edsl 0.1.39.dev3__py3-none-any.whl → 0.1.39.dev5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (341) hide show
  1. edsl/Base.py +413 -332
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +57 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +1071 -867
  7. edsl/agents/AgentList.py +551 -413
  8. edsl/agents/Invigilator.py +284 -233
  9. edsl/agents/InvigilatorBase.py +257 -270
  10. edsl/agents/PromptConstructor.py +272 -354
  11. edsl/agents/QuestionInstructionPromptBuilder.py +128 -0
  12. edsl/agents/QuestionTemplateReplacementsBuilder.py +137 -0
  13. edsl/agents/__init__.py +2 -3
  14. edsl/agents/descriptors.py +99 -99
  15. edsl/agents/prompt_helpers.py +129 -129
  16. edsl/agents/question_option_processor.py +172 -0
  17. edsl/auto/AutoStudy.py +130 -117
  18. edsl/auto/StageBase.py +243 -230
  19. edsl/auto/StageGenerateSurvey.py +178 -178
  20. edsl/auto/StageLabelQuestions.py +125 -125
  21. edsl/auto/StagePersona.py +61 -61
  22. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  23. edsl/auto/StagePersonaDimensionValues.py +74 -74
  24. edsl/auto/StagePersonaDimensions.py +69 -69
  25. edsl/auto/StageQuestions.py +74 -73
  26. edsl/auto/SurveyCreatorPipeline.py +21 -21
  27. edsl/auto/utilities.py +218 -224
  28. edsl/base/Base.py +279 -279
  29. edsl/config.py +177 -157
  30. edsl/conversation/Conversation.py +290 -290
  31. edsl/conversation/car_buying.py +59 -58
  32. edsl/conversation/chips.py +95 -95
  33. edsl/conversation/mug_negotiation.py +81 -81
  34. edsl/conversation/next_speaker_utilities.py +93 -93
  35. edsl/coop/CoopFunctionsMixin.py +15 -0
  36. edsl/coop/ExpectedParrotKeyHandler.py +125 -0
  37. edsl/coop/PriceFetcher.py +54 -54
  38. edsl/coop/__init__.py +2 -2
  39. edsl/coop/coop.py +1106 -1028
  40. edsl/coop/utils.py +131 -131
  41. edsl/data/Cache.py +573 -555
  42. edsl/data/CacheEntry.py +230 -233
  43. edsl/data/CacheHandler.py +168 -149
  44. edsl/data/RemoteCacheSync.py +186 -78
  45. edsl/data/SQLiteDict.py +292 -292
  46. edsl/data/__init__.py +5 -4
  47. edsl/data/orm.py +10 -10
  48. edsl/data_transfer_models.py +74 -73
  49. edsl/enums.py +202 -175
  50. edsl/exceptions/BaseException.py +21 -21
  51. edsl/exceptions/__init__.py +54 -54
  52. edsl/exceptions/agents.py +54 -42
  53. edsl/exceptions/cache.py +5 -5
  54. edsl/exceptions/configuration.py +16 -16
  55. edsl/exceptions/coop.py +10 -10
  56. edsl/exceptions/data.py +14 -14
  57. edsl/exceptions/general.py +34 -34
  58. edsl/exceptions/inference_services.py +5 -0
  59. edsl/exceptions/jobs.py +33 -33
  60. edsl/exceptions/language_models.py +63 -63
  61. edsl/exceptions/prompts.py +15 -15
  62. edsl/exceptions/questions.py +109 -91
  63. edsl/exceptions/results.py +29 -29
  64. edsl/exceptions/scenarios.py +29 -22
  65. edsl/exceptions/surveys.py +37 -37
  66. edsl/inference_services/AnthropicService.py +106 -87
  67. edsl/inference_services/AvailableModelCacheHandler.py +184 -0
  68. edsl/inference_services/AvailableModelFetcher.py +215 -0
  69. edsl/inference_services/AwsBedrock.py +118 -120
  70. edsl/inference_services/AzureAI.py +215 -217
  71. edsl/inference_services/DeepInfraService.py +18 -18
  72. edsl/inference_services/GoogleService.py +143 -148
  73. edsl/inference_services/GroqService.py +20 -20
  74. edsl/inference_services/InferenceServiceABC.py +80 -147
  75. edsl/inference_services/InferenceServicesCollection.py +138 -97
  76. edsl/inference_services/MistralAIService.py +120 -123
  77. edsl/inference_services/OllamaService.py +18 -18
  78. edsl/inference_services/OpenAIService.py +236 -224
  79. edsl/inference_services/PerplexityService.py +160 -163
  80. edsl/inference_services/ServiceAvailability.py +135 -0
  81. edsl/inference_services/TestService.py +90 -89
  82. edsl/inference_services/TogetherAIService.py +172 -170
  83. edsl/inference_services/data_structures.py +134 -0
  84. edsl/inference_services/models_available_cache.py +118 -118
  85. edsl/inference_services/rate_limits_cache.py +25 -25
  86. edsl/inference_services/registry.py +41 -41
  87. edsl/inference_services/write_available.py +10 -10
  88. edsl/jobs/AnswerQuestionFunctionConstructor.py +223 -0
  89. edsl/jobs/Answers.py +43 -56
  90. edsl/jobs/FetchInvigilator.py +47 -0
  91. edsl/jobs/InterviewTaskManager.py +98 -0
  92. edsl/jobs/InterviewsConstructor.py +50 -0
  93. edsl/jobs/Jobs.py +823 -898
  94. edsl/jobs/JobsChecks.py +172 -147
  95. edsl/jobs/JobsComponentConstructor.py +189 -0
  96. edsl/jobs/JobsPrompts.py +270 -268
  97. edsl/jobs/JobsRemoteInferenceHandler.py +311 -239
  98. edsl/jobs/JobsRemoteInferenceLogger.py +239 -0
  99. edsl/jobs/RequestTokenEstimator.py +30 -0
  100. edsl/jobs/__init__.py +1 -1
  101. edsl/jobs/async_interview_runner.py +138 -0
  102. edsl/jobs/buckets/BucketCollection.py +104 -63
  103. edsl/jobs/buckets/ModelBuckets.py +65 -65
  104. edsl/jobs/buckets/TokenBucket.py +283 -251
  105. edsl/jobs/buckets/TokenBucketAPI.py +211 -0
  106. edsl/jobs/buckets/TokenBucketClient.py +191 -0
  107. edsl/jobs/check_survey_scenario_compatibility.py +85 -0
  108. edsl/jobs/data_structures.py +120 -0
  109. edsl/jobs/decorators.py +35 -0
  110. edsl/jobs/interviews/Interview.py +396 -661
  111. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  112. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  113. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  114. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  115. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  116. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  117. edsl/jobs/interviews/ReportErrors.py +66 -66
  118. edsl/jobs/interviews/interview_status_enum.py +9 -9
  119. edsl/jobs/jobs_status_enums.py +9 -0
  120. edsl/jobs/loggers/HTMLTableJobLogger.py +304 -0
  121. edsl/jobs/results_exceptions_handler.py +98 -0
  122. edsl/jobs/runners/JobsRunnerAsyncio.py +151 -466
  123. edsl/jobs/runners/JobsRunnerStatus.py +297 -330
  124. edsl/jobs/tasks/QuestionTaskCreator.py +244 -242
  125. edsl/jobs/tasks/TaskCreators.py +64 -64
  126. edsl/jobs/tasks/TaskHistory.py +470 -450
  127. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  128. edsl/jobs/tasks/task_status_enum.py +161 -163
  129. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  130. edsl/jobs/tokens/TokenUsage.py +34 -34
  131. edsl/language_models/ComputeCost.py +63 -0
  132. edsl/language_models/LanguageModel.py +626 -668
  133. edsl/language_models/ModelList.py +164 -155
  134. edsl/language_models/PriceManager.py +127 -0
  135. edsl/language_models/RawResponseHandler.py +106 -0
  136. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  137. edsl/language_models/ServiceDataSources.py +0 -0
  138. edsl/language_models/__init__.py +2 -3
  139. edsl/language_models/fake_openai_call.py +15 -15
  140. edsl/language_models/fake_openai_service.py +61 -61
  141. edsl/language_models/key_management/KeyLookup.py +63 -0
  142. edsl/language_models/key_management/KeyLookupBuilder.py +273 -0
  143. edsl/language_models/key_management/KeyLookupCollection.py +38 -0
  144. edsl/language_models/key_management/__init__.py +0 -0
  145. edsl/language_models/key_management/models.py +131 -0
  146. edsl/language_models/model.py +256 -0
  147. edsl/language_models/repair.py +156 -156
  148. edsl/language_models/utilities.py +65 -64
  149. edsl/notebooks/Notebook.py +263 -258
  150. edsl/notebooks/NotebookToLaTeX.py +142 -0
  151. edsl/notebooks/__init__.py +1 -1
  152. edsl/prompts/Prompt.py +352 -362
  153. edsl/prompts/__init__.py +2 -2
  154. edsl/questions/ExceptionExplainer.py +77 -0
  155. edsl/questions/HTMLQuestion.py +103 -0
  156. edsl/questions/QuestionBase.py +518 -664
  157. edsl/questions/QuestionBasePromptsMixin.py +221 -217
  158. edsl/questions/QuestionBudget.py +227 -227
  159. edsl/questions/QuestionCheckBox.py +359 -359
  160. edsl/questions/QuestionExtract.py +180 -182
  161. edsl/questions/QuestionFreeText.py +113 -114
  162. edsl/questions/QuestionFunctional.py +166 -166
  163. edsl/questions/QuestionList.py +223 -231
  164. edsl/questions/QuestionMatrix.py +265 -0
  165. edsl/questions/QuestionMultipleChoice.py +330 -286
  166. edsl/questions/QuestionNumerical.py +151 -153
  167. edsl/questions/QuestionRank.py +314 -324
  168. edsl/questions/Quick.py +41 -41
  169. edsl/questions/SimpleAskMixin.py +74 -73
  170. edsl/questions/__init__.py +27 -26
  171. edsl/questions/{AnswerValidatorMixin.py → answer_validator_mixin.py} +334 -289
  172. edsl/questions/compose_questions.py +98 -98
  173. edsl/questions/data_structures.py +20 -0
  174. edsl/questions/decorators.py +21 -21
  175. edsl/questions/derived/QuestionLikertFive.py +76 -76
  176. edsl/questions/derived/QuestionLinearScale.py +90 -87
  177. edsl/questions/derived/QuestionTopK.py +93 -93
  178. edsl/questions/derived/QuestionYesNo.py +82 -82
  179. edsl/questions/descriptors.py +427 -413
  180. edsl/questions/loop_processor.py +149 -0
  181. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  182. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  183. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  184. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  185. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  186. edsl/questions/prompt_templates/question_list.jinja +17 -17
  187. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  188. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  189. edsl/questions/{QuestionBaseGenMixin.py → question_base_gen_mixin.py} +168 -161
  190. edsl/questions/question_registry.py +177 -177
  191. edsl/questions/{RegisterQuestionsMeta.py → register_questions_meta.py} +71 -71
  192. edsl/questions/{ResponseValidatorABC.py → response_validator_abc.py} +188 -174
  193. edsl/questions/response_validator_factory.py +34 -0
  194. edsl/questions/settings.py +12 -12
  195. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  196. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  197. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  198. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  199. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  200. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  201. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  202. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  203. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  204. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  205. edsl/questions/templates/list/question_presentation.jinja +5 -5
  206. edsl/questions/templates/matrix/__init__.py +1 -0
  207. edsl/questions/templates/matrix/answering_instructions.jinja +5 -0
  208. edsl/questions/templates/matrix/question_presentation.jinja +20 -0
  209. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  210. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  211. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  212. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  213. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  214. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  215. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  216. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  217. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  218. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  219. edsl/results/CSSParameterizer.py +108 -108
  220. edsl/results/Dataset.py +587 -424
  221. edsl/results/DatasetExportMixin.py +594 -731
  222. edsl/results/DatasetTree.py +295 -275
  223. edsl/results/MarkdownToDocx.py +122 -0
  224. edsl/results/MarkdownToPDF.py +111 -0
  225. edsl/results/Result.py +557 -465
  226. edsl/results/Results.py +1183 -1165
  227. edsl/results/ResultsExportMixin.py +45 -43
  228. edsl/results/ResultsGGMixin.py +121 -121
  229. edsl/results/TableDisplay.py +125 -198
  230. edsl/results/TextEditor.py +50 -0
  231. edsl/results/__init__.py +2 -2
  232. edsl/results/file_exports.py +252 -0
  233. edsl/results/{ResultsFetchMixin.py → results_fetch_mixin.py} +33 -33
  234. edsl/results/{Selector.py → results_selector.py} +145 -135
  235. edsl/results/{ResultsToolsMixin.py → results_tools_mixin.py} +98 -98
  236. edsl/results/smart_objects.py +96 -0
  237. edsl/results/table_data_class.py +12 -0
  238. edsl/results/table_display.css +77 -77
  239. edsl/results/table_renderers.py +118 -0
  240. edsl/results/tree_explore.py +115 -115
  241. edsl/scenarios/ConstructDownloadLink.py +109 -0
  242. edsl/scenarios/DocumentChunker.py +102 -0
  243. edsl/scenarios/DocxScenario.py +16 -0
  244. edsl/scenarios/FileStore.py +511 -632
  245. edsl/scenarios/PdfExtractor.py +40 -0
  246. edsl/scenarios/Scenario.py +498 -601
  247. edsl/scenarios/ScenarioHtmlMixin.py +65 -64
  248. edsl/scenarios/ScenarioList.py +1458 -1287
  249. edsl/scenarios/ScenarioListExportMixin.py +45 -52
  250. edsl/scenarios/ScenarioListPdfMixin.py +239 -261
  251. edsl/scenarios/__init__.py +3 -4
  252. edsl/scenarios/directory_scanner.py +96 -0
  253. edsl/scenarios/file_methods.py +85 -0
  254. edsl/scenarios/handlers/__init__.py +13 -0
  255. edsl/scenarios/handlers/csv.py +38 -0
  256. edsl/scenarios/handlers/docx.py +76 -0
  257. edsl/scenarios/handlers/html.py +37 -0
  258. edsl/scenarios/handlers/json.py +111 -0
  259. edsl/scenarios/handlers/latex.py +5 -0
  260. edsl/scenarios/handlers/md.py +51 -0
  261. edsl/scenarios/handlers/pdf.py +68 -0
  262. edsl/scenarios/handlers/png.py +39 -0
  263. edsl/scenarios/handlers/pptx.py +105 -0
  264. edsl/scenarios/handlers/py.py +294 -0
  265. edsl/scenarios/handlers/sql.py +313 -0
  266. edsl/scenarios/handlers/sqlite.py +149 -0
  267. edsl/scenarios/handlers/txt.py +33 -0
  268. edsl/scenarios/{ScenarioJoin.py → scenario_join.py} +131 -127
  269. edsl/scenarios/scenario_selector.py +156 -0
  270. edsl/shared.py +1 -1
  271. edsl/study/ObjectEntry.py +173 -173
  272. edsl/study/ProofOfWork.py +113 -113
  273. edsl/study/SnapShot.py +80 -80
  274. edsl/study/Study.py +521 -528
  275. edsl/study/__init__.py +4 -4
  276. edsl/surveys/ConstructDAG.py +92 -0
  277. edsl/surveys/DAG.py +148 -148
  278. edsl/surveys/EditSurvey.py +221 -0
  279. edsl/surveys/InstructionHandler.py +100 -0
  280. edsl/surveys/Memory.py +31 -31
  281. edsl/surveys/MemoryManagement.py +72 -0
  282. edsl/surveys/MemoryPlan.py +244 -244
  283. edsl/surveys/Rule.py +327 -326
  284. edsl/surveys/RuleCollection.py +385 -387
  285. edsl/surveys/RuleManager.py +172 -0
  286. edsl/surveys/Simulator.py +75 -0
  287. edsl/surveys/Survey.py +1280 -1801
  288. edsl/surveys/SurveyCSS.py +273 -261
  289. edsl/surveys/SurveyExportMixin.py +259 -259
  290. edsl/surveys/{SurveyFlowVisualizationMixin.py → SurveyFlowVisualization.py} +181 -179
  291. edsl/surveys/SurveyQualtricsImport.py +284 -284
  292. edsl/surveys/SurveyToApp.py +141 -0
  293. edsl/surveys/__init__.py +5 -3
  294. edsl/surveys/base.py +53 -53
  295. edsl/surveys/descriptors.py +60 -56
  296. edsl/surveys/instructions/ChangeInstruction.py +48 -49
  297. edsl/surveys/instructions/Instruction.py +56 -65
  298. edsl/surveys/instructions/InstructionCollection.py +82 -77
  299. edsl/templates/error_reporting/base.html +23 -23
  300. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  301. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  302. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  303. edsl/templates/error_reporting/interview_details.html +115 -115
  304. edsl/templates/error_reporting/interviews.html +19 -19
  305. edsl/templates/error_reporting/overview.html +4 -4
  306. edsl/templates/error_reporting/performance_plot.html +1 -1
  307. edsl/templates/error_reporting/report.css +73 -73
  308. edsl/templates/error_reporting/report.html +117 -117
  309. edsl/templates/error_reporting/report.js +25 -25
  310. edsl/tools/__init__.py +1 -1
  311. edsl/tools/clusters.py +192 -192
  312. edsl/tools/embeddings.py +27 -27
  313. edsl/tools/embeddings_plotting.py +118 -118
  314. edsl/tools/plotting.py +112 -112
  315. edsl/tools/summarize.py +18 -18
  316. edsl/utilities/PrettyList.py +56 -0
  317. edsl/utilities/SystemInfo.py +28 -28
  318. edsl/utilities/__init__.py +22 -22
  319. edsl/utilities/ast_utilities.py +25 -25
  320. edsl/utilities/data/Registry.py +6 -6
  321. edsl/utilities/data/__init__.py +1 -1
  322. edsl/utilities/data/scooter_results.json +1 -1
  323. edsl/utilities/decorators.py +77 -77
  324. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  325. edsl/utilities/interface.py +627 -627
  326. edsl/utilities/is_notebook.py +18 -0
  327. edsl/utilities/is_valid_variable_name.py +11 -0
  328. edsl/utilities/naming_utilities.py +263 -263
  329. edsl/utilities/remove_edsl_version.py +24 -0
  330. edsl/utilities/repair_functions.py +28 -28
  331. edsl/utilities/restricted_python.py +70 -70
  332. edsl/utilities/utilities.py +436 -424
  333. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev5.dist-info}/LICENSE +21 -21
  334. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev5.dist-info}/METADATA +13 -11
  335. edsl-0.1.39.dev5.dist-info/RECORD +358 -0
  336. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev5.dist-info}/WHEEL +1 -1
  337. edsl/language_models/KeyLookup.py +0 -30
  338. edsl/language_models/registry.py +0 -190
  339. edsl/language_models/unused/ReplicateBase.py +0 -83
  340. edsl/results/ResultsDBMixin.py +0 -238
  341. edsl-0.1.39.dev3.dist-info/RECORD +0 -277
edsl/jobs/JobsPrompts.py CHANGED
@@ -1,268 +1,270 @@
1
- from typing import List, TYPE_CHECKING
2
-
3
- from edsl.results.Dataset import Dataset
4
-
5
- if TYPE_CHECKING:
6
- from edsl.jobs import Jobs
7
-
8
- # from edsl.jobs.interviews.Interview import Interview
9
- # from edsl.results.Dataset import Dataset
10
- # from edsl.agents.AgentList import AgentList
11
- # from edsl.scenarios.ScenarioList import ScenarioList
12
- # from edsl.surveys.Survey import Survey
13
-
14
-
15
- class JobsPrompts:
16
- def __init__(self, jobs: "Jobs"):
17
- self.interviews = jobs.interviews()
18
- self.agents = jobs.agents
19
- self.scenarios = jobs.scenarios
20
- self.survey = jobs.survey
21
- self._price_lookup = None
22
-
23
- @property
24
- def price_lookup(self):
25
- if self._price_lookup is None:
26
- from edsl import Coop
27
-
28
- c = Coop()
29
- self._price_lookup = c.fetch_prices()
30
- return self._price_lookup
31
-
32
- def prompts(self) -> "Dataset":
33
- """Return a Dataset of prompts that will be used.
34
-
35
- >>> from edsl.jobs import Jobs
36
- >>> Jobs.example().prompts()
37
- Dataset(...)
38
- """
39
- interviews = self.interviews
40
- interview_indices = []
41
- question_names = []
42
- user_prompts = []
43
- system_prompts = []
44
- scenario_indices = []
45
- agent_indices = []
46
- models = []
47
- costs = []
48
-
49
- for interview_index, interview in enumerate(interviews):
50
- invigilators = [
51
- interview._get_invigilator(question)
52
- for question in self.survey.questions
53
- ]
54
- for _, invigilator in enumerate(invigilators):
55
- prompts = invigilator.get_prompts()
56
- user_prompt = prompts["user_prompt"]
57
- system_prompt = prompts["system_prompt"]
58
- user_prompts.append(user_prompt)
59
- system_prompts.append(system_prompt)
60
- agent_index = self.agents.index(invigilator.agent)
61
- agent_indices.append(agent_index)
62
- interview_indices.append(interview_index)
63
- scenario_index = self.scenarios.index(invigilator.scenario)
64
- scenario_indices.append(scenario_index)
65
- models.append(invigilator.model.model)
66
- question_names.append(invigilator.question.question_name)
67
-
68
- prompt_cost = self.estimate_prompt_cost(
69
- system_prompt=system_prompt,
70
- user_prompt=user_prompt,
71
- price_lookup=self.price_lookup,
72
- inference_service=invigilator.model._inference_service_,
73
- model=invigilator.model.model,
74
- )
75
- costs.append(prompt_cost["cost_usd"])
76
-
77
- d = Dataset(
78
- [
79
- {"user_prompt": user_prompts},
80
- {"system_prompt": system_prompts},
81
- {"interview_index": interview_indices},
82
- {"question_name": question_names},
83
- {"scenario_index": scenario_indices},
84
- {"agent_index": agent_indices},
85
- {"model": models},
86
- {"estimated_cost": costs},
87
- ]
88
- )
89
- return d
90
-
91
- @staticmethod
92
- def estimate_prompt_cost(
93
- system_prompt: str,
94
- user_prompt: str,
95
- price_lookup: dict,
96
- inference_service: str,
97
- model: str,
98
- ) -> dict:
99
- """Estimates the cost of a prompt. Takes piping into account."""
100
- import math
101
-
102
- def get_piping_multiplier(prompt: str):
103
- """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
-
105
- if "{{" in prompt and "}}" in prompt:
106
- return 2
107
- return 1
108
-
109
- # Look up prices per token
110
- key = (inference_service, model)
111
-
112
- try:
113
- relevant_prices = price_lookup[key]
114
-
115
- service_input_token_price = float(
116
- relevant_prices["input"]["service_stated_token_price"]
117
- )
118
- service_input_token_qty = float(
119
- relevant_prices["input"]["service_stated_token_qty"]
120
- )
121
- input_price_per_token = service_input_token_price / service_input_token_qty
122
-
123
- service_output_token_price = float(
124
- relevant_prices["output"]["service_stated_token_price"]
125
- )
126
- service_output_token_qty = float(
127
- relevant_prices["output"]["service_stated_token_qty"]
128
- )
129
- output_price_per_token = (
130
- service_output_token_price / service_output_token_qty
131
- )
132
-
133
- except KeyError:
134
- # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
- # Use a sensible default
136
-
137
- import warnings
138
-
139
- warnings.warn(
140
- "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
- )
142
- input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
- output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
-
145
- # Compute the number of characters (double if the question involves piping)
146
- user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
- str(user_prompt)
148
- )
149
- system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
- str(system_prompt)
151
- )
152
-
153
- # Convert into tokens (1 token approx. equals 4 characters)
154
- input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
-
156
- output_tokens = math.ceil(0.75 * input_tokens)
157
-
158
- cost = (
159
- input_tokens * input_price_per_token
160
- + output_tokens * output_price_per_token
161
- )
162
-
163
- return {
164
- "input_tokens": input_tokens,
165
- "output_tokens": output_tokens,
166
- "cost_usd": cost,
167
- }
168
-
169
- def estimate_job_cost_from_external_prices(
170
- self, price_lookup: dict, iterations: int = 1
171
- ) -> dict:
172
- """
173
- Estimates the cost of a job according to the following assumptions:
174
-
175
- - 1 token = 4 characters.
176
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
-
178
- price_lookup is an external pricing dictionary.
179
- """
180
-
181
- import pandas as pd
182
-
183
- interviews = self.interviews
184
- data = []
185
- for interview in interviews:
186
- invigilators = [
187
- interview._get_invigilator(question)
188
- for question in self.survey.questions
189
- ]
190
- for invigilator in invigilators:
191
- prompts = invigilator.get_prompts()
192
-
193
- # By this point, agent and scenario data has already been added to the prompts
194
- user_prompt = prompts["user_prompt"]
195
- system_prompt = prompts["system_prompt"]
196
- inference_service = invigilator.model._inference_service_
197
- model = invigilator.model.model
198
-
199
- prompt_cost = self.estimate_prompt_cost(
200
- system_prompt=system_prompt,
201
- user_prompt=user_prompt,
202
- price_lookup=price_lookup,
203
- inference_service=inference_service,
204
- model=model,
205
- )
206
-
207
- data.append(
208
- {
209
- "user_prompt": user_prompt,
210
- "system_prompt": system_prompt,
211
- "estimated_input_tokens": prompt_cost["input_tokens"],
212
- "estimated_output_tokens": prompt_cost["output_tokens"],
213
- "estimated_cost_usd": prompt_cost["cost_usd"],
214
- "inference_service": inference_service,
215
- "model": model,
216
- }
217
- )
218
-
219
- df = pd.DataFrame.from_records(data)
220
-
221
- df = (
222
- df.groupby(["inference_service", "model"])
223
- .agg(
224
- {
225
- "estimated_cost_usd": "sum",
226
- "estimated_input_tokens": "sum",
227
- "estimated_output_tokens": "sum",
228
- }
229
- )
230
- .reset_index()
231
- )
232
- df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
- df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
- df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
-
236
- estimated_costs_by_model = df.to_dict("records")
237
-
238
- estimated_total_cost = sum(
239
- model["estimated_cost_usd"] for model in estimated_costs_by_model
240
- )
241
- estimated_total_input_tokens = sum(
242
- model["estimated_input_tokens"] for model in estimated_costs_by_model
243
- )
244
- estimated_total_output_tokens = sum(
245
- model["estimated_output_tokens"] for model in estimated_costs_by_model
246
- )
247
-
248
- output = {
249
- "estimated_total_cost_usd": estimated_total_cost,
250
- "estimated_total_input_tokens": estimated_total_input_tokens,
251
- "estimated_total_output_tokens": estimated_total_output_tokens,
252
- "model_costs": estimated_costs_by_model,
253
- }
254
-
255
- return output
256
-
257
- def estimate_job_cost(self, iterations: int = 1) -> dict:
258
- """
259
- Estimates the cost of a job according to the following assumptions:
260
-
261
- - 1 token = 4 characters.
262
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
-
264
- Fetches prices from Coop.
265
- """
266
- return self.estimate_job_cost_from_external_prices(
267
- price_lookup=self.price_lookup, iterations=iterations
268
- )
1
+ from typing import List, TYPE_CHECKING
2
+
3
+ from edsl.results.Dataset import Dataset
4
+
5
+ if TYPE_CHECKING:
6
+ from edsl.jobs import Jobs
7
+
8
+ # from edsl.jobs.interviews.Interview import Interview
9
+ # from edsl.results.Dataset import Dataset
10
+ # from edsl.agents.AgentList import AgentList
11
+ # from edsl.scenarios.ScenarioList import ScenarioList
12
+ # from edsl.surveys.Survey import Survey
13
+
14
+ from edsl.jobs.FetchInvigilator import FetchInvigilator
15
+
16
+
17
+ class JobsPrompts:
18
+ def __init__(self, jobs: "Jobs"):
19
+ self.interviews = jobs.interviews()
20
+ self.agents = jobs.agents
21
+ self.scenarios = jobs.scenarios
22
+ self.survey = jobs.survey
23
+ self._price_lookup = None
24
+
25
+ @property
26
+ def price_lookup(self):
27
+ if self._price_lookup is None:
28
+ from edsl.coop.coop import Coop
29
+
30
+ c = Coop()
31
+ self._price_lookup = c.fetch_prices()
32
+ return self._price_lookup
33
+
34
+ def prompts(self) -> "Dataset":
35
+ """Return a Dataset of prompts that will be used.
36
+
37
+ >>> from edsl.jobs import Jobs
38
+ >>> Jobs.example().prompts()
39
+ Dataset(...)
40
+ """
41
+ interviews = self.interviews
42
+ interview_indices = []
43
+ question_names = []
44
+ user_prompts = []
45
+ system_prompts = []
46
+ scenario_indices = []
47
+ agent_indices = []
48
+ models = []
49
+ costs = []
50
+
51
+ for interview_index, interview in enumerate(interviews):
52
+ invigilators = [
53
+ FetchInvigilator(interview)(question)
54
+ for question in interview.survey.questions
55
+ ]
56
+ for _, invigilator in enumerate(invigilators):
57
+ prompts = invigilator.get_prompts()
58
+ user_prompt = prompts["user_prompt"]
59
+ system_prompt = prompts["system_prompt"]
60
+ user_prompts.append(user_prompt)
61
+ system_prompts.append(system_prompt)
62
+ agent_index = self.agents.index(invigilator.agent)
63
+ agent_indices.append(agent_index)
64
+ interview_indices.append(interview_index)
65
+ scenario_index = self.scenarios.index(invigilator.scenario)
66
+ scenario_indices.append(scenario_index)
67
+ models.append(invigilator.model.model)
68
+ question_names.append(invigilator.question.question_name)
69
+
70
+ prompt_cost = self.estimate_prompt_cost(
71
+ system_prompt=system_prompt,
72
+ user_prompt=user_prompt,
73
+ price_lookup=self.price_lookup,
74
+ inference_service=invigilator.model._inference_service_,
75
+ model=invigilator.model.model,
76
+ )
77
+ costs.append(prompt_cost["cost_usd"])
78
+
79
+ d = Dataset(
80
+ [
81
+ {"user_prompt": user_prompts},
82
+ {"system_prompt": system_prompts},
83
+ {"interview_index": interview_indices},
84
+ {"question_name": question_names},
85
+ {"scenario_index": scenario_indices},
86
+ {"agent_index": agent_indices},
87
+ {"model": models},
88
+ {"estimated_cost": costs},
89
+ ]
90
+ )
91
+ return d
92
+
93
+ @staticmethod
94
+ def estimate_prompt_cost(
95
+ system_prompt: str,
96
+ user_prompt: str,
97
+ price_lookup: dict,
98
+ inference_service: str,
99
+ model: str,
100
+ ) -> dict:
101
+ """Estimates the cost of a prompt. Takes piping into account."""
102
+ import math
103
+
104
+ def get_piping_multiplier(prompt: str):
105
+ """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
106
+
107
+ if "{{" in prompt and "}}" in prompt:
108
+ return 2
109
+ return 1
110
+
111
+ # Look up prices per token
112
+ key = (inference_service, model)
113
+
114
+ try:
115
+ relevant_prices = price_lookup[key]
116
+
117
+ service_input_token_price = float(
118
+ relevant_prices["input"]["service_stated_token_price"]
119
+ )
120
+ service_input_token_qty = float(
121
+ relevant_prices["input"]["service_stated_token_qty"]
122
+ )
123
+ input_price_per_token = service_input_token_price / service_input_token_qty
124
+
125
+ service_output_token_price = float(
126
+ relevant_prices["output"]["service_stated_token_price"]
127
+ )
128
+ service_output_token_qty = float(
129
+ relevant_prices["output"]["service_stated_token_qty"]
130
+ )
131
+ output_price_per_token = (
132
+ service_output_token_price / service_output_token_qty
133
+ )
134
+
135
+ except KeyError:
136
+ # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
137
+ # Use a sensible default
138
+
139
+ import warnings
140
+
141
+ warnings.warn(
142
+ "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
143
+ )
144
+ input_price_per_token = 0.00000015 # $0.15 / 1M tokens
145
+ output_price_per_token = 0.00000060 # $0.60 / 1M tokens
146
+
147
+ # Compute the number of characters (double if the question involves piping)
148
+ user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
149
+ str(user_prompt)
150
+ )
151
+ system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
152
+ str(system_prompt)
153
+ )
154
+
155
+ # Convert into tokens (1 token approx. equals 4 characters)
156
+ input_tokens = (user_prompt_chars + system_prompt_chars) // 4
157
+
158
+ output_tokens = math.ceil(0.75 * input_tokens)
159
+
160
+ cost = (
161
+ input_tokens * input_price_per_token
162
+ + output_tokens * output_price_per_token
163
+ )
164
+
165
+ return {
166
+ "input_tokens": input_tokens,
167
+ "output_tokens": output_tokens,
168
+ "cost_usd": cost,
169
+ }
170
+
171
+ def estimate_job_cost_from_external_prices(
172
+ self, price_lookup: dict, iterations: int = 1
173
+ ) -> dict:
174
+ """
175
+ Estimates the cost of a job according to the following assumptions:
176
+
177
+ - 1 token = 4 characters.
178
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
179
+
180
+ price_lookup is an external pricing dictionary.
181
+ """
182
+
183
+ import pandas as pd
184
+
185
+ interviews = self.interviews
186
+ data = []
187
+ for interview in interviews:
188
+ invigilators = [
189
+ FetchInvigilator(interview)(question)
190
+ for question in self.survey.questions
191
+ ]
192
+ for invigilator in invigilators:
193
+ prompts = invigilator.get_prompts()
194
+
195
+ # By this point, agent and scenario data has already been added to the prompts
196
+ user_prompt = prompts["user_prompt"]
197
+ system_prompt = prompts["system_prompt"]
198
+ inference_service = invigilator.model._inference_service_
199
+ model = invigilator.model.model
200
+
201
+ prompt_cost = self.estimate_prompt_cost(
202
+ system_prompt=system_prompt,
203
+ user_prompt=user_prompt,
204
+ price_lookup=price_lookup,
205
+ inference_service=inference_service,
206
+ model=model,
207
+ )
208
+
209
+ data.append(
210
+ {
211
+ "user_prompt": user_prompt,
212
+ "system_prompt": system_prompt,
213
+ "estimated_input_tokens": prompt_cost["input_tokens"],
214
+ "estimated_output_tokens": prompt_cost["output_tokens"],
215
+ "estimated_cost_usd": prompt_cost["cost_usd"],
216
+ "inference_service": inference_service,
217
+ "model": model,
218
+ }
219
+ )
220
+
221
+ df = pd.DataFrame.from_records(data)
222
+
223
+ df = (
224
+ df.groupby(["inference_service", "model"])
225
+ .agg(
226
+ {
227
+ "estimated_cost_usd": "sum",
228
+ "estimated_input_tokens": "sum",
229
+ "estimated_output_tokens": "sum",
230
+ }
231
+ )
232
+ .reset_index()
233
+ )
234
+ df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
235
+ df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
236
+ df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
237
+
238
+ estimated_costs_by_model = df.to_dict("records")
239
+
240
+ estimated_total_cost = sum(
241
+ model["estimated_cost_usd"] for model in estimated_costs_by_model
242
+ )
243
+ estimated_total_input_tokens = sum(
244
+ model["estimated_input_tokens"] for model in estimated_costs_by_model
245
+ )
246
+ estimated_total_output_tokens = sum(
247
+ model["estimated_output_tokens"] for model in estimated_costs_by_model
248
+ )
249
+
250
+ output = {
251
+ "estimated_total_cost_usd": estimated_total_cost,
252
+ "estimated_total_input_tokens": estimated_total_input_tokens,
253
+ "estimated_total_output_tokens": estimated_total_output_tokens,
254
+ "model_costs": estimated_costs_by_model,
255
+ }
256
+
257
+ return output
258
+
259
+ def estimate_job_cost(self, iterations: int = 1) -> dict:
260
+ """
261
+ Estimates the cost of a job according to the following assumptions:
262
+
263
+ - 1 token = 4 characters.
264
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
265
+
266
+ Fetches prices from Coop.
267
+ """
268
+ return self.estimate_job_cost_from_external_prices(
269
+ price_lookup=self.price_lookup, iterations=iterations
270
+ )