eegdash 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (71) hide show
  1. eegdash/data_utils.py +5 -1
  2. eegdash/{aws_ingest.py → script.py} +8 -12
  3. eegdash/signalstore_data_utils.py +352 -2
  4. {eegdash-0.0.1.dist-info → eegdash-0.0.2.dist-info}/METADATA +75 -8
  5. eegdash-0.0.2.dist-info/RECORD +10 -0
  6. {eegdash-0.0.1.dist-info → eegdash-0.0.2.dist-info}/WHEEL +1 -1
  7. eegdash/SignalStore/__init__.py +0 -0
  8. eegdash/SignalStore/signalstore/__init__.py +0 -3
  9. eegdash/SignalStore/signalstore/adapters/read_adapters/abstract_read_adapter.py +0 -13
  10. eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/schema_read_adapter.py +0 -16
  11. eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/vocabulary_read_adapter.py +0 -19
  12. eegdash/SignalStore/signalstore/adapters/read_adapters/handmade_records/excel_study_organizer_read_adapter.py +0 -114
  13. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/axona/axona_read_adapter.py +0 -912
  14. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/ReadIntanSpikeFile.py +0 -140
  15. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/intan_read_adapter.py +0 -29
  16. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/__init__.py +0 -0
  17. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/data_to_result.py +0 -62
  18. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/get_bytes_per_data_block.py +0 -36
  19. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/notch_filter.py +0 -50
  20. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/qstring.py +0 -41
  21. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_header.py +0 -135
  22. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_one_data_block.py +0 -45
  23. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/load_intan_rhd_format.py +0 -204
  24. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/__init__.py +0 -0
  25. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/data_to_result.py +0 -60
  26. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/get_bytes_per_data_block.py +0 -37
  27. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/notch_filter.py +0 -50
  28. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/qstring.py +0 -41
  29. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_header.py +0 -153
  30. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_one_data_block.py +0 -47
  31. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/load_intan_rhs_format.py +0 -213
  32. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/neurodata_without_borders/neurodata_without_borders_read_adapter.py +0 -14
  33. eegdash/SignalStore/signalstore/operations/__init__.py +0 -4
  34. eegdash/SignalStore/signalstore/operations/handler_executor.py +0 -22
  35. eegdash/SignalStore/signalstore/operations/handler_factory.py +0 -41
  36. eegdash/SignalStore/signalstore/operations/handlers/base_handler.py +0 -44
  37. eegdash/SignalStore/signalstore/operations/handlers/domain/property_model_handlers.py +0 -79
  38. eegdash/SignalStore/signalstore/operations/handlers/domain/schema_handlers.py +0 -3
  39. eegdash/SignalStore/signalstore/operations/helpers/abstract_helper.py +0 -17
  40. eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_extractor.py +0 -33
  41. eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_rawio.py +0 -165
  42. eegdash/SignalStore/signalstore/operations/helpers/spikeinterface_helper.py +0 -100
  43. eegdash/SignalStore/signalstore/operations/helpers/wrappers/neo_wrappers.py +0 -21
  44. eegdash/SignalStore/signalstore/operations/helpers/wrappers/nwb_wrappers.py +0 -27
  45. eegdash/SignalStore/signalstore/store/__init__.py +0 -8
  46. eegdash/SignalStore/signalstore/store/data_access_objects.py +0 -1181
  47. eegdash/SignalStore/signalstore/store/datafile_adapters.py +0 -131
  48. eegdash/SignalStore/signalstore/store/repositories.py +0 -928
  49. eegdash/SignalStore/signalstore/store/store_errors.py +0 -68
  50. eegdash/SignalStore/signalstore/store/unit_of_work.py +0 -97
  51. eegdash/SignalStore/signalstore/store/unit_of_work_provider.py +0 -67
  52. eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_recording.py +0 -1
  53. eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_sorter.py +0 -1
  54. eegdash/SignalStore/signalstore/utilities/testing/data_mocks.py +0 -513
  55. eegdash/SignalStore/signalstore/utilities/tools/dataarrays.py +0 -49
  56. eegdash/SignalStore/signalstore/utilities/tools/mongo_records.py +0 -25
  57. eegdash/SignalStore/signalstore/utilities/tools/operation_response.py +0 -78
  58. eegdash/SignalStore/signalstore/utilities/tools/purge_orchestration_response.py +0 -21
  59. eegdash/SignalStore/signalstore/utilities/tools/quantities.py +0 -15
  60. eegdash/SignalStore/signalstore/utilities/tools/strings.py +0 -38
  61. eegdash/SignalStore/signalstore/utilities/tools/time.py +0 -17
  62. eegdash/SignalStore/tests/conftest.py +0 -799
  63. eegdash/SignalStore/tests/data/valid_data/data_arrays/make_fake_data.py +0 -59
  64. eegdash/SignalStore/tests/unit/store/conftest.py +0 -0
  65. eegdash/SignalStore/tests/unit/store/test_data_access_objects.py +0 -1235
  66. eegdash/SignalStore/tests/unit/store/test_repositories.py +0 -1309
  67. eegdash/SignalStore/tests/unit/store/test_unit_of_work.py +0 -7
  68. eegdash/SignalStore/tests/unit/test_ci_cd.py +0 -8
  69. eegdash-0.0.1.dist-info/RECORD +0 -72
  70. {eegdash-0.0.1.dist-info → eegdash-0.0.2.dist-info}/LICENSE +0 -0
  71. {eegdash-0.0.1.dist-info → eegdash-0.0.2.dist-info}/top_level.txt +0 -0
eegdash/data_utils.py CHANGED
@@ -44,7 +44,11 @@ class BIDSDataset():
44
44
  self.files = np.load(temp_dir / f'{dataset}_files.npy', allow_pickle=True)
45
45
 
46
46
  def get_property_from_filename(self, property, filename):
47
- lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
47
+ import platform
48
+ if platform.system() == "Windows":
49
+ lookup = re.search(rf'{property}-(.*?)[_\\]', filename)
50
+ else:
51
+ lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
48
52
  return lookup.group(1) if lookup else ''
49
53
 
50
54
  def get_bids_file_inheritance(self, path, basename, extension):
@@ -1,15 +1,5 @@
1
- import sys
2
- sys.path.append('..')
3
1
  import argparse
4
- from src.signalstore_data_utils import SignalstoreBIDS
5
-
6
- def add_bids_dataset(args):
7
- signalstore_aws = SignalstoreBIDS(
8
- dbconnectionstring='mongodb://23.21.113.214:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.2.1',
9
- local_filesystem=False,
10
- project_name='eegdash',
11
- )
12
- signalstore_aws.add_bids_dataset(dataset=args.dataset, data_dir=args.data, raw_format='eeglab')
2
+ from signalstore_data_utils import SignalstoreOpenneuro
13
3
 
14
4
  def main():
15
5
  # Create the parser
@@ -23,7 +13,13 @@ def main():
23
13
  args = parser.parse_args()
24
14
  print('Arguments:', args)
25
15
 
26
- add_bids_dataset(args)
16
+ signalstore = SignalstoreOpenneuro(
17
+ is_public=False,
18
+ local_filesystem=False,
19
+ )
20
+ hbn_datasets = ['ds005505', 'ds005510', 'ds005514','ds005512','ds005511','ds005509','ds005508','ds005507','ds005506']
21
+ for ds in hbn_datasets:
22
+ signalstore.add_bids_dataset(dataset=ds, data_dir=f'/mnt/nemar/openneuro/{ds}', raw_format='eeglab')
27
23
 
28
24
  if __name__ == "__main__":
29
25
  main()
@@ -4,7 +4,7 @@ import re
4
4
  import numpy as np
5
5
  import xarray as xr
6
6
  import os
7
- from eegdash.SignalStore.signalstore.store import UnitOfWorkProvider
7
+ from signalstore.store import UnitOfWorkProvider
8
8
  # from mongomock import MongoClient
9
9
  from pymongo.mongo_client import MongoClient
10
10
  from pymongo.server_api import ServerApi
@@ -13,8 +13,323 @@ from fsspec.implementations.dirfs import DirFileSystem
13
13
  import pandas as pd
14
14
  import json
15
15
  import s3fs
16
- from eegdash.data_utils import BIDSDataset
16
+ from signalstore.store.data_access_objects import FileSystemDAO
17
+ from .data_utils import BIDSDataset
18
+ import tempfile
19
+ import mne
20
+ from joblib import Parallel, delayed
21
+
22
+ class SignalstoreOpenneuro():
23
+ AWS_BUCKET = 'openneuro.org'
24
+ PROJECT_NAME = 'eegdash'
25
+ def __init__(self,
26
+ dbconnectionstring="mongodb://127.0.0.1:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.3.1",
27
+ is_public=False,
28
+ local_filesystem=True,
29
+ ):
30
+ self.is_public = is_public
31
+ self.project_name = self.PROJECT_NAME
32
+ if is_public:
33
+ dbconnectionstring='mongodb+srv://eegdash-user:mdzoMjQcHWTVnKDq@cluster0.vz35p.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0',
34
+ else:
35
+ load_dotenv()
36
+ dbconnectionstring = os.getenv('DB_CONNECTION_STRING')
37
+
38
+ # Create a new client and connect to the server
39
+ client = MongoClient(dbconnectionstring, server_api=ServerApi('1'))
40
+ # Send a ping to confirm a successful connection
41
+ try:
42
+ client.admin.command('ping')
43
+ print("Pinged your deployment. You successfully connected to MongoDB!")
44
+ except Exception as e:
45
+ print(e)
46
+
47
+ memory_store = {}
48
+ self.filesystem = self.set_up_filesystem(is_local=local_filesystem)
49
+ self.uow_provider = UnitOfWorkProvider(
50
+ mongo_client=client,
51
+ filesystem=self.filesystem,
52
+ memory_store=memory_store,
53
+ default_filetype='zarr'
54
+ )
55
+
56
+ self.uow = self.uow_provider(self.PROJECT_NAME)
57
+ self.load_domain_models()
58
+
59
+ def set_up_filesystem(self, is_local=True):
60
+ if is_local:
61
+ cache_path='/mnt/nemar/dtyoung/eeg-dash-data' # path where signalstore netCDF files are stored
62
+ # Create a directory for the dataset
63
+ store_path = Path(cache_path)
64
+ if not os.path.exists(store_path):
65
+ os.makedirs(store_path)
66
+
67
+ filesystem = LocalFileSystem()
68
+ tmp_dir_fs = DirFileSystem(
69
+ store_path,
70
+ filesystem=filesystem
71
+ )
72
+ return tmp_dir_fs
73
+ else:
74
+ s3 = s3fs.S3FileSystem(anon=True, client_kwargs={'region_name': 'us-east-2'})
75
+ return s3
76
+
77
+ def load_domain_models(self):
78
+ dir_path = os.path.dirname(os.path.realpath(__file__))
79
+ cwd = Path(dir_path)
80
+ domain_models_path = cwd / f"DomainModels/{self.project_name}/data_models.json"
81
+ metamodel_path = cwd / f"DomainModels/{self.project_name}/metamodels.json"
82
+ property_path = cwd / f"DomainModels/{self.project_name}/property_models.json"
83
+ with open(metamodel_path) as f:
84
+ metamodels = json.load(f)
85
+
86
+ with open(property_path) as f:
87
+ property_models = json.load(f)
88
+
89
+ # load domain models json file
90
+ with open(domain_models_path) as f:
91
+ domain_models = json.load(f)
92
+
93
+ with self.uow as uow:
94
+ for property_model in property_models:
95
+ if not uow.domain_models.exists(property_model['schema_name']):
96
+ uow.domain_models.add(property_model)
97
+ model = uow.domain_models.get(property_model['schema_name'])
98
+ print('property model: ', model['schema_name'])
99
+ for metamodel in metamodels:
100
+ if not uow.domain_models.exists(metamodel['schema_name']):
101
+ uow.domain_models.add(metamodel)
102
+ model = uow.domain_models.get(metamodel['schema_name'])
103
+ print('meta model: ', model['schema_name'])
104
+ for domain_model in domain_models:
105
+ if not uow.domain_models.exists(domain_model['schema_name']):
106
+ uow.domain_models.add(domain_model)
107
+ model = uow.domain_models.get(domain_model['schema_name'])
108
+ print('domain model: ', model['schema_name'])
109
+ uow.commit()
110
+
111
+ def extract_attribute(self, pattern, filename):
112
+ match = re.search(pattern, filename)
113
+ return match.group(1) if match else None
114
+
115
+ def load_eeg_attrs_from_bids_file(self, bids_dataset: BIDSDataset, bids_file):
116
+ '''
117
+ bids_file must be a file of the bids_dataset
118
+ '''
119
+ if bids_file not in bids_dataset.files:
120
+ raise ValueError(f'{bids_file} not in {bids_dataset.dataset}')
121
+ f = os.path.basename(bids_file)
122
+ dsnumber = bids_dataset.dataset
123
+ # extract openneuro path by finding the first occurrence of the dataset name in the filename and remove the path before that
124
+ openneuro_path = dsnumber + bids_file.split(dsnumber)[1]
125
+
126
+ attrs = {
127
+ 'schema_ref': 'eeg_signal',
128
+ 'data_name': f'{bids_dataset.dataset}_{f}',
129
+ 'dataset': bids_dataset.dataset,
130
+ 'bidspath': openneuro_path,
131
+ 'subject': bids_dataset.subject(bids_file),
132
+ 'task': bids_dataset.task(bids_file),
133
+ 'session': bids_dataset.session(bids_file),
134
+ 'run': bids_dataset.run(bids_file),
135
+ 'sampling_frequency': bids_dataset.sfreq(bids_file),
136
+ 'modality': 'EEG',
137
+ }
138
+
139
+ return attrs
140
+
141
+ def load_eeg_data_from_s3(self, s3path):
142
+ # import boto3
143
+ # import scipy.io
144
+ # import io
145
+
146
+
147
+ # # Initialize the S3 client
148
+ # s3 = boto3.client('s3')
149
+
150
+
151
+ # # S3 bucket and object key
152
+ # bucket_name = 'your-bucket-name'
153
+ # object_key = 'path/to/your/file.mat'
154
+
155
+
156
+ # # Get the object from S3 and stream it into memory
157
+ # response = s3.get_object(Bucket=bucket_name, Key=object_key)
158
+
159
+
160
+ # # Read the content into a BytesIO buffer
161
+ # mat_file_stream = io.BytesIO(response['Body'].read())
162
+
163
+
164
+ # # Load the MAT file using scipy.io.loadmat
165
+ # data = scipy.io.loadmat(mat_file_stream)
166
+
167
+
168
+ # # Work with the data
169
+ # print(data)
170
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.set') as tmp:
171
+ with self.filesystem.open(s3path) as s3_file:
172
+ tmp.write(s3_file.read())
173
+ tmp_path = tmp.name
174
+ eeg_data = self.load_eeg_data_from_bids_file(tmp_path)
175
+ os.unlink(tmp_path)
176
+ return eeg_data
177
+
178
+ def load_eeg_data_from_bids_file(self, bids_file, eeg_attrs=None):
179
+ '''
180
+ bids_file must be a file of the bids_dataset
181
+ '''
182
+ EEG = mne.io.read_raw_eeglab(bids_file)
183
+ eeg_data = EEG.get_data()
184
+
185
+ fs = EEG.info['sfreq']
186
+ max_time = eeg_data.shape[1] / fs
187
+ time_steps = np.linspace(0, max_time, eeg_data.shape[1]).squeeze() # in seconds
188
+
189
+ channel_names = EEG.ch_names
190
+
191
+ eeg_xarray = xr.DataArray(
192
+ data=eeg_data,
193
+ dims=['channel','time'],
194
+ coords={
195
+ 'time': time_steps,
196
+ 'channel': channel_names
197
+ },
198
+ # attrs=attrs
199
+ )
200
+ return eeg_xarray
201
+
202
+ def exist(self, schema_ref='eeg_signal', data_name=''):
203
+ with self.uow as uow:
204
+ query = {
205
+ "schema_ref": schema_ref,
206
+ "data_name": data_name
207
+ }
208
+ sessions = uow.data.find(query)
209
+ if len(sessions) > 0:
210
+ return True
211
+ else:
212
+ return False
213
+
214
+ def add_bids_dataset(self, dataset, data_dir, raw_format='eeglab', overwrite=False):
215
+ '''
216
+ Create new records for the dataset in the MongoDB database if not found
217
+ '''
218
+ if self.is_public:
219
+ raise ValueError('This operation is not allowed for public users')
220
+
221
+ bids_dataset = BIDSDataset(
222
+ data_dir=data_dir,
223
+ dataset=dataset,
224
+ raw_format=raw_format,
225
+ )
226
+ for bids_file in bids_dataset.get_files():
227
+ print('bids raw file', bids_file)
228
+
229
+ signalstore_data_id = f"{dataset}_{os.path.basename(bids_file)}"
230
+ if overwrite:
231
+ self.remove(signalstore_data_id)
232
+
233
+ if self.exist(data_name=signalstore_data_id):
234
+ print('data already exist. skipped')
235
+ continue
236
+ else:
237
+ eeg_attrs = self.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
238
+ with self.uow as uow:
239
+ # Assume raw data already exists on Openneuro, recreating record only
240
+ eeg_attrs['has_file'] = True
241
+ print('adding record', eeg_attrs['data_name'])
242
+ uow.data.add(eeg_attrs)
243
+ uow.commit()
244
+
245
+ def update_bids_dataset(self, dataset, data_dir, raw_format='eeglab'):
246
+ '''
247
+ Create new records for the dataset in the MongoDB database if not found
248
+ '''
249
+ if self.is_public:
250
+ raise ValueError('This operation is not allowed for public users')
251
+
252
+ bids_dataset = BIDSDataset(
253
+ data_dir=data_dir,
254
+ dataset=dataset,
255
+ raw_format=raw_format,
256
+ )
257
+ for bids_file in bids_dataset.get_files():
258
+ print('bids raw file', bids_file)
259
+
260
+ signalstore_data_id = f"{dataset}_{os.path.basename(bids_file)}"
261
+
262
+ if not self.exist(data_name=signalstore_data_id):
263
+ raise ValueError('data not found')
264
+ else:
265
+ self.remove(data_name=signalstore_data_id)
266
+
267
+ eeg_attrs = self.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
268
+ with self.uow as uow:
269
+ # Assume raw data already exists on Openneuro, recreating record only
270
+ eeg_attrs['has_file'] = True
271
+ print('adding record', eeg_attrs['data_name'])
272
+ uow.data.add(eeg_attrs)
273
+ uow.commit()
274
+
275
+ def remove(self, schema_ref='eeg_signal', data_name=''):
276
+ if self.is_public:
277
+ raise ValueError('This operation is not allowed for public users')
278
+
279
+ print('Removing record', data_name)
280
+ with self.uow as uow:
281
+ sessions = uow.data.find({'schema_ref': schema_ref, 'data_name': data_name})
282
+ if len(sessions) > 0:
283
+ for session in sessions:
284
+ uow.data.remove(session['schema_ref'], session['data_name'])
285
+ uow.commit()
286
+ uow.purge()
287
+ assert len(uow.data.find({'schema_ref': schema_ref, 'data_name': data_name})) == 0, 'Data still exists'
17
288
 
289
+ def remove_all(self):
290
+ if self.is_public:
291
+ raise ValueError('This operation is not allowed for public users')
292
+
293
+ with self.uow as uow:
294
+ sessions = uow.data.find({})
295
+ print(len(sessions))
296
+ for session in range(len(sessions)):
297
+ uow.data.remove(session['schema_ref'], session['data_name'])
298
+ uow.commit()
299
+
300
+ uow.purge()
301
+
302
+ print('Verifying deletion job. Dataset length: ', len(uow.data.find({})))
303
+
304
+ def find(self, query:dict, validate=False):
305
+ '''
306
+ query: {
307
+ 'dataset': 'dsxxxx',
308
+
309
+ }'''
310
+ with self.uow as uow:
311
+ sessions = uow.data.find(query, validate=validate)
312
+ if sessions:
313
+ print(f'Found {len(sessions)} records')
314
+ return sessions
315
+ else:
316
+ return []
317
+
318
+ def get(self, query:dict, validate=False):
319
+ '''
320
+ query: {
321
+ 'dataset': 'dsxxxx',
322
+
323
+ }'''
324
+ with self.uow as uow:
325
+ sessions = uow.data.find(query, validate=validate)
326
+ results = []
327
+ if sessions:
328
+ print(f'Found {len(sessions)} records')
329
+ results = Parallel(n_jobs=-1, prefer="threads", verbose=1)(
330
+ delayed(self.load_eeg_data_from_s3)(Path(self.AWS_BUCKET) / session['bidspath']) for session in sessions
331
+ )
332
+ return results
18
333
 
19
334
  class SignalstoreBIDS():
20
335
  AWS_BUCKET = 'eegdash'
@@ -266,6 +581,41 @@ class SignalstoreBIDS():
266
581
  else:
267
582
  return []
268
583
 
584
+ class OpenneuroFileSystemDAO(FileSystemDAO):
585
+ def __init__(self):
586
+ filesystem = s3fs.S3FileSystem(anon=True, client_kwargs={'region_name': 'us-east-2'})
587
+ super().__init__(filesystem, project_dir='openneuro.org')
588
+
589
+ def get(self, schema_ref, data_name, version_timestamp=0, nth_most_recent=1, data_adapter=None):
590
+ """Gets an object from the Openneuro S3 bucket.
591
+ Arguments:
592
+ schema_ref {str} -- The type of object to get.
593
+ data_name {str} -- The name of the object to get.
594
+ version_timestamp {str} -- The version_timestamp of the object to get.
595
+ Raises:
596
+ FileSystemDAOFileNotFoundError -- If the object is not found.
597
+ Returns:
598
+ dict -- The object.
599
+ """
600
+ self._check_args(
601
+ schema_ref=schema_ref,
602
+ data_name=data_name,
603
+ nth_most_recent=nth_most_recent,
604
+ version_timestamp=version_timestamp,
605
+ data_adapter=data_adapter
606
+ )
607
+ if data_adapter is None:
608
+ data_adapter = self._default_data_adapter
609
+ else:
610
+ data_adapter.set_filesystem(self._fs)
611
+ path = self._get_file_path(schema_ref, data_name, version_timestamp, nth_most_recent, data_adapter)
612
+ if path is None:
613
+ return None
614
+ data_object = data_adapter.read_file(path)
615
+ data_object = self._deserialize(data_object)
616
+ return data_object
617
+
618
+
269
619
  if __name__ == "__main__":
270
620
  # sstore_hbn = SignalstoreHBN()
271
621
  # sstore_hbn.add_data()
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: eegdash
3
- Version: 0.0.1
3
+ Version: 0.0.2
4
4
  Summary: EEG data for machine learning
5
5
  Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
6
  License: GNU General Public License
@@ -32,12 +32,24 @@ Classifier: Operating System :: OS Independent
32
32
  Requires-Python: >=3.8
33
33
  Description-Content-Type: text/markdown
34
34
  License-File: LICENSE
35
+ Requires-Dist: signalstore
35
36
 
36
37
  # EEG-Dash
37
38
  To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
38
39
 
39
40
  ## Data source
40
- The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
41
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate a subset of the data converted from NEMAR, which includes 330 MEEG BIDS-formatted datasets, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
42
+
43
+ ## Datasets available
44
+
45
+ There are currently only two datasets made available for testing purposes.
46
+
47
+ | Dataset ID | Description | Participants | Channels | Task | NEMAR Link |
48
+ |------------|---------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|
49
+ | ds002718 | EEG dataset focused on face processing with MRI for source localization | 18 | 70 EEG, 2 EOG | FaceRecognition | [NEMAR ds002718](https://nemar.org/dataexplorer/detail?dataset_id=ds002718) |
50
+ | ds004745 | 8-Channel SSVEP EEG dataset with trials including voluntary movements to introduce artifacts | 6 | 8 EEG | SSVEP tasks | [NEMAR ds004745](https://nemar.org/dataexplorer/detail?dataset_id=ds004745) |
51
+
52
+
41
53
 
42
54
  ## Data formatting
43
55
  The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
@@ -49,15 +61,70 @@ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep l
49
61
 
50
62
  The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
51
63
 
52
- ### AWS S3
64
+ ### Install
65
+ Use your preferred Python environment manager with Python > 3.9 to install the package. Here we show example using Conda environment with Python 3.11.5:
66
+ * Create a new environment Python 3.11.5 -> `conda create --name eegdash python=3.11.5`
67
+ * Switch to the right environment -> `conda activate eegdash`
68
+ * Install dependencies (this is a temporary link that will be updated soon) -> `pip install -r https://raw.githubusercontent.com/sccn/EEG-Dash-Data/refs/heads/develop/requirements.txt`
69
+ * Install _eegdash_ package (this is a temporary link that will be updated soon) -> `pip install -i https://test.pypi.org/simple/ eegdash`
70
+ * Check installation. Start a Python session and type `from eegdash import EEGDash`
71
+
72
+ ### Python data access
73
+
74
+ To create a local object for accessing the database, use the following code:
75
+
76
+ ```python
77
+ from eegdash import EEGDash
78
+ EEGDashInstance = EEGDash()
79
+ ```
80
+
81
+ Once the object is instantiated, it can be utilized to search datasets. Providing an empty parameter will search the entire database and return all available datasets.
82
+
83
+ ```python
84
+ EEGDashInstance.find({})
85
+ ```
86
+ A list of dataset is returned.
87
+
88
+ ```python
89
+ [{'schema_ref': 'eeg_signal',
90
+ 'data_name': 'ds004745_sub-001_task-unnamed_eeg.set',
91
+ 'dataset': 'ds004745',
92
+ 'subject': '001',
93
+ 'task': 'unnamed',
94
+ 'session': '',
95
+ 'run': '',
96
+ 'modality': 'EEG',
97
+ 'sampling_frequency': 1000,
98
+ 'version_timestamp': 0,
99
+ 'has_file': True,
100
+ 'time_of_save': datetime.datetime(2024, 10, 25, 14, 11, 48, 843593, tzinfo=datetime.timezone.utc),
101
+ 'time_of_removal': None}, ...
102
+
103
+ ```
104
+
105
+ Additionally, users can search for a specific dataset by specifying criteria.
106
+
107
+ ```python
108
+ EEGDashInstance.find({'task': 'FaceRecognition'})
109
+ ```
110
+
111
+ After locating the desired dataset or data record, users can download it locally by executing the following command:
112
+
113
+ ```python
114
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})
115
+ ```
116
+
117
+ Optionally, this is how you may access the raw data for the first record.
53
118
 
54
- Coming soon...
119
+ ```python
120
+ EEGDashInstance.get({'task': 'FaceRecognition', 'subject': '019'})[0].values
121
+ ```
55
122
 
56
- ### EEG-Dash API
123
+ ## Example use
57
124
 
58
- Coming soon...
125
+ This [example](tests/eegdash.ipynb) demonstrates the full workflow from data retrieval with `EEGDash` to model definition, data handling, and training in PyTorch.
59
126
 
60
- ## Education
127
+ ## Education - Coming soon...
61
128
 
62
129
  We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
63
130
 
@@ -0,0 +1,10 @@
1
+ eegdash/__init__.py,sha256=hgxE8COvPu3EV2Tq3GqtMk68fsd7bYvOs_0GO6rrzfk,32
2
+ eegdash/data_utils.py,sha256=CA4lC5MKSoxCp0uJWy_n2okGtTCof2svDzSGxHZcIo0,9080
3
+ eegdash/main.py,sha256=ANyrsVCvDiKNiQAmlQt9FcyOeCoD4Oe6Gq25LM2o38o,675
4
+ eegdash/script.py,sha256=IbxGybE9Bpx0fS9QEw2YMYkakARYsEFelH-xfzlPQxU,974
5
+ eegdash/signalstore_data_utils.py,sha256=g4nSYBIR5obhlKCC1erH4C_KrmuaGVu_JJpcC59yRMY,24198
6
+ eegdash-0.0.2.dist-info/LICENSE,sha256=Xafu48R-h_kyaNj2tuhfgdEv9_ovciktjUEgRRwMZ6w,812
7
+ eegdash-0.0.2.dist-info/METADATA,sha256=rreskaKqIRA0bBmHJOpwQpFLxTX9oX_YCZpk5yd1wBs,9335
8
+ eegdash-0.0.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
9
+ eegdash-0.0.2.dist-info/top_level.txt,sha256=zavO69HQ6MyZM0aQMR2zUS6TAFc7bnN5GEpDpOpFZzU,8
10
+ eegdash-0.0.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.2.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
File without changes
@@ -1,3 +0,0 @@
1
- from eegdash.SignalStore.signalstore.store.unit_of_work_provider import UnitOfWorkProvider
2
-
3
- __all__ = ['UnitOfWorkProvider']
@@ -1,13 +0,0 @@
1
- from abc import ABC, abstractmethod
2
-
3
- class AbstractReadAdapter(ABC):
4
-
5
- def __iter__(self):
6
- return self.read().__iter__()
7
-
8
- def __next__(self):
9
- return self.read().__next__()
10
-
11
- @abstractmethod
12
- def read(self):
13
- raise NotImplementedError('AbstractReadAdapter.read() not implemented.')
@@ -1,16 +0,0 @@
1
- from signalstore.adapters.read_adapters.abstract_read_adapter import AbstractReadAdapter
2
- import json
3
- from upath import UPath
4
-
5
- class SchemaReadAdapter(AbstractReadAdapter):
6
- def __init__(self, directory):
7
- self.dir = UPath(directory)
8
-
9
- def read(self):
10
- """Reads JSON files that conform to the Neuroscikit data model schemata.
11
- """
12
- for json_filepath in self.dir.glob('*.json'):
13
- with open(json_filepath) as f:
14
- yield dict(json.load(f))
15
-
16
-
@@ -1,19 +0,0 @@
1
- from signalstore.adapters.read_adapters.abstract_read_adapter import AbstractReadAdapter
2
-
3
- import yaml
4
-
5
- class VocabularyReadAdapter(AbstractReadAdapter):
6
- def __init__(self, filepath):
7
- self.filepath = filepath
8
-
9
- def read(self):
10
- """Reads a YAML file and converts each data object into an xarray.DataArray with
11
- the appropriate dimensions, coordinates and metadata attributes for the
12
- Neuroscikit data model.
13
- """
14
- with open(self.filepath) as f:
15
- yaml_dict = yaml.load(f, Loader=yaml.FullLoader)
16
- for key, value in yaml_dict.items():
17
- record = {"name": key}
18
- record.update(value)
19
- yield record