edsl 0.1.46__py3-none-any.whl → 0.1.48__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- edsl/__init__.py +44 -39
- edsl/__version__.py +1 -1
- edsl/agents/__init__.py +4 -2
- edsl/agents/{Agent.py → agent.py} +442 -152
- edsl/agents/{AgentList.py → agent_list.py} +220 -162
- edsl/agents/descriptors.py +46 -7
- edsl/{exceptions/agents.py → agents/exceptions.py} +3 -12
- edsl/base/__init__.py +75 -0
- edsl/base/base_class.py +1303 -0
- edsl/base/data_transfer_models.py +114 -0
- edsl/base/enums.py +215 -0
- edsl/base.py +8 -0
- edsl/buckets/__init__.py +25 -0
- edsl/buckets/bucket_collection.py +324 -0
- edsl/buckets/model_buckets.py +206 -0
- edsl/buckets/token_bucket.py +502 -0
- edsl/{jobs/buckets/TokenBucketAPI.py → buckets/token_bucket_api.py} +1 -1
- edsl/buckets/token_bucket_client.py +509 -0
- edsl/caching/__init__.py +20 -0
- edsl/caching/cache.py +814 -0
- edsl/caching/cache_entry.py +427 -0
- edsl/{data/CacheHandler.py → caching/cache_handler.py} +14 -15
- edsl/caching/exceptions.py +24 -0
- edsl/caching/orm.py +30 -0
- edsl/{data/RemoteCacheSync.py → caching/remote_cache_sync.py} +3 -3
- edsl/caching/sql_dict.py +441 -0
- edsl/config/__init__.py +8 -0
- edsl/config/config_class.py +177 -0
- edsl/config.py +4 -176
- edsl/conversation/Conversation.py +7 -7
- edsl/conversation/car_buying.py +4 -4
- edsl/conversation/chips.py +6 -6
- edsl/coop/__init__.py +25 -2
- edsl/coop/coop.py +430 -113
- edsl/coop/{ExpectedParrotKeyHandler.py → ep_key_handling.py} +86 -10
- edsl/coop/exceptions.py +62 -0
- edsl/coop/price_fetcher.py +126 -0
- edsl/coop/utils.py +89 -24
- edsl/data_transfer_models.py +5 -72
- edsl/dataset/__init__.py +10 -0
- edsl/{results/Dataset.py → dataset/dataset.py} +116 -36
- edsl/dataset/dataset_operations_mixin.py +1492 -0
- edsl/{results/DatasetTree.py → dataset/dataset_tree.py} +156 -75
- edsl/{results/TableDisplay.py → dataset/display/table_display.py} +18 -7
- edsl/{results → dataset/display}/table_renderers.py +58 -2
- edsl/{results → dataset}/file_exports.py +4 -5
- edsl/{results → dataset}/smart_objects.py +2 -2
- edsl/enums.py +5 -205
- edsl/inference_services/__init__.py +5 -0
- edsl/inference_services/{AvailableModelCacheHandler.py → available_model_cache_handler.py} +2 -3
- edsl/inference_services/{AvailableModelFetcher.py → available_model_fetcher.py} +8 -14
- edsl/inference_services/data_structures.py +3 -2
- edsl/{exceptions/inference_services.py → inference_services/exceptions.py} +1 -1
- edsl/inference_services/{InferenceServiceABC.py → inference_service_abc.py} +1 -1
- edsl/inference_services/{InferenceServicesCollection.py → inference_services_collection.py} +8 -7
- edsl/inference_services/registry.py +4 -41
- edsl/inference_services/{ServiceAvailability.py → service_availability.py} +5 -25
- edsl/inference_services/services/__init__.py +31 -0
- edsl/inference_services/{AnthropicService.py → services/anthropic_service.py} +3 -3
- edsl/inference_services/{AwsBedrock.py → services/aws_bedrock.py} +2 -2
- edsl/inference_services/{AzureAI.py → services/azure_ai.py} +2 -2
- edsl/inference_services/{DeepInfraService.py → services/deep_infra_service.py} +1 -3
- edsl/inference_services/{DeepSeekService.py → services/deep_seek_service.py} +2 -4
- edsl/inference_services/{GoogleService.py → services/google_service.py} +5 -4
- edsl/inference_services/{GroqService.py → services/groq_service.py} +1 -1
- edsl/inference_services/{MistralAIService.py → services/mistral_ai_service.py} +3 -3
- edsl/inference_services/{OllamaService.py → services/ollama_service.py} +1 -7
- edsl/inference_services/{OpenAIService.py → services/open_ai_service.py} +5 -6
- edsl/inference_services/{PerplexityService.py → services/perplexity_service.py} +12 -12
- edsl/inference_services/{TestService.py → services/test_service.py} +7 -6
- edsl/inference_services/{TogetherAIService.py → services/together_ai_service.py} +2 -6
- edsl/inference_services/{XAIService.py → services/xai_service.py} +1 -1
- edsl/inference_services/write_available.py +1 -2
- edsl/instructions/__init__.py +6 -0
- edsl/{surveys/instructions/Instruction.py → instructions/instruction.py} +11 -6
- edsl/{surveys/instructions/InstructionCollection.py → instructions/instruction_collection.py} +10 -5
- edsl/{surveys/InstructionHandler.py → instructions/instruction_handler.py} +3 -3
- edsl/{jobs/interviews → interviews}/ReportErrors.py +2 -2
- edsl/interviews/__init__.py +4 -0
- edsl/{jobs/AnswerQuestionFunctionConstructor.py → interviews/answering_function.py} +45 -18
- edsl/{jobs/interviews/InterviewExceptionEntry.py → interviews/exception_tracking.py} +107 -22
- edsl/interviews/interview.py +638 -0
- edsl/{jobs/interviews/InterviewStatusDictionary.py → interviews/interview_status_dictionary.py} +21 -12
- edsl/{jobs/interviews/InterviewStatusLog.py → interviews/interview_status_log.py} +16 -7
- edsl/{jobs/InterviewTaskManager.py → interviews/interview_task_manager.py} +12 -7
- edsl/{jobs/RequestTokenEstimator.py → interviews/request_token_estimator.py} +8 -3
- edsl/{jobs/interviews/InterviewStatistic.py → interviews/statistics.py} +36 -10
- edsl/invigilators/__init__.py +38 -0
- edsl/invigilators/invigilator_base.py +477 -0
- edsl/{agents/Invigilator.py → invigilators/invigilators.py} +263 -10
- edsl/invigilators/prompt_constructor.py +476 -0
- edsl/{agents → invigilators}/prompt_helpers.py +2 -1
- edsl/{agents/QuestionInstructionPromptBuilder.py → invigilators/question_instructions_prompt_builder.py} +18 -13
- edsl/{agents → invigilators}/question_option_processor.py +96 -21
- edsl/{agents/QuestionTemplateReplacementsBuilder.py → invigilators/question_template_replacements_builder.py} +64 -12
- edsl/jobs/__init__.py +7 -1
- edsl/jobs/async_interview_runner.py +99 -35
- edsl/jobs/check_survey_scenario_compatibility.py +7 -5
- edsl/jobs/data_structures.py +153 -22
- edsl/{exceptions/jobs.py → jobs/exceptions.py} +2 -1
- edsl/jobs/{FetchInvigilator.py → fetch_invigilator.py} +4 -4
- edsl/jobs/{loggers/HTMLTableJobLogger.py → html_table_job_logger.py} +6 -2
- edsl/jobs/{Jobs.py → jobs.py} +321 -155
- edsl/jobs/{JobsChecks.py → jobs_checks.py} +15 -7
- edsl/jobs/{JobsComponentConstructor.py → jobs_component_constructor.py} +20 -17
- edsl/jobs/{InterviewsConstructor.py → jobs_interview_constructor.py} +10 -5
- edsl/jobs/jobs_pricing_estimation.py +347 -0
- edsl/jobs/{JobsRemoteInferenceLogger.py → jobs_remote_inference_logger.py} +4 -3
- edsl/jobs/jobs_runner_asyncio.py +282 -0
- edsl/jobs/{JobsRemoteInferenceHandler.py → remote_inference.py} +19 -22
- edsl/jobs/results_exceptions_handler.py +2 -2
- edsl/key_management/__init__.py +28 -0
- edsl/key_management/key_lookup.py +161 -0
- edsl/{language_models/key_management/KeyLookupBuilder.py → key_management/key_lookup_builder.py} +118 -47
- edsl/key_management/key_lookup_collection.py +82 -0
- edsl/key_management/models.py +218 -0
- edsl/language_models/__init__.py +7 -2
- edsl/language_models/{ComputeCost.py → compute_cost.py} +18 -3
- edsl/{exceptions/language_models.py → language_models/exceptions.py} +2 -1
- edsl/language_models/language_model.py +1080 -0
- edsl/language_models/model.py +10 -25
- edsl/language_models/{ModelList.py → model_list.py} +9 -14
- edsl/language_models/{RawResponseHandler.py → raw_response_handler.py} +1 -1
- edsl/language_models/{RegisterLanguageModelsMeta.py → registry.py} +1 -1
- edsl/language_models/repair.py +4 -4
- edsl/language_models/utilities.py +4 -4
- edsl/notebooks/__init__.py +3 -1
- edsl/notebooks/{Notebook.py → notebook.py} +7 -8
- edsl/prompts/__init__.py +1 -1
- edsl/{exceptions/prompts.py → prompts/exceptions.py} +3 -1
- edsl/prompts/{Prompt.py → prompt.py} +101 -95
- edsl/questions/HTMLQuestion.py +1 -1
- edsl/questions/__init__.py +154 -25
- edsl/questions/answer_validator_mixin.py +1 -1
- edsl/questions/compose_questions.py +4 -3
- edsl/questions/derived/question_likert_five.py +166 -0
- edsl/questions/derived/{QuestionLinearScale.py → question_linear_scale.py} +4 -4
- edsl/questions/derived/{QuestionTopK.py → question_top_k.py} +4 -4
- edsl/questions/derived/{QuestionYesNo.py → question_yes_no.py} +4 -5
- edsl/questions/descriptors.py +24 -30
- edsl/questions/loop_processor.py +65 -19
- edsl/questions/question_base.py +881 -0
- edsl/questions/question_base_gen_mixin.py +15 -16
- edsl/questions/{QuestionBasePromptsMixin.py → question_base_prompts_mixin.py} +2 -2
- edsl/questions/{QuestionBudget.py → question_budget.py} +3 -4
- edsl/questions/{QuestionCheckBox.py → question_check_box.py} +16 -16
- edsl/questions/{QuestionDict.py → question_dict.py} +39 -5
- edsl/questions/{QuestionExtract.py → question_extract.py} +9 -9
- edsl/questions/question_free_text.py +282 -0
- edsl/questions/{QuestionFunctional.py → question_functional.py} +6 -5
- edsl/questions/{QuestionList.py → question_list.py} +6 -7
- edsl/questions/{QuestionMatrix.py → question_matrix.py} +6 -5
- edsl/questions/{QuestionMultipleChoice.py → question_multiple_choice.py} +126 -21
- edsl/questions/{QuestionNumerical.py → question_numerical.py} +5 -5
- edsl/questions/{QuestionRank.py → question_rank.py} +6 -6
- edsl/questions/question_registry.py +10 -16
- edsl/questions/register_questions_meta.py +8 -4
- edsl/questions/response_validator_abc.py +17 -16
- edsl/results/__init__.py +4 -1
- edsl/{exceptions/results.py → results/exceptions.py} +1 -1
- edsl/results/report.py +197 -0
- edsl/results/{Result.py → result.py} +131 -45
- edsl/results/{Results.py → results.py} +420 -216
- edsl/results/results_selector.py +344 -25
- edsl/scenarios/__init__.py +30 -3
- edsl/scenarios/{ConstructDownloadLink.py → construct_download_link.py} +7 -0
- edsl/scenarios/directory_scanner.py +156 -13
- edsl/scenarios/document_chunker.py +186 -0
- edsl/scenarios/exceptions.py +101 -0
- edsl/scenarios/file_methods.py +2 -3
- edsl/scenarios/file_store.py +755 -0
- edsl/scenarios/handlers/__init__.py +14 -14
- edsl/scenarios/handlers/{csv.py → csv_file_store.py} +1 -2
- edsl/scenarios/handlers/{docx.py → docx_file_store.py} +8 -7
- edsl/scenarios/handlers/{html.py → html_file_store.py} +1 -2
- edsl/scenarios/handlers/{jpeg.py → jpeg_file_store.py} +1 -1
- edsl/scenarios/handlers/{json.py → json_file_store.py} +1 -1
- edsl/scenarios/handlers/latex_file_store.py +5 -0
- edsl/scenarios/handlers/{md.py → md_file_store.py} +1 -1
- edsl/scenarios/handlers/{pdf.py → pdf_file_store.py} +2 -2
- edsl/scenarios/handlers/{png.py → png_file_store.py} +1 -1
- edsl/scenarios/handlers/{pptx.py → pptx_file_store.py} +8 -7
- edsl/scenarios/handlers/{py.py → py_file_store.py} +1 -3
- edsl/scenarios/handlers/{sql.py → sql_file_store.py} +2 -1
- edsl/scenarios/handlers/{sqlite.py → sqlite_file_store.py} +2 -3
- edsl/scenarios/handlers/{txt.py → txt_file_store.py} +1 -1
- edsl/scenarios/scenario.py +928 -0
- edsl/scenarios/scenario_join.py +18 -5
- edsl/scenarios/{ScenarioList.py → scenario_list.py} +424 -106
- edsl/scenarios/{ScenarioListPdfMixin.py → scenario_list_pdf_tools.py} +16 -15
- edsl/scenarios/scenario_selector.py +5 -1
- edsl/study/ObjectEntry.py +2 -2
- edsl/study/SnapShot.py +5 -5
- edsl/study/Study.py +20 -21
- edsl/study/__init__.py +6 -4
- edsl/surveys/__init__.py +7 -4
- edsl/surveys/dag/__init__.py +2 -0
- edsl/surveys/{ConstructDAG.py → dag/construct_dag.py} +3 -3
- edsl/surveys/{DAG.py → dag/dag.py} +13 -10
- edsl/surveys/descriptors.py +1 -1
- edsl/surveys/{EditSurvey.py → edit_survey.py} +9 -9
- edsl/{exceptions/surveys.py → surveys/exceptions.py} +1 -2
- edsl/surveys/memory/__init__.py +3 -0
- edsl/surveys/{MemoryPlan.py → memory/memory_plan.py} +10 -9
- edsl/surveys/rules/__init__.py +3 -0
- edsl/surveys/{Rule.py → rules/rule.py} +103 -43
- edsl/surveys/{RuleCollection.py → rules/rule_collection.py} +21 -30
- edsl/surveys/{RuleManager.py → rules/rule_manager.py} +19 -13
- edsl/surveys/survey.py +1743 -0
- edsl/surveys/{SurveyExportMixin.py → survey_export.py} +22 -27
- edsl/surveys/{SurveyFlowVisualization.py → survey_flow_visualization.py} +11 -2
- edsl/surveys/{Simulator.py → survey_simulator.py} +10 -3
- edsl/tasks/__init__.py +32 -0
- edsl/{jobs/tasks/QuestionTaskCreator.py → tasks/question_task_creator.py} +115 -57
- edsl/tasks/task_creators.py +135 -0
- edsl/{jobs/tasks/TaskHistory.py → tasks/task_history.py} +86 -47
- edsl/{jobs/tasks → tasks}/task_status_enum.py +91 -7
- edsl/tasks/task_status_log.py +85 -0
- edsl/tokens/__init__.py +2 -0
- edsl/tokens/interview_token_usage.py +53 -0
- edsl/utilities/PrettyList.py +1 -1
- edsl/utilities/SystemInfo.py +25 -22
- edsl/utilities/__init__.py +29 -21
- edsl/utilities/gcp_bucket/__init__.py +2 -0
- edsl/utilities/gcp_bucket/cloud_storage.py +99 -96
- edsl/utilities/interface.py +44 -536
- edsl/{results/MarkdownToPDF.py → utilities/markdown_to_pdf.py} +13 -5
- edsl/utilities/repair_functions.py +1 -1
- {edsl-0.1.46.dist-info → edsl-0.1.48.dist-info}/METADATA +3 -2
- edsl-0.1.48.dist-info/RECORD +347 -0
- edsl/Base.py +0 -426
- edsl/BaseDiff.py +0 -260
- edsl/agents/InvigilatorBase.py +0 -260
- edsl/agents/PromptConstructor.py +0 -318
- edsl/auto/AutoStudy.py +0 -130
- edsl/auto/StageBase.py +0 -243
- edsl/auto/StageGenerateSurvey.py +0 -178
- edsl/auto/StageLabelQuestions.py +0 -125
- edsl/auto/StagePersona.py +0 -61
- edsl/auto/StagePersonaDimensionValueRanges.py +0 -88
- edsl/auto/StagePersonaDimensionValues.py +0 -74
- edsl/auto/StagePersonaDimensions.py +0 -69
- edsl/auto/StageQuestions.py +0 -74
- edsl/auto/SurveyCreatorPipeline.py +0 -21
- edsl/auto/utilities.py +0 -218
- edsl/base/Base.py +0 -279
- edsl/coop/PriceFetcher.py +0 -54
- edsl/data/Cache.py +0 -580
- edsl/data/CacheEntry.py +0 -230
- edsl/data/SQLiteDict.py +0 -292
- edsl/data/__init__.py +0 -5
- edsl/data/orm.py +0 -10
- edsl/exceptions/cache.py +0 -5
- edsl/exceptions/coop.py +0 -14
- edsl/exceptions/data.py +0 -14
- edsl/exceptions/scenarios.py +0 -29
- edsl/jobs/Answers.py +0 -43
- edsl/jobs/JobsPrompts.py +0 -354
- edsl/jobs/buckets/BucketCollection.py +0 -134
- edsl/jobs/buckets/ModelBuckets.py +0 -65
- edsl/jobs/buckets/TokenBucket.py +0 -283
- edsl/jobs/buckets/TokenBucketClient.py +0 -191
- edsl/jobs/interviews/Interview.py +0 -395
- edsl/jobs/interviews/InterviewExceptionCollection.py +0 -99
- edsl/jobs/interviews/InterviewStatisticsCollection.py +0 -25
- edsl/jobs/runners/JobsRunnerAsyncio.py +0 -163
- edsl/jobs/runners/JobsRunnerStatusData.py +0 -0
- edsl/jobs/tasks/TaskCreators.py +0 -64
- edsl/jobs/tasks/TaskStatusLog.py +0 -23
- edsl/jobs/tokens/InterviewTokenUsage.py +0 -27
- edsl/language_models/LanguageModel.py +0 -635
- edsl/language_models/ServiceDataSources.py +0 -0
- edsl/language_models/key_management/KeyLookup.py +0 -63
- edsl/language_models/key_management/KeyLookupCollection.py +0 -38
- edsl/language_models/key_management/models.py +0 -137
- edsl/questions/QuestionBase.py +0 -539
- edsl/questions/QuestionFreeText.py +0 -130
- edsl/questions/derived/QuestionLikertFive.py +0 -76
- edsl/results/DatasetExportMixin.py +0 -911
- edsl/results/ResultsExportMixin.py +0 -45
- edsl/results/TextEditor.py +0 -50
- edsl/results/results_fetch_mixin.py +0 -33
- edsl/results/results_tools_mixin.py +0 -98
- edsl/scenarios/DocumentChunker.py +0 -104
- edsl/scenarios/FileStore.py +0 -564
- edsl/scenarios/Scenario.py +0 -548
- edsl/scenarios/ScenarioHtmlMixin.py +0 -65
- edsl/scenarios/ScenarioListExportMixin.py +0 -45
- edsl/scenarios/handlers/latex.py +0 -5
- edsl/shared.py +0 -1
- edsl/surveys/Survey.py +0 -1306
- edsl/surveys/SurveyQualtricsImport.py +0 -284
- edsl/surveys/SurveyToApp.py +0 -141
- edsl/surveys/instructions/__init__.py +0 -0
- edsl/tools/__init__.py +0 -1
- edsl/tools/clusters.py +0 -192
- edsl/tools/embeddings.py +0 -27
- edsl/tools/embeddings_plotting.py +0 -118
- edsl/tools/plotting.py +0 -112
- edsl/tools/summarize.py +0 -18
- edsl/utilities/data/Registry.py +0 -6
- edsl/utilities/data/__init__.py +0 -1
- edsl/utilities/data/scooter_results.json +0 -1
- edsl-0.1.46.dist-info/RECORD +0 -366
- /edsl/coop/{CoopFunctionsMixin.py → coop_functions.py} +0 -0
- /edsl/{results → dataset/display}/CSSParameterizer.py +0 -0
- /edsl/{language_models/key_management → dataset/display}/__init__.py +0 -0
- /edsl/{results → dataset/display}/table_data_class.py +0 -0
- /edsl/{results → dataset/display}/table_display.css +0 -0
- /edsl/{results/ResultsGGMixin.py → dataset/r/ggplot.py} +0 -0
- /edsl/{results → dataset}/tree_explore.py +0 -0
- /edsl/{surveys/instructions/ChangeInstruction.py → instructions/change_instruction.py} +0 -0
- /edsl/{jobs/interviews → interviews}/interview_status_enum.py +0 -0
- /edsl/jobs/{runners/JobsRunnerStatus.py → jobs_runner_status.py} +0 -0
- /edsl/language_models/{PriceManager.py → price_manager.py} +0 -0
- /edsl/language_models/{fake_openai_call.py → unused/fake_openai_call.py} +0 -0
- /edsl/language_models/{fake_openai_service.py → unused/fake_openai_service.py} +0 -0
- /edsl/notebooks/{NotebookToLaTeX.py → notebook_to_latex.py} +0 -0
- /edsl/{exceptions/questions.py → questions/exceptions.py} +0 -0
- /edsl/questions/{SimpleAskMixin.py → simple_ask_mixin.py} +0 -0
- /edsl/surveys/{Memory.py → memory/memory.py} +0 -0
- /edsl/surveys/{MemoryManagement.py → memory/memory_management.py} +0 -0
- /edsl/surveys/{SurveyCSS.py → survey_css.py} +0 -0
- /edsl/{jobs/tokens/TokenUsage.py → tokens/token_usage.py} +0 -0
- /edsl/{results/MarkdownToDocx.py → utilities/markdown_to_docx.py} +0 -0
- /edsl/{TemplateLoader.py → utilities/template_loader.py} +0 -0
- {edsl-0.1.46.dist-info → edsl-0.1.48.dist-info}/LICENSE +0 -0
- {edsl-0.1.46.dist-info → edsl-0.1.48.dist-info}/WHEEL +0 -0
@@ -0,0 +1,1492 @@
|
|
1
|
+
"""
|
2
|
+
This module provides mixin classes that enable powerful data manipulation operations
|
3
|
+
across various EDSL list-like objects.
|
4
|
+
|
5
|
+
The DataOperationsBase class defines common operations for working with structured data,
|
6
|
+
including data transformation, visualization, export, querying, and analysis. These
|
7
|
+
operations are inherited by different specialized mixins (DatasetOperationsMixin,
|
8
|
+
ResultsOperationsMixin, etc.) which implement class-specific behaviors.
|
9
|
+
|
10
|
+
The design pattern used here allows different container types (Results, Dataset,
|
11
|
+
ScenarioList, AgentList) to share the same data manipulation interface, enabling
|
12
|
+
fluid operations across different parts of the EDSL ecosystem.
|
13
|
+
"""
|
14
|
+
|
15
|
+
from abc import ABC, abstractmethod
|
16
|
+
import io
|
17
|
+
import warnings
|
18
|
+
import textwrap
|
19
|
+
from typing import Optional, Tuple, Union, List, TYPE_CHECKING
|
20
|
+
from .r.ggplot import GGPlotMethod
|
21
|
+
|
22
|
+
if TYPE_CHECKING:
|
23
|
+
from docx import Document
|
24
|
+
from .dataset import Dataset
|
25
|
+
|
26
|
+
class DataOperationsBase:
|
27
|
+
"""
|
28
|
+
Base class providing common data operations for EDSL container objects.
|
29
|
+
|
30
|
+
This class serves as the foundation for various data manipulation mixins,
|
31
|
+
providing a consistent interface for operations like filtering, aggregation,
|
32
|
+
transformation, visualization, and export across different types of EDSL
|
33
|
+
containers (Results, Dataset, ScenarioList, AgentList).
|
34
|
+
|
35
|
+
Key functionality categories:
|
36
|
+
|
37
|
+
1. Data Transformation:
|
38
|
+
- Filtering with `filter()`
|
39
|
+
- Creating new columns with `mutate()`
|
40
|
+
- Reshaping with `long()`, `wide()`, `flatten()`, etc.
|
41
|
+
- Selecting specific columns with `select()`
|
42
|
+
|
43
|
+
2. Visualization and Display:
|
44
|
+
- Tabular display with `table()`
|
45
|
+
- Plotting with `ggplot2()`
|
46
|
+
- Generating reports with `report()`
|
47
|
+
|
48
|
+
3. Data Export:
|
49
|
+
- To various formats with `to_csv()`, `to_excel()`, etc.
|
50
|
+
- To other data structures with `to_pandas()`, `to_dicts()`, etc.
|
51
|
+
|
52
|
+
4. Analysis:
|
53
|
+
- SQL-based querying with `sql()`
|
54
|
+
- Aggregation with `tally()`
|
55
|
+
- Tree-based exploration
|
56
|
+
|
57
|
+
These operations are designed to be applied fluently in sequence, enabling
|
58
|
+
expressive data manipulation pipelines.
|
59
|
+
"""
|
60
|
+
|
61
|
+
|
62
|
+
def ggplot2(
|
63
|
+
self,
|
64
|
+
ggplot_code: str,
|
65
|
+
shape: str = "wide",
|
66
|
+
sql: Optional[str] = None,
|
67
|
+
remove_prefix: bool = True,
|
68
|
+
debug: bool = False,
|
69
|
+
height: float = 4,
|
70
|
+
width: float = 6,
|
71
|
+
factor_orders: Optional[dict] = None,
|
72
|
+
):
|
73
|
+
"""
|
74
|
+
Create visualizations using R's ggplot2 library.
|
75
|
+
|
76
|
+
This method provides a bridge to R's powerful ggplot2 visualization library,
|
77
|
+
allowing you to create sophisticated plots directly from EDSL data structures.
|
78
|
+
|
79
|
+
Parameters:
|
80
|
+
ggplot_code: R code string containing ggplot2 commands
|
81
|
+
shape: Data shape to use ("wide" or "long")
|
82
|
+
sql: Optional SQL query to transform data before visualization
|
83
|
+
remove_prefix: Whether to remove prefixes (like "answer.") from column names
|
84
|
+
debug: Whether to display debugging information
|
85
|
+
height: Plot height in inches
|
86
|
+
width: Plot width in inches
|
87
|
+
factor_orders: Dictionary mapping factor variables to their desired order
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
A plot object that renders in Jupyter notebooks
|
91
|
+
|
92
|
+
Notes:
|
93
|
+
- Requires R and the ggplot2 package to be installed
|
94
|
+
- Data is automatically converted to a format suitable for ggplot2
|
95
|
+
- The ggplot2 code should reference column names as they appear after
|
96
|
+
any transformations from the shape and remove_prefix parameters
|
97
|
+
|
98
|
+
Examples:
|
99
|
+
>>> from edsl.results import Results
|
100
|
+
>>> r = Results.example()
|
101
|
+
>>> # The following would create a plot if R is installed (not shown in doctest):
|
102
|
+
>>> # r.ggplot2('''
|
103
|
+
>>> # ggplot(df, aes(x=how_feeling)) +
|
104
|
+
>>> # geom_bar() +
|
105
|
+
>>> # labs(title="Distribution of Feelings")
|
106
|
+
>>> # ''')
|
107
|
+
"""
|
108
|
+
return GGPlotMethod(self).ggplot2(ggplot_code, shape, sql, remove_prefix, debug, height, width, factor_orders)
|
109
|
+
|
110
|
+
|
111
|
+
def relevant_columns(
|
112
|
+
self, data_type: Optional[str] = None, remove_prefix:bool=False
|
113
|
+
) -> list:
|
114
|
+
"""Return the set of keys that are present in the dataset.
|
115
|
+
|
116
|
+
:param data_type: The data type to filter by.
|
117
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
118
|
+
|
119
|
+
>>> from ..dataset import Dataset
|
120
|
+
>>> d = Dataset([{'a.b':[1,2,3,4]}])
|
121
|
+
>>> d.relevant_columns()
|
122
|
+
['a.b']
|
123
|
+
|
124
|
+
>>> d.relevant_columns(remove_prefix=True)
|
125
|
+
['b']
|
126
|
+
|
127
|
+
>>> d = Dataset([{'a':[1,2,3,4]}, {'b':[5,6,7,8]}])
|
128
|
+
>>> d.relevant_columns()
|
129
|
+
['a', 'b']
|
130
|
+
|
131
|
+
>>> from edsl.results import Results; Results.example().select('how_feeling', 'how_feeling_yesterday').relevant_columns()
|
132
|
+
['answer.how_feeling', 'answer.how_feeling_yesterday']
|
133
|
+
|
134
|
+
>>> from edsl.results import Results
|
135
|
+
>>> sorted(Results.example().select().relevant_columns(data_type = "model"))
|
136
|
+
['model.frequency_penalty', ...]
|
137
|
+
|
138
|
+
>>> Results.example().relevant_columns(data_type = "flimflam")
|
139
|
+
Traceback (most recent call last):
|
140
|
+
...
|
141
|
+
ValueError: No columns found for data type: flimflam. Available data types are: ...
|
142
|
+
"""
|
143
|
+
columns = [list(x.keys())[0] for x in self]
|
144
|
+
if remove_prefix:
|
145
|
+
columns = [column.split(".")[-1] for column in columns]
|
146
|
+
|
147
|
+
def get_data_type(column):
|
148
|
+
if "." in column:
|
149
|
+
return column.split(".")[0]
|
150
|
+
else:
|
151
|
+
return None
|
152
|
+
|
153
|
+
if data_type:
|
154
|
+
all_columns = columns[:]
|
155
|
+
columns = [
|
156
|
+
column for column in columns if get_data_type(column) == data_type
|
157
|
+
]
|
158
|
+
if len(columns) == 0:
|
159
|
+
all_data_types = sorted(
|
160
|
+
list(set(get_data_type(column) for column in all_columns))
|
161
|
+
)
|
162
|
+
raise ValueError(
|
163
|
+
f"No columns found for data type: {data_type}. Available data types are: {all_data_types}."
|
164
|
+
)
|
165
|
+
|
166
|
+
return columns
|
167
|
+
|
168
|
+
def num_observations(self):
|
169
|
+
"""Return the number of observations in the dataset.
|
170
|
+
|
171
|
+
>>> from edsl.results import Results
|
172
|
+
>>> Results.example().num_observations()
|
173
|
+
4
|
174
|
+
"""
|
175
|
+
_num_observations = None
|
176
|
+
for entry in self:
|
177
|
+
key, values = list(entry.items())[0]
|
178
|
+
if _num_observations is None:
|
179
|
+
_num_observations = len(values)
|
180
|
+
else:
|
181
|
+
if len(values) != _num_observations:
|
182
|
+
raise ValueError(
|
183
|
+
f"The number of observations is not consistent across columns. "
|
184
|
+
f"Column '{key}' has {len(values)} observations, but previous columns had {_num_observations} observations."
|
185
|
+
)
|
186
|
+
|
187
|
+
return _num_observations
|
188
|
+
|
189
|
+
def make_tabular(
|
190
|
+
self, remove_prefix: bool, pretty_labels: Optional[dict] = None
|
191
|
+
) -> tuple[list, List[list]]:
|
192
|
+
"""Turn the results into a tabular format.
|
193
|
+
|
194
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
195
|
+
|
196
|
+
>>> from edsl.results import Results
|
197
|
+
>>> r = Results.example()
|
198
|
+
>>> r.select('how_feeling').make_tabular(remove_prefix = True)
|
199
|
+
(['how_feeling'], [['OK'], ['Great'], ['Terrible'], ['OK']])
|
200
|
+
|
201
|
+
>>> r.select('how_feeling').make_tabular(remove_prefix = True, pretty_labels = {'how_feeling': "How are you feeling"})
|
202
|
+
(['How are you feeling'], [['OK'], ['Great'], ['Terrible'], ['OK']])
|
203
|
+
"""
|
204
|
+
|
205
|
+
def create_dict_from_list_of_dicts(list_of_dicts):
|
206
|
+
for entry in list_of_dicts:
|
207
|
+
key, list_of_values = list(entry.items())[0]
|
208
|
+
yield key, list_of_values
|
209
|
+
|
210
|
+
tabular_repr = dict(create_dict_from_list_of_dicts(self.data))
|
211
|
+
|
212
|
+
full_header = [list(x.keys())[0] for x in self]
|
213
|
+
|
214
|
+
rows = []
|
215
|
+
for i in range(self.num_observations()):
|
216
|
+
row = [tabular_repr[h][i] for h in full_header]
|
217
|
+
rows.append(row)
|
218
|
+
|
219
|
+
if remove_prefix:
|
220
|
+
header = [h.split(".")[-1] for h in full_header]
|
221
|
+
else:
|
222
|
+
header = full_header
|
223
|
+
|
224
|
+
if pretty_labels is not None:
|
225
|
+
header = [pretty_labels.get(h, h) for h in header]
|
226
|
+
|
227
|
+
return header, rows
|
228
|
+
|
229
|
+
def print_long(self):
|
230
|
+
"""Print the results in a long format.
|
231
|
+
>>> from edsl.results import Results
|
232
|
+
>>> r = Results.example()
|
233
|
+
>>> r.select('how_feeling').print_long()
|
234
|
+
answer.how_feeling: OK
|
235
|
+
answer.how_feeling: Great
|
236
|
+
answer.how_feeling: Terrible
|
237
|
+
answer.how_feeling: OK
|
238
|
+
"""
|
239
|
+
for entry in self:
|
240
|
+
key, list_of_values = list(entry.items())[0]
|
241
|
+
for value in list_of_values:
|
242
|
+
print(f"{key}: {value}")
|
243
|
+
|
244
|
+
def get_tabular_data(
|
245
|
+
self,
|
246
|
+
remove_prefix: bool = False,
|
247
|
+
pretty_labels: Optional[dict] = None,
|
248
|
+
) -> Tuple[List[str], List[List]]:
|
249
|
+
"""Internal method to get tabular data in a standard format.
|
250
|
+
|
251
|
+
Args:
|
252
|
+
remove_prefix: Whether to remove the prefix from column names
|
253
|
+
pretty_labels: Dictionary mapping original column names to pretty labels
|
254
|
+
|
255
|
+
Returns:
|
256
|
+
Tuple containing (header_row, data_rows)
|
257
|
+
"""
|
258
|
+
if pretty_labels is None:
|
259
|
+
pretty_labels = {}
|
260
|
+
|
261
|
+
return self.make_tabular(
|
262
|
+
remove_prefix=remove_prefix, pretty_labels=pretty_labels
|
263
|
+
)
|
264
|
+
|
265
|
+
def to_jsonl(self, filename: Optional[str] = None) -> Optional["FileStore"]:
|
266
|
+
"""Export the results to a FileStore instance containing JSONL data."""
|
267
|
+
exporter = JSONLExport(data=self, filename=filename)
|
268
|
+
return exporter.export()
|
269
|
+
|
270
|
+
def to_sqlite(
|
271
|
+
self,
|
272
|
+
filename: Optional[str] = None,
|
273
|
+
remove_prefix: bool = False,
|
274
|
+
pretty_labels: Optional[dict] = None,
|
275
|
+
table_name: str = "results",
|
276
|
+
if_exists: str = "replace",
|
277
|
+
) -> Optional["FileStore"]:
|
278
|
+
"""Export the results to a SQLite database file."""
|
279
|
+
exporter = SQLiteExport(
|
280
|
+
data=self,
|
281
|
+
filename=filename,
|
282
|
+
remove_prefix=remove_prefix,
|
283
|
+
pretty_labels=pretty_labels,
|
284
|
+
table_name=table_name,
|
285
|
+
if_exists=if_exists,
|
286
|
+
)
|
287
|
+
return exporter.export()
|
288
|
+
|
289
|
+
def to_csv(
|
290
|
+
self,
|
291
|
+
filename: Optional[str] = None,
|
292
|
+
remove_prefix: bool = False,
|
293
|
+
pretty_labels: Optional[dict] = None,
|
294
|
+
) -> Optional["FileStore"]:
|
295
|
+
"""Export the results to a FileStore instance containing CSV data."""
|
296
|
+
from .file_exports import CSVExport
|
297
|
+
|
298
|
+
exporter = CSVExport(
|
299
|
+
data=self,
|
300
|
+
filename=filename,
|
301
|
+
remove_prefix=remove_prefix,
|
302
|
+
pretty_labels=pretty_labels,
|
303
|
+
)
|
304
|
+
return exporter.export()
|
305
|
+
|
306
|
+
def to_excel(
|
307
|
+
self,
|
308
|
+
filename: Optional[str] = None,
|
309
|
+
remove_prefix: bool = False,
|
310
|
+
pretty_labels: Optional[dict] = None,
|
311
|
+
sheet_name: Optional[str] = None,
|
312
|
+
) -> Optional["FileStore"]:
|
313
|
+
"""Export the results to a FileStore instance containing Excel data."""
|
314
|
+
from .file_exports import ExcelExport
|
315
|
+
|
316
|
+
exporter = ExcelExport(
|
317
|
+
data=self,
|
318
|
+
filename=filename,
|
319
|
+
remove_prefix=remove_prefix,
|
320
|
+
pretty_labels=pretty_labels,
|
321
|
+
sheet_name=sheet_name,
|
322
|
+
)
|
323
|
+
return exporter.export()
|
324
|
+
|
325
|
+
def _db(
|
326
|
+
self, remove_prefix: bool = True, shape: str = "wide"
|
327
|
+
) -> "sqlalchemy.engine.Engine":
|
328
|
+
"""Create a SQLite database in memory and return the connection.
|
329
|
+
|
330
|
+
Args:
|
331
|
+
remove_prefix: Whether to remove the prefix from the column names
|
332
|
+
shape: The shape of the data in the database ("wide" or "long")
|
333
|
+
|
334
|
+
Returns:
|
335
|
+
A database connection
|
336
|
+
>>> from sqlalchemy import text
|
337
|
+
>>> from edsl import Results
|
338
|
+
>>> engine = Results.example()._db()
|
339
|
+
>>> len(engine.execute(text("SELECT * FROM self")).fetchall())
|
340
|
+
4
|
341
|
+
>>> engine = Results.example()._db(shape = "long")
|
342
|
+
>>> len(engine.execute(text("SELECT * FROM self")).fetchall())
|
343
|
+
172
|
344
|
+
"""
|
345
|
+
from sqlalchemy import create_engine, text
|
346
|
+
|
347
|
+
engine = create_engine("sqlite:///:memory:")
|
348
|
+
if remove_prefix and shape == "wide":
|
349
|
+
df = self.remove_prefix().to_pandas(lists_as_strings=True)
|
350
|
+
else:
|
351
|
+
df = self.to_pandas(lists_as_strings=True)
|
352
|
+
|
353
|
+
if shape == "long":
|
354
|
+
# Melt the dataframe to convert it to long format
|
355
|
+
df = df.melt(var_name="key", value_name="value")
|
356
|
+
# Add a row number column for reference
|
357
|
+
df.insert(0, "row_number", range(1, len(df) + 1))
|
358
|
+
|
359
|
+
# Split the key into data_type and key
|
360
|
+
df["data_type"] = df["key"].apply(
|
361
|
+
lambda x: x.split(".")[0] if "." in x else None
|
362
|
+
)
|
363
|
+
df["key"] = df["key"].apply(
|
364
|
+
lambda x: ".".join(x.split(".")[1:]) if "." in x else x
|
365
|
+
)
|
366
|
+
|
367
|
+
df.to_sql(
|
368
|
+
"self",
|
369
|
+
engine,
|
370
|
+
index=False,
|
371
|
+
if_exists="replace",
|
372
|
+
)
|
373
|
+
return engine.connect()
|
374
|
+
|
375
|
+
def sql(
|
376
|
+
self,
|
377
|
+
query: str,
|
378
|
+
transpose: bool = None,
|
379
|
+
transpose_by: str = None,
|
380
|
+
remove_prefix: bool = True,
|
381
|
+
shape: str = "wide",
|
382
|
+
) -> "Dataset":
|
383
|
+
"""
|
384
|
+
Execute SQL queries on the dataset.
|
385
|
+
|
386
|
+
This powerful method allows you to use SQL to query and transform your data,
|
387
|
+
combining the expressiveness of SQL with EDSL's data structures. It works by
|
388
|
+
creating an in-memory SQLite database from your data and executing the query
|
389
|
+
against it.
|
390
|
+
|
391
|
+
Parameters:
|
392
|
+
query: SQL query string to execute
|
393
|
+
transpose: Whether to transpose the resulting table (rows become columns)
|
394
|
+
transpose_by: Column to use as the new index when transposing
|
395
|
+
remove_prefix: Whether to remove type prefixes (e.g., "answer.") from column names
|
396
|
+
shape: Data shape to use ("wide" or "long")
|
397
|
+
- "wide": Default tabular format with columns for each field
|
398
|
+
- "long": Melted format with key-value pairs, useful for certain queries
|
399
|
+
|
400
|
+
Returns:
|
401
|
+
A Dataset object containing the query results
|
402
|
+
|
403
|
+
Notes:
|
404
|
+
- The data is stored in a table named "self" in the SQLite database
|
405
|
+
- In wide format, column names include their type prefix unless remove_prefix=True
|
406
|
+
- In long format, the data is melted into columns: row_number, key, value, data_type
|
407
|
+
- Complex objects like lists and dictionaries are converted to strings
|
408
|
+
|
409
|
+
Examples:
|
410
|
+
>>> from edsl import Results
|
411
|
+
>>> r = Results.example()
|
412
|
+
|
413
|
+
# Basic selection
|
414
|
+
>>> len(r.sql("SELECT * FROM self", shape="wide"))
|
415
|
+
4
|
416
|
+
|
417
|
+
# Filtering with WHERE clause
|
418
|
+
>>> r.sql("SELECT * FROM self WHERE how_feeling = 'Great'").num_observations()
|
419
|
+
1
|
420
|
+
|
421
|
+
# Aggregation
|
422
|
+
>>> r.sql("SELECT how_feeling, COUNT(*) as count FROM self GROUP BY how_feeling").keys()
|
423
|
+
['how_feeling', 'count']
|
424
|
+
|
425
|
+
# Using long format
|
426
|
+
>>> len(r.sql("SELECT * FROM self", shape="long"))
|
427
|
+
172
|
428
|
+
"""
|
429
|
+
import pandas as pd
|
430
|
+
|
431
|
+
conn = self._db(remove_prefix=remove_prefix, shape=shape)
|
432
|
+
df = pd.read_sql_query(query, conn)
|
433
|
+
|
434
|
+
# Transpose the DataFrame if transpose is True
|
435
|
+
if transpose or transpose_by:
|
436
|
+
df = pd.DataFrame(df)
|
437
|
+
if transpose_by:
|
438
|
+
df = df.set_index(transpose_by)
|
439
|
+
else:
|
440
|
+
df = df.set_index(df.columns[0])
|
441
|
+
df = df.transpose()
|
442
|
+
from .dataset import Dataset
|
443
|
+
|
444
|
+
return Dataset.from_pandas_dataframe(df)
|
445
|
+
|
446
|
+
def to_pandas(
|
447
|
+
self, remove_prefix: bool = False, lists_as_strings=False
|
448
|
+
) -> "DataFrame":
|
449
|
+
"""Convert the results to a pandas DataFrame, ensuring that lists remain as lists.
|
450
|
+
|
451
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
452
|
+
|
453
|
+
"""
|
454
|
+
return self._to_pandas_strings(remove_prefix)
|
455
|
+
|
456
|
+
def _to_pandas_strings(self, remove_prefix: bool = False) -> "pd.DataFrame":
|
457
|
+
"""Convert the results to a pandas DataFrame.
|
458
|
+
|
459
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
460
|
+
|
461
|
+
>>> from edsl.results import Results
|
462
|
+
>>> r = Results.example()
|
463
|
+
>>> r.select('how_feeling').to_pandas()
|
464
|
+
answer.how_feeling
|
465
|
+
0 OK
|
466
|
+
1 Great
|
467
|
+
2 Terrible
|
468
|
+
3 OK
|
469
|
+
"""
|
470
|
+
|
471
|
+
import pandas as pd
|
472
|
+
|
473
|
+
csv_string = self.to_csv(remove_prefix=remove_prefix).text
|
474
|
+
csv_buffer = io.StringIO(csv_string)
|
475
|
+
df = pd.read_csv(csv_buffer)
|
476
|
+
# df_sorted = df.sort_index(axis=1) # Sort columns alphabetically
|
477
|
+
return df
|
478
|
+
|
479
|
+
def to_polars(
|
480
|
+
self, remove_prefix: bool = False, lists_as_strings=False
|
481
|
+
) -> "pl.DataFrame":
|
482
|
+
"""Convert the results to a Polars DataFrame.
|
483
|
+
|
484
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
485
|
+
"""
|
486
|
+
return self._to_polars_strings(remove_prefix)
|
487
|
+
|
488
|
+
def _to_polars_strings(self, remove_prefix: bool = False) -> "pl.DataFrame":
|
489
|
+
"""Convert the results to a Polars DataFrame.
|
490
|
+
|
491
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
492
|
+
"""
|
493
|
+
import polars as pl
|
494
|
+
|
495
|
+
csv_string = self.to_csv(remove_prefix=remove_prefix).text
|
496
|
+
df = pl.read_csv(io.StringIO(csv_string))
|
497
|
+
return df
|
498
|
+
|
499
|
+
def tree(self, node_order: Optional[List[str]] = None) -> "Tree":
|
500
|
+
"""Convert the results to a Tree.
|
501
|
+
|
502
|
+
:param node_order: The order of the nodes.
|
503
|
+
"""
|
504
|
+
from .dataset_tree import Tree
|
505
|
+
return Tree(self, node_order=node_order)
|
506
|
+
|
507
|
+
def to_scenario_list(self, remove_prefix: bool = True) -> list[dict]:
|
508
|
+
"""Convert the results to a list of dictionaries, one per scenario.
|
509
|
+
|
510
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
511
|
+
|
512
|
+
>>> from edsl.results import Results
|
513
|
+
>>> r = Results.example()
|
514
|
+
>>> r.select('how_feeling').to_scenario_list()
|
515
|
+
ScenarioList([Scenario({'how_feeling': 'OK'}), Scenario({'how_feeling': 'Great'}), Scenario({'how_feeling': 'Terrible'}), Scenario({'how_feeling': 'OK'})])
|
516
|
+
"""
|
517
|
+
from edsl.scenarios import ScenarioList, Scenario
|
518
|
+
|
519
|
+
list_of_dicts = self.to_dicts(remove_prefix=remove_prefix)
|
520
|
+
scenarios = []
|
521
|
+
for d in list_of_dicts:
|
522
|
+
scenarios.append(Scenario(d))
|
523
|
+
return ScenarioList(scenarios)
|
524
|
+
|
525
|
+
def to_agent_list(self, remove_prefix: bool = True):
|
526
|
+
"""Convert the results to a list of dictionaries, one per agent.
|
527
|
+
|
528
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
529
|
+
|
530
|
+
>>> from edsl.results import Results
|
531
|
+
>>> r = Results.example()
|
532
|
+
>>> r.select('how_feeling').to_agent_list()
|
533
|
+
AgentList([Agent(traits = {'how_feeling': 'OK'}), Agent(traits = {'how_feeling': 'Great'}), Agent(traits = {'how_feeling': 'Terrible'}), Agent(traits = {'how_feeling': 'OK'})])
|
534
|
+
"""
|
535
|
+
from edsl.agents import Agent, AgentList
|
536
|
+
|
537
|
+
list_of_dicts = self.to_dicts(remove_prefix=remove_prefix)
|
538
|
+
agents = []
|
539
|
+
for d in list_of_dicts:
|
540
|
+
if "name" in d:
|
541
|
+
d["agent_name"] = d.pop("name")
|
542
|
+
agents.append(Agent(d, name=d["agent_name"]))
|
543
|
+
if "agent_parameters" in d:
|
544
|
+
agent_parameters = d.pop("agent_parameters")
|
545
|
+
agent_name = agent_parameters.get("name", None)
|
546
|
+
instruction = agent_parameters.get("instruction", None)
|
547
|
+
agents.append(Agent(d, name=agent_name, instruction=instruction))
|
548
|
+
else:
|
549
|
+
agents.append(Agent(d))
|
550
|
+
return AgentList(agents)
|
551
|
+
|
552
|
+
def to_dicts(self, remove_prefix: bool = True) -> list[dict]:
|
553
|
+
"""Convert the results to a list of dictionaries.
|
554
|
+
|
555
|
+
:param remove_prefix: Whether to remove the prefix from the column names.
|
556
|
+
|
557
|
+
>>> from edsl.results import Results
|
558
|
+
>>> r = Results.example()
|
559
|
+
>>> r.select('how_feeling').to_dicts()
|
560
|
+
[{'how_feeling': 'OK'}, {'how_feeling': 'Great'}, {'how_feeling': 'Terrible'}, {'how_feeling': 'OK'}]
|
561
|
+
|
562
|
+
"""
|
563
|
+
list_of_keys = []
|
564
|
+
list_of_values = []
|
565
|
+
for entry in self:
|
566
|
+
key, values = list(entry.items())[0]
|
567
|
+
list_of_keys.append(key)
|
568
|
+
list_of_values.append(values)
|
569
|
+
|
570
|
+
if remove_prefix:
|
571
|
+
list_of_keys = [key.split(".")[-1] for key in list_of_keys]
|
572
|
+
|
573
|
+
list_of_dicts = []
|
574
|
+
for entries in zip(*list_of_values):
|
575
|
+
list_of_dicts.append(dict(zip(list_of_keys, entries)))
|
576
|
+
|
577
|
+
return list_of_dicts
|
578
|
+
|
579
|
+
def to_list(self, flatten=False, remove_none=False, unzipped=False) -> list[list]:
|
580
|
+
"""Convert the results to a list of lists.
|
581
|
+
|
582
|
+
:param flatten: Whether to flatten the list of lists.
|
583
|
+
:param remove_none: Whether to remove None values from the list.
|
584
|
+
|
585
|
+
>>> from edsl.results import Results
|
586
|
+
>>> Results.example().select('how_feeling', 'how_feeling_yesterday')
|
587
|
+
Dataset([{'answer.how_feeling': ['OK', 'Great', 'Terrible', 'OK']}, {'answer.how_feeling_yesterday': ['Great', 'Good', 'OK', 'Terrible']}])
|
588
|
+
|
589
|
+
>>> Results.example().select('how_feeling', 'how_feeling_yesterday').to_list()
|
590
|
+
[('OK', 'Great'), ('Great', 'Good'), ('Terrible', 'OK'), ('OK', 'Terrible')]
|
591
|
+
|
592
|
+
>>> r = Results.example()
|
593
|
+
>>> r.select('how_feeling').to_list()
|
594
|
+
['OK', 'Great', 'Terrible', 'OK']
|
595
|
+
|
596
|
+
>>> from edsl.dataset import Dataset
|
597
|
+
>>> Dataset([{'a.b': [[1, 9], 2, 3, 4]}]).select('a.b').to_list(flatten = True)
|
598
|
+
[1, 9, 2, 3, 4]
|
599
|
+
|
600
|
+
>>> from edsl.dataset import Dataset
|
601
|
+
>>> Dataset([{'a.b': [[1, 9], 2, 3, 4]}, {'c': [6, 2, 3, 4]}]).select('a.b', 'c').to_list(flatten = True)
|
602
|
+
Traceback (most recent call last):
|
603
|
+
...
|
604
|
+
ValueError: Cannot flatten a list of lists when there are multiple columns selected.
|
605
|
+
|
606
|
+
|
607
|
+
"""
|
608
|
+
if len(self.relevant_columns()) > 1 and flatten:
|
609
|
+
raise ValueError(
|
610
|
+
"Cannot flatten a list of lists when there are multiple columns selected."
|
611
|
+
)
|
612
|
+
|
613
|
+
if len(self.relevant_columns()) == 1:
|
614
|
+
# if only one 'column' is selected (which is typical for this method
|
615
|
+
list_to_return = list(self[0].values())[0]
|
616
|
+
else:
|
617
|
+
keys = self.relevant_columns()
|
618
|
+
data = self.to_dicts(remove_prefix=False)
|
619
|
+
list_to_return = []
|
620
|
+
for d in data:
|
621
|
+
list_to_return.append(tuple([d[key] for key in keys]))
|
622
|
+
|
623
|
+
if remove_none:
|
624
|
+
list_to_return = [item for item in list_to_return if item is not None]
|
625
|
+
|
626
|
+
if flatten:
|
627
|
+
new_list = []
|
628
|
+
for item in list_to_return:
|
629
|
+
if isinstance(item, list):
|
630
|
+
new_list.extend(item)
|
631
|
+
else:
|
632
|
+
new_list.append(item)
|
633
|
+
list_to_return = new_list
|
634
|
+
|
635
|
+
from edsl.utilities.PrettyList import PrettyList
|
636
|
+
|
637
|
+
#return PrettyList(list_to_return)
|
638
|
+
return list_to_return
|
639
|
+
|
640
|
+
def html(
|
641
|
+
self,
|
642
|
+
filename: Optional[str] = None,
|
643
|
+
cta: str = "Open in browser",
|
644
|
+
return_link: bool = False,
|
645
|
+
):
|
646
|
+
import os
|
647
|
+
import tempfile
|
648
|
+
from edsl.utilities.utilities import is_notebook
|
649
|
+
from IPython.display import HTML, display
|
650
|
+
from edsl.utilities.utilities import is_notebook
|
651
|
+
|
652
|
+
df = self.to_pandas()
|
653
|
+
|
654
|
+
if filename is None:
|
655
|
+
current_directory = os.getcwd()
|
656
|
+
filename = tempfile.NamedTemporaryFile(
|
657
|
+
"w", delete=False, suffix=".html", dir=current_directory
|
658
|
+
).name
|
659
|
+
|
660
|
+
with open(filename, "w") as f:
|
661
|
+
f.write(df.to_html())
|
662
|
+
|
663
|
+
if is_notebook():
|
664
|
+
html_url = f"/files/{filename}"
|
665
|
+
html_link = f'<a href="{html_url}" target="_blank">{cta}</a>'
|
666
|
+
display(HTML(html_link))
|
667
|
+
else:
|
668
|
+
print(f"Saved to {filename}")
|
669
|
+
import webbrowser
|
670
|
+
import os
|
671
|
+
|
672
|
+
webbrowser.open(f"file://{os.path.abspath(filename)}")
|
673
|
+
|
674
|
+
if return_link:
|
675
|
+
return filename
|
676
|
+
|
677
|
+
def _prepare_report_data(self, *fields: Optional[str], top_n: Optional[int] = None,
|
678
|
+
header_fields: Optional[List[str]] = None) -> tuple:
|
679
|
+
"""Prepares data for report generation in various formats.
|
680
|
+
|
681
|
+
Args:
|
682
|
+
*fields: The fields to include in the report. If none provided, all fields are used.
|
683
|
+
top_n: Optional limit on the number of observations to include.
|
684
|
+
header_fields: Optional list of fields to include in the main header instead of as sections.
|
685
|
+
|
686
|
+
Returns:
|
687
|
+
A tuple containing (field_data, num_obs, fields, header_fields)
|
688
|
+
"""
|
689
|
+
# If no fields specified, use all columns
|
690
|
+
if not fields:
|
691
|
+
fields = self.relevant_columns()
|
692
|
+
|
693
|
+
# Initialize header_fields if not provided
|
694
|
+
if header_fields is None:
|
695
|
+
header_fields = []
|
696
|
+
|
697
|
+
# Validate all fields
|
698
|
+
all_fields = list(fields) + [f for f in header_fields if f not in fields]
|
699
|
+
for field in all_fields:
|
700
|
+
if field not in self.relevant_columns():
|
701
|
+
raise ValueError(f"Field '{field}' not found in dataset")
|
702
|
+
|
703
|
+
# Get data for each field
|
704
|
+
field_data = {}
|
705
|
+
for field in all_fields:
|
706
|
+
for entry in self:
|
707
|
+
if field in entry:
|
708
|
+
field_data[field] = entry[field]
|
709
|
+
break
|
710
|
+
|
711
|
+
# Number of observations to process
|
712
|
+
num_obs = self.num_observations()
|
713
|
+
if top_n is not None:
|
714
|
+
num_obs = min(num_obs, top_n)
|
715
|
+
|
716
|
+
return field_data, num_obs, fields, header_fields
|
717
|
+
|
718
|
+
def _report_markdown(self, field_data, num_obs, fields, header_fields, divider: bool = True) -> str:
|
719
|
+
"""Generates a markdown report from the prepared data.
|
720
|
+
|
721
|
+
Args:
|
722
|
+
field_data: Dictionary mapping field names to their values
|
723
|
+
num_obs: Number of observations to include
|
724
|
+
fields: Fields to include as sections
|
725
|
+
header_fields: Fields to include in the observation header
|
726
|
+
divider: If True, adds a horizontal rule between observations
|
727
|
+
|
728
|
+
Returns:
|
729
|
+
A string containing the markdown report
|
730
|
+
"""
|
731
|
+
report_lines = []
|
732
|
+
for i in range(num_obs):
|
733
|
+
# Create header with observation number and any header fields
|
734
|
+
header = f"# Observation: {i+1}"
|
735
|
+
if header_fields:
|
736
|
+
header_parts = []
|
737
|
+
for field in header_fields:
|
738
|
+
value = field_data[field][i]
|
739
|
+
# Get the field name without prefix for cleaner display
|
740
|
+
display_name = field.split('.')[-1] if '.' in field else field
|
741
|
+
# Format with backticks for monospace
|
742
|
+
header_parts.append(f"`{display_name}`: {value}")
|
743
|
+
if header_parts:
|
744
|
+
header += f" ({', '.join(header_parts)})"
|
745
|
+
report_lines.append(header)
|
746
|
+
|
747
|
+
# Add the remaining fields
|
748
|
+
for field in fields:
|
749
|
+
if field not in header_fields:
|
750
|
+
report_lines.append(f"## {field}")
|
751
|
+
value = field_data[field][i]
|
752
|
+
if isinstance(value, list) or isinstance(value, dict):
|
753
|
+
import json
|
754
|
+
report_lines.append(f"```\n{json.dumps(value, indent=2)}\n```")
|
755
|
+
else:
|
756
|
+
report_lines.append(str(value))
|
757
|
+
|
758
|
+
# Add divider between observations if requested
|
759
|
+
if divider and i < num_obs - 1:
|
760
|
+
report_lines.append("\n---\n")
|
761
|
+
else:
|
762
|
+
report_lines.append("") # Empty line between observations
|
763
|
+
|
764
|
+
return "\n".join(report_lines)
|
765
|
+
|
766
|
+
def _report_docx(self, field_data, num_obs, fields, header_fields) -> "Document":
|
767
|
+
"""Generates a Word document report from the prepared data.
|
768
|
+
|
769
|
+
Args:
|
770
|
+
field_data: Dictionary mapping field names to their values
|
771
|
+
num_obs: Number of observations to include
|
772
|
+
fields: Fields to include as sections
|
773
|
+
header_fields: Fields to include in the observation header
|
774
|
+
|
775
|
+
Returns:
|
776
|
+
A docx.Document object containing the report
|
777
|
+
"""
|
778
|
+
try:
|
779
|
+
from docx import Document
|
780
|
+
from docx.shared import Pt
|
781
|
+
import json
|
782
|
+
except ImportError:
|
783
|
+
raise ImportError("The python-docx package is required for DOCX export. Install it with 'pip install python-docx'.")
|
784
|
+
|
785
|
+
doc = Document()
|
786
|
+
|
787
|
+
for i in range(num_obs):
|
788
|
+
# Create header with observation number and any header fields
|
789
|
+
header_text = f"Observation: {i+1}"
|
790
|
+
if header_fields:
|
791
|
+
header_parts = []
|
792
|
+
for field in header_fields:
|
793
|
+
value = field_data[field][i]
|
794
|
+
# Get the field name without prefix for cleaner display
|
795
|
+
display_name = field.split('.')[-1] if '.' in field else field
|
796
|
+
header_parts.append(f"{display_name}: {value}")
|
797
|
+
if header_parts:
|
798
|
+
header_text += f" ({', '.join(header_parts)})"
|
799
|
+
|
800
|
+
heading = doc.add_heading(header_text, level=1)
|
801
|
+
|
802
|
+
# Add the remaining fields
|
803
|
+
for field in fields:
|
804
|
+
if field not in header_fields:
|
805
|
+
doc.add_heading(field, level=2)
|
806
|
+
value = field_data[field][i]
|
807
|
+
|
808
|
+
if isinstance(value, (list, dict)):
|
809
|
+
# Format structured data with indentation
|
810
|
+
formatted_value = json.dumps(value, indent=2)
|
811
|
+
p = doc.add_paragraph()
|
812
|
+
p.add_run(formatted_value).font.name = 'Courier New'
|
813
|
+
p.add_run().font.size = Pt(10)
|
814
|
+
else:
|
815
|
+
doc.add_paragraph(str(value))
|
816
|
+
|
817
|
+
# Add page break between observations except for the last one
|
818
|
+
if i < num_obs - 1:
|
819
|
+
doc.add_page_break()
|
820
|
+
|
821
|
+
return doc
|
822
|
+
|
823
|
+
def report(self, *fields: Optional[str], top_n: Optional[int] = None,
|
824
|
+
header_fields: Optional[List[str]] = None, divider: bool = True,
|
825
|
+
return_string: bool = False, format: str = "markdown",
|
826
|
+
filename: Optional[str] = None) -> Optional[Union[str, "docx.Document"]]:
|
827
|
+
"""Generates a report of the results by iterating through rows.
|
828
|
+
|
829
|
+
Args:
|
830
|
+
*fields: The fields to include in the report. If none provided, all fields are used.
|
831
|
+
top_n: Optional limit on the number of observations to include.
|
832
|
+
header_fields: Optional list of fields to include in the main header instead of as sections.
|
833
|
+
divider: If True, adds a horizontal rule between observations (markdown only).
|
834
|
+
return_string: If True, returns the markdown string. If False (default in notebooks),
|
835
|
+
only displays the markdown without returning.
|
836
|
+
format: Output format - either "markdown" or "docx".
|
837
|
+
filename: If provided and format is "docx", saves the document to this file.
|
838
|
+
|
839
|
+
Returns:
|
840
|
+
Depending on format and return_string:
|
841
|
+
- For markdown: A string if return_string is True, otherwise None (displays in notebook)
|
842
|
+
- For docx: A docx.Document object, or None if filename is provided (saves to file)
|
843
|
+
|
844
|
+
Examples:
|
845
|
+
>>> from edsl.results import Results
|
846
|
+
>>> r = Results.example()
|
847
|
+
>>> report = r.select('how_feeling').report(return_string=True)
|
848
|
+
>>> "# Observation: 1" in report
|
849
|
+
True
|
850
|
+
>>> doc = r.select('how_feeling').report(format="docx")
|
851
|
+
>>> isinstance(doc, object)
|
852
|
+
True
|
853
|
+
"""
|
854
|
+
from edsl.utilities.utilities import is_notebook
|
855
|
+
|
856
|
+
# Prepare the data for the report
|
857
|
+
field_data, num_obs, fields, header_fields = self._prepare_report_data(
|
858
|
+
*fields, top_n=top_n, header_fields=header_fields
|
859
|
+
)
|
860
|
+
|
861
|
+
# Generate the report in the requested format
|
862
|
+
if format.lower() == "markdown":
|
863
|
+
report_text = self._report_markdown(
|
864
|
+
field_data, num_obs, fields, header_fields, divider
|
865
|
+
)
|
866
|
+
|
867
|
+
# In notebooks, display as markdown
|
868
|
+
is_nb = is_notebook()
|
869
|
+
if is_nb and not return_string:
|
870
|
+
from IPython.display import Markdown, display
|
871
|
+
display(Markdown(report_text))
|
872
|
+
return None
|
873
|
+
|
874
|
+
# Return the string if requested or if not in a notebook
|
875
|
+
return report_text
|
876
|
+
|
877
|
+
elif format.lower() == "docx":
|
878
|
+
doc = self._report_docx(field_data, num_obs, fields, header_fields)
|
879
|
+
|
880
|
+
# Save to file if filename is provided
|
881
|
+
if filename:
|
882
|
+
doc.save(filename)
|
883
|
+
print(f"Report saved to {filename}")
|
884
|
+
return None
|
885
|
+
|
886
|
+
return doc
|
887
|
+
|
888
|
+
else:
|
889
|
+
raise ValueError(f"Unsupported format: {format}. Use 'markdown' or 'docx'.")
|
890
|
+
|
891
|
+
def tally(
|
892
|
+
self, *fields: Optional[str], top_n: Optional[int] = None, output="Dataset"
|
893
|
+
) -> Union[dict, "Dataset"]:
|
894
|
+
"""
|
895
|
+
Count frequency distributions of values in specified fields.
|
896
|
+
|
897
|
+
This method tallies the occurrence of unique values within one or more fields,
|
898
|
+
similar to a GROUP BY and COUNT in SQL. When multiple fields are provided, it
|
899
|
+
performs cross-tabulation across those fields.
|
900
|
+
|
901
|
+
Parameters:
|
902
|
+
*fields: Field names to tally. If none provided, uses all available fields.
|
903
|
+
top_n: Optional limit to return only the top N most frequent values.
|
904
|
+
output: Format for results, either "Dataset" (recommended) or "dict".
|
905
|
+
|
906
|
+
Returns:
|
907
|
+
By default, returns a Dataset with columns for the field(s) and a 'count' column.
|
908
|
+
If output="dict", returns a dictionary mapping values to counts.
|
909
|
+
|
910
|
+
Notes:
|
911
|
+
- For single fields, returns counts of each unique value
|
912
|
+
- For multiple fields, returns counts of each unique combination of values
|
913
|
+
- Results are sorted in descending order by count
|
914
|
+
- Fields can be specified with or without their type prefix
|
915
|
+
|
916
|
+
Examples:
|
917
|
+
>>> from edsl import Results
|
918
|
+
>>> r = Results.example()
|
919
|
+
|
920
|
+
# Single field frequency count
|
921
|
+
>>> r.select('how_feeling').tally('answer.how_feeling', output="dict")
|
922
|
+
{'OK': 2, 'Great': 1, 'Terrible': 1}
|
923
|
+
|
924
|
+
# Return as Dataset (default)
|
925
|
+
>>> from edsl.dataset import Dataset
|
926
|
+
>>> expected = Dataset([{'answer.how_feeling': ['OK', 'Great', 'Terrible']}, {'count': [2, 1, 1]}])
|
927
|
+
>>> r.select('how_feeling').tally('answer.how_feeling', output="Dataset") == expected
|
928
|
+
True
|
929
|
+
|
930
|
+
# Multi-field cross-tabulation - exact output varies based on data
|
931
|
+
>>> result = r.tally('how_feeling', 'how_feeling_yesterday')
|
932
|
+
>>> 'how_feeling' in result.keys() and 'how_feeling_yesterday' in result.keys() and 'count' in result.keys()
|
933
|
+
True
|
934
|
+
"""
|
935
|
+
from collections import Counter
|
936
|
+
|
937
|
+
if len(fields) == 0:
|
938
|
+
fields = self.relevant_columns()
|
939
|
+
|
940
|
+
relevant_columns_without_prefix = [
|
941
|
+
column.split(".")[-1] for column in self.relevant_columns()
|
942
|
+
]
|
943
|
+
|
944
|
+
if not all(
|
945
|
+
f in self.relevant_columns() or f in relevant_columns_without_prefix
|
946
|
+
for f in fields
|
947
|
+
):
|
948
|
+
raise ValueError("One or more specified fields are not in the dataset."
|
949
|
+
f"The available fields are: {self.relevant_columns()}"
|
950
|
+
)
|
951
|
+
|
952
|
+
if len(fields) == 1:
|
953
|
+
field = fields[0]
|
954
|
+
values = self._key_to_value(field)
|
955
|
+
else:
|
956
|
+
values = list(zip(*(self._key_to_value(field) for field in fields)))
|
957
|
+
|
958
|
+
for value in values:
|
959
|
+
if isinstance(value, list):
|
960
|
+
value = tuple(value)
|
961
|
+
try:
|
962
|
+
tally = dict(Counter(values))
|
963
|
+
except TypeError:
|
964
|
+
tally = dict(Counter([str(v) for v in values]))
|
965
|
+
except Exception as e:
|
966
|
+
raise ValueError(f"Error tallying values: {e}")
|
967
|
+
|
968
|
+
sorted_tally = dict(sorted(tally.items(), key=lambda item: -item[1]))
|
969
|
+
if top_n is not None:
|
970
|
+
sorted_tally = dict(list(sorted_tally.items())[:top_n])
|
971
|
+
|
972
|
+
from ..dataset import Dataset
|
973
|
+
|
974
|
+
if output == "dict":
|
975
|
+
# why did I do this?
|
976
|
+
warnings.warn(
|
977
|
+
textwrap.dedent(
|
978
|
+
"""\
|
979
|
+
The default output from tally will change to Dataset in the future.
|
980
|
+
Use output='Dataset' to get the Dataset object for now.
|
981
|
+
"""
|
982
|
+
)
|
983
|
+
)
|
984
|
+
return sorted_tally
|
985
|
+
elif output == "Dataset":
|
986
|
+
dataset = Dataset(
|
987
|
+
[
|
988
|
+
{"value": list(sorted_tally.keys())},
|
989
|
+
{"count": list(sorted_tally.values())},
|
990
|
+
]
|
991
|
+
)
|
992
|
+
# return dataset
|
993
|
+
sl = dataset.to_scenario_list().unpack(
|
994
|
+
"value",
|
995
|
+
new_names=[fields] if isinstance(fields, str) else fields,
|
996
|
+
keep_original=False,
|
997
|
+
)
|
998
|
+
keys = list(sl[0].keys())
|
999
|
+
keys.remove("count")
|
1000
|
+
keys.append("count")
|
1001
|
+
return sl.reorder_keys(keys).to_dataset()
|
1002
|
+
|
1003
|
+
def flatten(self, field: str, keep_original: bool = False) -> "Dataset":
|
1004
|
+
"""
|
1005
|
+
Expand a field containing dictionaries into separate fields.
|
1006
|
+
|
1007
|
+
This method takes a field that contains a list of dictionaries and expands
|
1008
|
+
it into multiple fields, one for each key in the dictionaries. This is useful
|
1009
|
+
when working with nested data structures or results from extraction operations.
|
1010
|
+
|
1011
|
+
Parameters:
|
1012
|
+
field: The field containing dictionaries to flatten
|
1013
|
+
keep_original: Whether to retain the original field in the result
|
1014
|
+
|
1015
|
+
Returns:
|
1016
|
+
A new Dataset with the dictionary keys expanded into separate fields
|
1017
|
+
|
1018
|
+
Notes:
|
1019
|
+
- Each key in the dictionaries becomes a new field with name pattern "{field}.{key}"
|
1020
|
+
- All dictionaries in the field must have compatible structures
|
1021
|
+
- If a dictionary is missing a key, the corresponding value will be None
|
1022
|
+
- Non-dictionary values in the field will cause a warning
|
1023
|
+
|
1024
|
+
Examples:
|
1025
|
+
>>> from edsl.dataset import Dataset
|
1026
|
+
|
1027
|
+
# Basic flattening of nested dictionaries
|
1028
|
+
>>> Dataset([{'a': [{'a': 1, 'b': 2}]}, {'c': [5]}]).flatten('a')
|
1029
|
+
Dataset([{'c': [5]}, {'a.a': [1]}, {'a.b': [2]}])
|
1030
|
+
|
1031
|
+
# Works with prefixed fields too
|
1032
|
+
>>> Dataset([{'answer.example': [{'a': 1, 'b': 2}]}, {'c': [5]}]).flatten('answer.example')
|
1033
|
+
Dataset([{'c': [5]}, {'answer.example.a': [1]}, {'answer.example.b': [2]}])
|
1034
|
+
|
1035
|
+
# Keep the original field if needed
|
1036
|
+
>>> d = Dataset([{'a': [{'a': 1, 'b': 2}]}, {'c': [5]}])
|
1037
|
+
>>> d.flatten('a', keep_original=True)
|
1038
|
+
Dataset([{'a': [{'a': 1, 'b': 2}]}, {'c': [5]}, {'a.a': [1]}, {'a.b': [2]}])
|
1039
|
+
"""
|
1040
|
+
from ..dataset import Dataset
|
1041
|
+
|
1042
|
+
# Ensure the dataset isn't empty
|
1043
|
+
if not self.data:
|
1044
|
+
return self.copy()
|
1045
|
+
|
1046
|
+
# Find all columns that contain the field
|
1047
|
+
matching_entries = []
|
1048
|
+
for entry in self.data:
|
1049
|
+
col_name = next(iter(entry.keys()))
|
1050
|
+
if field == col_name or (
|
1051
|
+
'.' in col_name and
|
1052
|
+
(col_name.endswith('.' + field) or col_name.startswith(field + '.'))
|
1053
|
+
):
|
1054
|
+
matching_entries.append(entry)
|
1055
|
+
|
1056
|
+
# Check if the field is ambiguous
|
1057
|
+
if len(matching_entries) > 1:
|
1058
|
+
matching_cols = [next(iter(entry.keys())) for entry in matching_entries]
|
1059
|
+
raise ValueError(
|
1060
|
+
f"Ambiguous field name '{field}'. It matches multiple columns: {matching_cols}. "
|
1061
|
+
f"Please specify the full column name to flatten."
|
1062
|
+
)
|
1063
|
+
|
1064
|
+
# Get the number of observations
|
1065
|
+
num_observations = self.num_observations()
|
1066
|
+
|
1067
|
+
# Find the column to flatten
|
1068
|
+
field_entry = None
|
1069
|
+
for entry in self.data:
|
1070
|
+
if field in entry:
|
1071
|
+
field_entry = entry
|
1072
|
+
break
|
1073
|
+
|
1074
|
+
if field_entry is None:
|
1075
|
+
warnings.warn(
|
1076
|
+
f"Field '{field}' not found in dataset, returning original dataset"
|
1077
|
+
)
|
1078
|
+
return self.copy()
|
1079
|
+
|
1080
|
+
# Create new dictionary for flattened data
|
1081
|
+
flattened_data = []
|
1082
|
+
|
1083
|
+
# Copy all existing columns except the one we're flattening (if keep_original is False)
|
1084
|
+
for entry in self.data:
|
1085
|
+
col_name = next(iter(entry.keys()))
|
1086
|
+
if col_name != field or keep_original:
|
1087
|
+
flattened_data.append(entry.copy())
|
1088
|
+
|
1089
|
+
# Get field data and make sure it's valid
|
1090
|
+
field_values = field_entry[field]
|
1091
|
+
if not all(isinstance(item, dict) for item in field_values if item is not None):
|
1092
|
+
warnings.warn(
|
1093
|
+
f"Field '{field}' contains non-dictionary values that cannot be flattened"
|
1094
|
+
)
|
1095
|
+
return self.copy()
|
1096
|
+
|
1097
|
+
# Collect all unique keys across all dictionaries
|
1098
|
+
all_keys = set()
|
1099
|
+
for item in field_values:
|
1100
|
+
if isinstance(item, dict):
|
1101
|
+
all_keys.update(item.keys())
|
1102
|
+
|
1103
|
+
# Create new columns for each key
|
1104
|
+
for key in sorted(all_keys): # Sort for consistent output
|
1105
|
+
new_values = []
|
1106
|
+
for i in range(num_observations):
|
1107
|
+
value = None
|
1108
|
+
if i < len(field_values) and isinstance(field_values[i], dict):
|
1109
|
+
value = field_values[i].get(key, None)
|
1110
|
+
new_values.append(value)
|
1111
|
+
|
1112
|
+
# Add this as a new column
|
1113
|
+
flattened_data.append({f"{field}.{key}": new_values})
|
1114
|
+
|
1115
|
+
# Return a new Dataset with the flattened data
|
1116
|
+
return Dataset(flattened_data)
|
1117
|
+
|
1118
|
+
def unpack_list(
|
1119
|
+
self,
|
1120
|
+
field: str,
|
1121
|
+
new_names: Optional[List[str]] = None,
|
1122
|
+
keep_original: bool = True,
|
1123
|
+
) -> "Dataset":
|
1124
|
+
"""Unpack list columns into separate columns with provided names or numeric suffixes.
|
1125
|
+
|
1126
|
+
For example, if a dataset contains:
|
1127
|
+
[{'data': [[1, 2, 3], [4, 5, 6]], 'other': ['x', 'y']}]
|
1128
|
+
|
1129
|
+
After d.unpack_list('data'), it should become:
|
1130
|
+
[{'other': ['x', 'y'], 'data_1': [1, 4], 'data_2': [2, 5], 'data_3': [3, 6]}]
|
1131
|
+
|
1132
|
+
Args:
|
1133
|
+
field: The field containing lists to unpack
|
1134
|
+
new_names: Optional list of names for the unpacked fields. If None, uses numeric suffixes.
|
1135
|
+
keep_original: If True, keeps the original field in the dataset
|
1136
|
+
|
1137
|
+
Returns:
|
1138
|
+
A new Dataset with unpacked columns
|
1139
|
+
|
1140
|
+
Examples:
|
1141
|
+
>>> from edsl.dataset import Dataset
|
1142
|
+
>>> d = Dataset([{'data': [[1, 2, 3], [4, 5, 6]]}])
|
1143
|
+
>>> d.unpack_list('data')
|
1144
|
+
Dataset([{'data': [[1, 2, 3], [4, 5, 6]]}, {'data_1': [1, 4]}, {'data_2': [2, 5]}, {'data_3': [3, 6]}])
|
1145
|
+
|
1146
|
+
>>> d.unpack_list('data', new_names=['first', 'second', 'third'])
|
1147
|
+
Dataset([{'data': [[1, 2, 3], [4, 5, 6]]}, {'first': [1, 4]}, {'second': [2, 5]}, {'third': [3, 6]}])
|
1148
|
+
"""
|
1149
|
+
from .dataset import Dataset
|
1150
|
+
|
1151
|
+
# Create a copy of the dataset
|
1152
|
+
result = Dataset(self.data.copy())
|
1153
|
+
|
1154
|
+
# Find the field in the dataset
|
1155
|
+
field_index = None
|
1156
|
+
for i, entry in enumerate(result.data):
|
1157
|
+
if field in entry:
|
1158
|
+
field_index = i
|
1159
|
+
break
|
1160
|
+
|
1161
|
+
if field_index is None:
|
1162
|
+
raise ValueError(f"Field '{field}' not found in dataset")
|
1163
|
+
|
1164
|
+
field_data = result.data[field_index][field]
|
1165
|
+
|
1166
|
+
# Check if values are lists
|
1167
|
+
if not all(isinstance(v, list) for v in field_data):
|
1168
|
+
raise ValueError(f"Field '{field}' does not contain lists in all entries")
|
1169
|
+
|
1170
|
+
# Get the maximum length of lists
|
1171
|
+
max_len = max(len(v) for v in field_data)
|
1172
|
+
|
1173
|
+
# Create new fields for each index
|
1174
|
+
for i in range(max_len):
|
1175
|
+
if new_names and i < len(new_names):
|
1176
|
+
new_field = new_names[i]
|
1177
|
+
else:
|
1178
|
+
new_field = f"{field}_{i+1}"
|
1179
|
+
|
1180
|
+
# Extract the i-th element from each list
|
1181
|
+
new_values = []
|
1182
|
+
for item in field_data:
|
1183
|
+
new_values.append(item[i] if i < len(item) else None)
|
1184
|
+
|
1185
|
+
result.data.append({new_field: new_values})
|
1186
|
+
|
1187
|
+
# Remove the original field if keep_original is False
|
1188
|
+
if not keep_original:
|
1189
|
+
result.data.pop(field_index)
|
1190
|
+
|
1191
|
+
return result
|
1192
|
+
|
1193
|
+
def drop(self, field_name):
|
1194
|
+
"""
|
1195
|
+
Returns a new Dataset with the specified field removed.
|
1196
|
+
|
1197
|
+
Args:
|
1198
|
+
field_name (str): The name of the field to remove.
|
1199
|
+
|
1200
|
+
Returns:
|
1201
|
+
Dataset: A new Dataset instance without the specified field.
|
1202
|
+
|
1203
|
+
Raises:
|
1204
|
+
KeyError: If the field_name doesn't exist in the dataset.
|
1205
|
+
|
1206
|
+
Examples:
|
1207
|
+
>>> from .dataset import Dataset
|
1208
|
+
>>> d = Dataset([{'a': [1, 2, 3]}, {'b': [4, 5, 6]}])
|
1209
|
+
>>> d.drop('a')
|
1210
|
+
Dataset([{'b': [4, 5, 6]}])
|
1211
|
+
|
1212
|
+
>>> d.drop('c')
|
1213
|
+
Traceback (most recent call last):
|
1214
|
+
...
|
1215
|
+
KeyError: "Field 'c' not found in dataset"
|
1216
|
+
"""
|
1217
|
+
from .dataset import Dataset
|
1218
|
+
|
1219
|
+
# Check if field exists in the dataset
|
1220
|
+
if field_name not in self.relevant_columns():
|
1221
|
+
raise KeyError(f"Field '{field_name}' not found in dataset")
|
1222
|
+
|
1223
|
+
# Create a new dataset without the specified field
|
1224
|
+
new_data = [entry for entry in self.data if field_name not in entry]
|
1225
|
+
return Dataset(new_data)
|
1226
|
+
|
1227
|
+
def remove_prefix(self):
|
1228
|
+
"""Returns a new Dataset with the prefix removed from all column names.
|
1229
|
+
|
1230
|
+
The prefix is defined as everything before the first dot (.) in the column name.
|
1231
|
+
If removing prefixes would result in duplicate column names, an exception is raised.
|
1232
|
+
|
1233
|
+
Returns:
|
1234
|
+
Dataset: A new Dataset with prefixes removed from column names
|
1235
|
+
|
1236
|
+
Raises:
|
1237
|
+
ValueError: If removing prefixes would result in duplicate column names
|
1238
|
+
|
1239
|
+
Examples:
|
1240
|
+
>>> from edsl.results import Results
|
1241
|
+
>>> r = Results.example()
|
1242
|
+
>>> r.select('how_feeling', 'how_feeling_yesterday').relevant_columns()
|
1243
|
+
['answer.how_feeling', 'answer.how_feeling_yesterday']
|
1244
|
+
>>> r.select('how_feeling', 'how_feeling_yesterday').remove_prefix().relevant_columns()
|
1245
|
+
['how_feeling', 'how_feeling_yesterday']
|
1246
|
+
|
1247
|
+
>>> from edsl.dataset import Dataset
|
1248
|
+
>>> d = Dataset([{'a.x': [1, 2, 3]}, {'b.x': [4, 5, 6]}])
|
1249
|
+
>>> # d.remove_prefix()
|
1250
|
+
|
1251
|
+
Traceback (most recent call last):
|
1252
|
+
...
|
1253
|
+
ValueError: Removing prefixes would result in duplicate column names: ['x']
|
1254
|
+
"""
|
1255
|
+
from .dataset import Dataset
|
1256
|
+
|
1257
|
+
# Get all column names
|
1258
|
+
columns = self.relevant_columns()
|
1259
|
+
|
1260
|
+
# Extract the unprefixed names
|
1261
|
+
unprefixed = {}
|
1262
|
+
duplicates = set()
|
1263
|
+
|
1264
|
+
for col in columns:
|
1265
|
+
if '.' in col:
|
1266
|
+
unprefixed_name = col.split('.', 1)[1]
|
1267
|
+
if unprefixed_name in unprefixed:
|
1268
|
+
duplicates.add(unprefixed_name)
|
1269
|
+
unprefixed[unprefixed_name] = col
|
1270
|
+
else:
|
1271
|
+
# For columns without a prefix, keep them as is
|
1272
|
+
unprefixed[col] = col
|
1273
|
+
|
1274
|
+
# Check for duplicates
|
1275
|
+
if duplicates:
|
1276
|
+
raise ValueError(f"Removing prefixes would result in duplicate column names: {sorted(list(duplicates))}")
|
1277
|
+
|
1278
|
+
# Create a new dataset with unprefixed column names
|
1279
|
+
new_data = []
|
1280
|
+
for entry in self.data:
|
1281
|
+
key, values = list(entry.items())[0]
|
1282
|
+
if '.' in key:
|
1283
|
+
new_key = key.split('.', 1)[1]
|
1284
|
+
else:
|
1285
|
+
new_key = key
|
1286
|
+
new_data.append({new_key: values})
|
1287
|
+
|
1288
|
+
return Dataset(new_data)
|
1289
|
+
|
1290
|
+
|
1291
|
+
from functools import wraps
|
1292
|
+
|
1293
|
+
def to_dataset(func):
|
1294
|
+
"""
|
1295
|
+
Decorator that ensures functions receive a Dataset object as their first argument.
|
1296
|
+
|
1297
|
+
This decorator automatically converts various EDSL container objects (Results,
|
1298
|
+
AgentList, ScenarioList) to Dataset objects before passing them to the decorated
|
1299
|
+
function. This allows methods defined in DataOperationsBase to work seamlessly
|
1300
|
+
across different container types without duplicating conversion logic.
|
1301
|
+
|
1302
|
+
Parameters:
|
1303
|
+
func: The function to decorate
|
1304
|
+
|
1305
|
+
Returns:
|
1306
|
+
A wrapped function that ensures its first argument is a Dataset
|
1307
|
+
|
1308
|
+
Notes:
|
1309
|
+
- For Results objects, calls select() to convert to a Dataset
|
1310
|
+
- For AgentList and ScenarioList objects, calls their to_dataset() method
|
1311
|
+
- For Dataset objects, passes them through unchanged
|
1312
|
+
- This decorator is used internally by the mixin system to enable method sharing
|
1313
|
+
"""
|
1314
|
+
@wraps(func)
|
1315
|
+
def wrapper(self, *args, **kwargs):
|
1316
|
+
"""Execute the function with self converted to a Dataset if needed."""
|
1317
|
+
# Convert to Dataset based on the class type
|
1318
|
+
if self.__class__.__name__ == "Results":
|
1319
|
+
dataset_self = self.select()
|
1320
|
+
elif self.__class__.__name__ == "AgentList":
|
1321
|
+
dataset_self = self.to_dataset()
|
1322
|
+
elif self.__class__.__name__ == "ScenarioList":
|
1323
|
+
dataset_self = self.to_dataset()
|
1324
|
+
else:
|
1325
|
+
dataset_self = self
|
1326
|
+
|
1327
|
+
# Call the function with the converted self
|
1328
|
+
return func(dataset_self, *args, **kwargs)
|
1329
|
+
|
1330
|
+
# Mark the wrapper as being wrapped by to_dataset
|
1331
|
+
wrapper._is_wrapped = True
|
1332
|
+
return wrapper
|
1333
|
+
|
1334
|
+
|
1335
|
+
def decorate_methods_from_mixin(cls, mixin_cls):
|
1336
|
+
"""
|
1337
|
+
Apply the to_dataset decorator to methods inherited from a mixin class.
|
1338
|
+
|
1339
|
+
This function is part of EDSL's method inheritance system. It takes methods
|
1340
|
+
from a source mixin class, applies the to_dataset decorator to them, and adds
|
1341
|
+
them to a target class. This enables the sharing of data manipulation methods
|
1342
|
+
across different container types while ensuring they receive the right data type.
|
1343
|
+
|
1344
|
+
The function is careful not to override methods that are already defined in
|
1345
|
+
more specific parent classes, preserving the method resolution order (MRO).
|
1346
|
+
|
1347
|
+
Parameters:
|
1348
|
+
cls: The target class to add decorated methods to
|
1349
|
+
mixin_cls: The source mixin class providing the methods
|
1350
|
+
|
1351
|
+
Returns:
|
1352
|
+
The modified target class with decorated methods added
|
1353
|
+
|
1354
|
+
Notes:
|
1355
|
+
- Only public methods (not starting with "_") are decorated and added
|
1356
|
+
- Methods already defined in more specific parent classes are not overridden
|
1357
|
+
- Methods from DataOperationsBase are not skipped to ensure all base methods are available
|
1358
|
+
"""
|
1359
|
+
# Get all attributes, including inherited ones
|
1360
|
+
for attr_name in dir(mixin_cls):
|
1361
|
+
# Skip magic methods and private methods
|
1362
|
+
if not attr_name.startswith('_'):
|
1363
|
+
attr_value = getattr(mixin_cls, attr_name)
|
1364
|
+
if callable(attr_value):
|
1365
|
+
# Check if the method is already defined in the class's MRO
|
1366
|
+
# but skip DataOperationsBase methods
|
1367
|
+
for base in cls.__mro__[1:]: # Skip the class itself
|
1368
|
+
if (attr_name in base.__dict__ and
|
1369
|
+
base is not DataOperationsBase):
|
1370
|
+
# Method is overridden in a more specific class, skip decorating
|
1371
|
+
break
|
1372
|
+
else:
|
1373
|
+
# Method not overridden, safe to decorate
|
1374
|
+
setattr(cls, attr_name, to_dataset(attr_value))
|
1375
|
+
return cls
|
1376
|
+
|
1377
|
+
# def decorate_methods_from_mixin(cls, mixin_cls):
|
1378
|
+
# """Decorates all methods from mixin_cls with to_dataset decorator."""
|
1379
|
+
|
1380
|
+
# # Get all attributes, including inherited ones
|
1381
|
+
# for attr_name in dir(mixin_cls):
|
1382
|
+
# # Skip magic methods and private methods
|
1383
|
+
# if not attr_name.startswith('_'):
|
1384
|
+
# attr_value = getattr(mixin_cls, attr_name)
|
1385
|
+
# if callable(attr_value):
|
1386
|
+
# setattr(cls, attr_name, to_dataset(attr_value))
|
1387
|
+
# return cls
|
1388
|
+
|
1389
|
+
class DatasetOperationsMixin(DataOperationsBase):
|
1390
|
+
"""
|
1391
|
+
Mixin providing data manipulation operations for Dataset objects.
|
1392
|
+
|
1393
|
+
This mixin class is the cornerstone of EDSL's data manipulation system. It directly
|
1394
|
+
inherits methods from DataOperationsBase without requiring conversion, as it's
|
1395
|
+
designed specifically for the Dataset class. It serves as the primary implementation
|
1396
|
+
of all data operations methods that other container types will inherit and adapt
|
1397
|
+
through the to_dataset decorator.
|
1398
|
+
|
1399
|
+
The design follows a standard mixin pattern where common functionality is defined
|
1400
|
+
in a standalone class that can be "mixed in" to other classes. In EDSL's case,
|
1401
|
+
this allows different container types (Results, AgentList, ScenarioList) to share
|
1402
|
+
the same powerful data manipulation interface.
|
1403
|
+
|
1404
|
+
Key features:
|
1405
|
+
|
1406
|
+
1. Data Transformation:
|
1407
|
+
- Filtering with `filter()`
|
1408
|
+
- Creating new columns with `mutate()`
|
1409
|
+
- Reshaping with `long()`, `wide()`, `flatten()`, etc.
|
1410
|
+
- Selecting specific data with `select()`
|
1411
|
+
|
1412
|
+
2. Visualization:
|
1413
|
+
- Table display with `table()`
|
1414
|
+
- R integration with `ggplot2()`
|
1415
|
+
- Report generation with `report()`
|
1416
|
+
|
1417
|
+
3. Data Export:
|
1418
|
+
- To files with `to_csv()`, `to_excel()`, etc.
|
1419
|
+
- To other formats with `to_pandas()`, `to_dicts()`, etc.
|
1420
|
+
|
1421
|
+
4. Analysis:
|
1422
|
+
- SQL queries with `sql()`
|
1423
|
+
- Aggregation with `tally()`
|
1424
|
+
- Tree-based exploration with `tree()`
|
1425
|
+
|
1426
|
+
This mixin is designed for fluent method chaining, allowing complex data manipulation
|
1427
|
+
pipelines to be built in an expressive and readable way.
|
1428
|
+
"""
|
1429
|
+
pass
|
1430
|
+
|
1431
|
+
class ResultsOperationsMixin(DataOperationsBase):
|
1432
|
+
"""
|
1433
|
+
Mixin providing data operations for Results objects.
|
1434
|
+
|
1435
|
+
This mixin adapts DatasetOperationsMixin methods to work with Results objects.
|
1436
|
+
When a method is called on a Results object, it's automatically converted to
|
1437
|
+
a Dataset first via the to_dataset decorator applied in __init_subclass__.
|
1438
|
+
|
1439
|
+
This allows Results objects to have the same data manipulation capabilities
|
1440
|
+
as Dataset objects without duplicating code.
|
1441
|
+
"""
|
1442
|
+
def __init_subclass__(cls, **kwargs):
|
1443
|
+
"""
|
1444
|
+
Automatically decorate all methods from DatasetOperationsMixin.
|
1445
|
+
|
1446
|
+
This hook runs when a class inherits from ResultsOperationsMixin,
|
1447
|
+
applying the to_dataset decorator to all methods from DatasetOperationsMixin.
|
1448
|
+
"""
|
1449
|
+
super().__init_subclass__(**kwargs)
|
1450
|
+
decorate_methods_from_mixin(cls, DatasetOperationsMixin)
|
1451
|
+
|
1452
|
+
class ScenarioListOperationsMixin(DataOperationsBase):
|
1453
|
+
"""
|
1454
|
+
Mixin providing data operations for ScenarioList objects.
|
1455
|
+
|
1456
|
+
This mixin adapts DatasetOperationsMixin methods to work with ScenarioList objects.
|
1457
|
+
ScenarioList objects are converted to Dataset objects before method execution
|
1458
|
+
via the to_dataset decorator applied in __init_subclass__.
|
1459
|
+
"""
|
1460
|
+
def __init_subclass__(cls, **kwargs):
|
1461
|
+
"""
|
1462
|
+
Automatically decorate all methods from DatasetOperationsMixin.
|
1463
|
+
|
1464
|
+
This hook runs when a class inherits from ScenarioListOperationsMixin,
|
1465
|
+
applying the to_dataset decorator to all methods from DatasetOperationsMixin.
|
1466
|
+
"""
|
1467
|
+
super().__init_subclass__(**kwargs)
|
1468
|
+
decorate_methods_from_mixin(cls, DatasetOperationsMixin)
|
1469
|
+
|
1470
|
+
class AgentListOperationsMixin(DataOperationsBase):
|
1471
|
+
"""
|
1472
|
+
Mixin providing data operations for AgentList objects.
|
1473
|
+
|
1474
|
+
This mixin adapts DatasetOperationsMixin methods to work with AgentList objects.
|
1475
|
+
AgentList objects are converted to Dataset objects before method execution
|
1476
|
+
via the to_dataset decorator applied in __init_subclass__.
|
1477
|
+
"""
|
1478
|
+
def __init_subclass__(cls, **kwargs):
|
1479
|
+
"""
|
1480
|
+
Automatically decorate all methods from DatasetOperationsMixin.
|
1481
|
+
|
1482
|
+
This hook runs when a class inherits from AgentListOperationsMixin,
|
1483
|
+
applying the to_dataset decorator to all methods from DatasetOperationsMixin.
|
1484
|
+
"""
|
1485
|
+
super().__init_subclass__(**kwargs)
|
1486
|
+
decorate_methods_from_mixin(cls, DatasetOperationsMixin)
|
1487
|
+
|
1488
|
+
|
1489
|
+
if __name__ == "__main__":
|
1490
|
+
import doctest
|
1491
|
+
|
1492
|
+
doctest.testmod(optionflags=doctest.ELLIPSIS)
|