,sha256=1ecgAPP4ryKJAZNX40MFLioZuG4bKTwsx-QW7L9K5nw,676
3
+ eegdash/data_utils.py,sha256=NUQgMM98h6FNh6mncmWRrFEVS8s4yGx2Jg2brK_Wmv8,19256
4
+ eegdash/main.py,sha256=mWlvJcVzkPtXbBf_bTTj86C3b-xI_alsmtk6Ez-gXRY,14171
5
+ eegdash/features/__init__.py,sha256=6982FfzIkZ7nsAkE5d1RIDjsAEUYr8g2QWPyHpHr-Ak,604
6
+ eegdash/features/datasets.py,sha256=6X6T_B8jBcuFQ-DL2TMe87ejUJuQj1cdfL3Ydt5-UZE,17177
7
+ eegdash/features/decorators.py,sha256=9jdYifJhazTyklWMuUhsGgX_wW9_Ji6xY00tFPDiwFE,1266
8
+ eegdash/features/extractors.py,sha256=kKhMXicAAunTCUHDvA_j275AS79E9pQTuaeMZ9aAB9o,6815
9
+ eegdash/features/serialization.py,sha256=vLk5xtBqdv7UnTas_lyI6tlswkQFjV_-TaWMW2g8DLQ,2873
10
+ eegdash/features/utils.py,sha256=yIqdT4DLsdf5zD8HE8bnn8hbaliUVB2v2xR0uTGPA_M,3781
11
+ eegdash/features/feature_bank/__init__.py,sha256=uBHFHLmS4-bY5fL9whO1d15AiwMxB-U14sWFcArAL4o,149
12
+ eegdash/features/feature_bank/complexity.py,sha256=w-0X_LPO2PlyGFfy10EwkoiKtgJ5KJk1cC7lnBDGVOM,3018
13
+ eegdash/features/feature_bank/connectivity.py,sha256=egh5Iw-bnjNITuzEUnfxaqLKUB_tGxDROAgbk2MHvWg,2808
14
+ eegdash/features/feature_bank/csp.py,sha256=I2u65vj_Vb-yF8iwUosuWzWbLTXm5_67_LOGrsqP6EU,3301
15
+ eegdash/features/feature_bank/dimensionality.py,sha256=3-t4OLSMs1Khc-QYVz8L_jvjKjxLh6Wa_w6HeYhuX0U,3735
16
+ eegdash/features/feature_bank/signal.py,sha256=eaTO_cPSytwLjadHShA4DqbZH8Q5QENXVnfOwyvPuWg,2437
17
+ eegdash/features/feature_bank/spectral.py,sha256=NkKmkS9hoiJkyn4oXwRwOSwTyxtIHxe12KVIYTjeXb0,3723
18
+ eegdash-0.0.9.dist-info/licenses/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
19
+ eegdash-0.0.9.dist-info/METADATA,sha256=MFXDJ87JQjHXB03QELbLtHcMWL5wZ0OnRDXCexMZ-Yc,8555
20
+ eegdash-0.0.9.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
21
+ eegdash-0.0.9.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
22
+ eegdash-0.0.9.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,146 +0,0 @@
1
- Metadata-Version: 2.2
2
- Name: eegdash
3
- Version: 0.0.7
4
- Summary: EEG data for machine learning
5
- Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
- License: GNU General Public License
7
-
8
- Copyright (C) 2024-2025
9
-
10
- Young Truong, UCSD, dt.young112@gmail.com
11
- Arnaud Delorme, UCSD, adelorme@ucsd.edu
12
-
13
- This program is free software; you can redistribute it and/or modify
14
- it under the terms of the GNU General Public License as published by
15
- the Free Software Foundation; either version 2 of the License, or
16
- (at your option) any later version.
17
-
18
- This program is distributed in the hope that it will be useful,
19
- but WITHOUT ANY WARRANTY; without even the implied warranty of
20
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21
- GNU General Public License for more details.
22
-
23
- You should have received a copy of the GNU General Public License
24
- along with this program; if not, write to the Free Software
25
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
26
-
27
- Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
28
- Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
29
- Classifier: Programming Language :: Python :: 3
30
- Classifier: License :: OSI Approved :: MIT License
31
- Classifier: Operating System :: OS Independent
32
- Requires-Python: >=3.8
33
- Description-Content-Type: text/markdown
34
- License-File: LICENSE
35
- Requires-Dist: xarray
36
- Requires-Dist: python-dotenv
37
- Requires-Dist: s3fs
38
- Requires-Dist: mne
39
- Requires-Dist: pynwb
40
- Requires-Dist: h5py
41
- Requires-Dist: pymongo
42
- Requires-Dist: joblib
43
-
44
- # EEG-Dash
45
- To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
46
-
47
- ## Data source
48
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
49
-
50
- ## Datasets available
51
-
52
- There are currently only two datasets made available for testing purposes.
53
-
54
- | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
55
- |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
56
- | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
57
- | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
58
-
59
-
60
-
61
- ## Data formatting
62
- The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
63
-
64
- ![Screenshot 2024-10-03 at 09 07 28](https://github.com/user-attachments/assets/b30a79bb-0d94-410a-843c-44c3fcea01fc)
65
-
66
- ## Data access
67
- The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
68
-
69
- The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
70
-
71
- ### Install
72
- Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
73
- * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
74
- * Switch to the right environment -> `conda activate eegdash`
75
- * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
76
- * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
77
- * Check installation. Start a Python session and type `from eegdash import EEGDash`
78
-
79
- ### Python data access
80
-
81
- To create a local object for accessing the database, use the following code:
82
-
83
- ```python
84
- from eegdash import EEGDash
85
- EEGDashInstance = EEGDash()
86
- ```
87
-
88
- Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
89
-
90
- ```python
91
- EEGDashInstance.find({})
92
- ```
93
- A list of dataset is returned.
94
-
95
- ```python
96
- [{'schema_ref': 'eeg_signal',
97
- 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
98
- 'dataset': 'ds004745',
99
- 'subject': '001',
100
- 'task': 'unnamed',
101
- 'session': '',
102
- 'run': '',
103
- 'modality': 'EEG',
104
- 'sampling_frequency': 1000,
105
- 'version_timestamp': 0,
106
- 'has_file': True,
107
- 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
108
- 'time_of_removal': None}, ...
109
-
110
- ```
111
-
112
- Additionally, users can search for a specific dataset by specifying criteria.
113
-
114
- ```python
115
- EEGDashInstance.find({'task': 'FaceRecognition'})
116
- ```
117
-
118
- After locating the desired dataset or data record, users can download it locally by executing the following command. This will return an xArray Python object.
119
-
120
- ```python
121
- XArrayData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
122
- ```
123
-
124
- Optionally, this is how you may access the raw data for the first record. This will return an numpy array.
125
-
126
- ```python
127
- npData = EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
128
- ```
129
-
130
- ## Example use
131
-
132
- This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
133
-
134
- ## Education - Coming soon...
135
-
136
- We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
137
-
138
- ## About EEG-DaSh
139
-
140
- EEG-DaSh is a collaborative initiative between the United States and Israel, supported by the National Science Foundation (NSF). The partnership brings together experts from the Swartz Center for Computational Neuroscience (SCCN) at the University of California San Diego (UCSD) and Ben-Gurion University (BGU) in Israel.
141
-
142
- ![Screenshot 2024-10-03 at 09 14 06](https://github.com/user-attachments/assets/327639d3-c3b4-46b1-9335-37803209b0d3)
143
-
144
-
145
-
146
-
@@ -1,8 +0,0 @@
1
- eegdash/__init__.py,sha256=PjBBYCX47NLQxybOvz0WjcfFKGI8F3m1BBJxFhMJ6eA,25
2
- eegdash/data_utils.py,sha256=vzMGVp4PBWyRF8tbYNqkJs0QnUd5CzvmJUkpPfxdJh8,13491
3
- eegdash/main.py,sha256=fFZHHdVYNLqKr2X_NDB0XXla7A2QlHexgI9AD79_niY,7217
4
- eegdash-0.0.7.dist-info/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
5
- eegdash-0.0.7.dist-info/METADATA,sha256=vgYBLh-ysLplFv8mfjZcHshnVxwpNy0hE3WLvkie9KM,9581
6
- eegdash-0.0.7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
7
- eegdash-0.0.7.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
8
- eegdash-0.0.7.dist-info/RECORD,,