edsl 0.1.39.dev3__py3-none-any.whl → 0.1.39.dev4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (344) hide show
  1. edsl/Base.py +413 -332
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +57 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +1071 -867
  7. edsl/agents/AgentList.py +551 -413
  8. edsl/agents/Invigilator.py +284 -233
  9. edsl/agents/InvigilatorBase.py +257 -270
  10. edsl/agents/PromptConstructor.py +272 -354
  11. edsl/agents/QuestionInstructionPromptBuilder.py +128 -0
  12. edsl/agents/QuestionTemplateReplacementsBuilder.py +137 -0
  13. edsl/agents/__init__.py +2 -3
  14. edsl/agents/descriptors.py +99 -99
  15. edsl/agents/prompt_helpers.py +129 -129
  16. edsl/agents/question_option_processor.py +172 -0
  17. edsl/auto/AutoStudy.py +130 -117
  18. edsl/auto/StageBase.py +243 -230
  19. edsl/auto/StageGenerateSurvey.py +178 -178
  20. edsl/auto/StageLabelQuestions.py +125 -125
  21. edsl/auto/StagePersona.py +61 -61
  22. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  23. edsl/auto/StagePersonaDimensionValues.py +74 -74
  24. edsl/auto/StagePersonaDimensions.py +69 -69
  25. edsl/auto/StageQuestions.py +74 -73
  26. edsl/auto/SurveyCreatorPipeline.py +21 -21
  27. edsl/auto/utilities.py +218 -224
  28. edsl/base/Base.py +279 -279
  29. edsl/config.py +177 -157
  30. edsl/conversation/Conversation.py +290 -290
  31. edsl/conversation/car_buying.py +59 -58
  32. edsl/conversation/chips.py +95 -95
  33. edsl/conversation/mug_negotiation.py +81 -81
  34. edsl/conversation/next_speaker_utilities.py +93 -93
  35. edsl/coop/CoopFunctionsMixin.py +15 -0
  36. edsl/coop/ExpectedParrotKeyHandler.py +125 -0
  37. edsl/coop/PriceFetcher.py +54 -54
  38. edsl/coop/__init__.py +2 -2
  39. edsl/coop/coop.py +1106 -1028
  40. edsl/coop/utils.py +131 -131
  41. edsl/data/Cache.py +573 -555
  42. edsl/data/CacheEntry.py +230 -233
  43. edsl/data/CacheHandler.py +168 -149
  44. edsl/data/RemoteCacheSync.py +186 -78
  45. edsl/data/SQLiteDict.py +292 -292
  46. edsl/data/__init__.py +5 -4
  47. edsl/data/hack.py +10 -0
  48. edsl/data/orm.py +10 -10
  49. edsl/data_transfer_models.py +74 -73
  50. edsl/enums.py +202 -175
  51. edsl/exceptions/BaseException.py +21 -21
  52. edsl/exceptions/__init__.py +54 -54
  53. edsl/exceptions/agents.py +54 -42
  54. edsl/exceptions/cache.py +5 -5
  55. edsl/exceptions/configuration.py +16 -16
  56. edsl/exceptions/coop.py +10 -10
  57. edsl/exceptions/data.py +14 -14
  58. edsl/exceptions/general.py +34 -34
  59. edsl/exceptions/inference_services.py +5 -0
  60. edsl/exceptions/jobs.py +33 -33
  61. edsl/exceptions/language_models.py +63 -63
  62. edsl/exceptions/prompts.py +15 -15
  63. edsl/exceptions/questions.py +109 -91
  64. edsl/exceptions/results.py +29 -29
  65. edsl/exceptions/scenarios.py +29 -22
  66. edsl/exceptions/surveys.py +37 -37
  67. edsl/inference_services/AnthropicService.py +106 -87
  68. edsl/inference_services/AvailableModelCacheHandler.py +184 -0
  69. edsl/inference_services/AvailableModelFetcher.py +215 -0
  70. edsl/inference_services/AwsBedrock.py +118 -120
  71. edsl/inference_services/AzureAI.py +215 -217
  72. edsl/inference_services/DeepInfraService.py +18 -18
  73. edsl/inference_services/GoogleService.py +143 -148
  74. edsl/inference_services/GroqService.py +20 -20
  75. edsl/inference_services/InferenceServiceABC.py +80 -147
  76. edsl/inference_services/InferenceServicesCollection.py +138 -97
  77. edsl/inference_services/MistralAIService.py +120 -123
  78. edsl/inference_services/OllamaService.py +18 -18
  79. edsl/inference_services/OpenAIService.py +236 -224
  80. edsl/inference_services/PerplexityService.py +160 -163
  81. edsl/inference_services/ServiceAvailability.py +135 -0
  82. edsl/inference_services/TestService.py +90 -89
  83. edsl/inference_services/TogetherAIService.py +172 -170
  84. edsl/inference_services/data_structures.py +134 -0
  85. edsl/inference_services/models_available_cache.py +118 -118
  86. edsl/inference_services/rate_limits_cache.py +25 -25
  87. edsl/inference_services/registry.py +41 -41
  88. edsl/inference_services/write_available.py +10 -10
  89. edsl/jobs/AnswerQuestionFunctionConstructor.py +223 -0
  90. edsl/jobs/Answers.py +43 -56
  91. edsl/jobs/FetchInvigilator.py +47 -0
  92. edsl/jobs/InterviewTaskManager.py +98 -0
  93. edsl/jobs/InterviewsConstructor.py +50 -0
  94. edsl/jobs/Jobs.py +823 -898
  95. edsl/jobs/JobsChecks.py +172 -147
  96. edsl/jobs/JobsComponentConstructor.py +189 -0
  97. edsl/jobs/JobsPrompts.py +270 -268
  98. edsl/jobs/JobsRemoteInferenceHandler.py +311 -239
  99. edsl/jobs/JobsRemoteInferenceLogger.py +239 -0
  100. edsl/jobs/RequestTokenEstimator.py +30 -0
  101. edsl/jobs/__init__.py +1 -1
  102. edsl/jobs/async_interview_runner.py +138 -0
  103. edsl/jobs/buckets/BucketCollection.py +104 -63
  104. edsl/jobs/buckets/ModelBuckets.py +65 -65
  105. edsl/jobs/buckets/TokenBucket.py +283 -251
  106. edsl/jobs/buckets/TokenBucketAPI.py +211 -0
  107. edsl/jobs/buckets/TokenBucketClient.py +191 -0
  108. edsl/jobs/check_survey_scenario_compatibility.py +85 -0
  109. edsl/jobs/data_structures.py +120 -0
  110. edsl/jobs/decorators.py +35 -0
  111. edsl/jobs/interviews/Interview.py +396 -661
  112. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  113. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  114. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  115. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  116. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  117. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  118. edsl/jobs/interviews/ReportErrors.py +66 -66
  119. edsl/jobs/interviews/interview_status_enum.py +9 -9
  120. edsl/jobs/jobs_status_enums.py +9 -0
  121. edsl/jobs/loggers/HTMLTableJobLogger.py +304 -0
  122. edsl/jobs/results_exceptions_handler.py +98 -0
  123. edsl/jobs/runners/JobsRunnerAsyncio.py +151 -466
  124. edsl/jobs/runners/JobsRunnerStatus.py +297 -330
  125. edsl/jobs/tasks/QuestionTaskCreator.py +244 -242
  126. edsl/jobs/tasks/TaskCreators.py +64 -64
  127. edsl/jobs/tasks/TaskHistory.py +470 -450
  128. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  129. edsl/jobs/tasks/task_status_enum.py +161 -163
  130. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  131. edsl/jobs/tokens/TokenUsage.py +34 -34
  132. edsl/language_models/ComputeCost.py +63 -0
  133. edsl/language_models/LanguageModel.py +626 -668
  134. edsl/language_models/ModelList.py +164 -155
  135. edsl/language_models/PriceManager.py +127 -0
  136. edsl/language_models/RawResponseHandler.py +106 -0
  137. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  138. edsl/language_models/ServiceDataSources.py +0 -0
  139. edsl/language_models/__init__.py +2 -3
  140. edsl/language_models/fake_openai_call.py +15 -15
  141. edsl/language_models/fake_openai_service.py +61 -61
  142. edsl/language_models/key_management/KeyLookup.py +63 -0
  143. edsl/language_models/key_management/KeyLookupBuilder.py +273 -0
  144. edsl/language_models/key_management/KeyLookupCollection.py +38 -0
  145. edsl/language_models/key_management/__init__.py +0 -0
  146. edsl/language_models/key_management/models.py +131 -0
  147. edsl/language_models/model.py +256 -0
  148. edsl/language_models/repair.py +156 -156
  149. edsl/language_models/utilities.py +65 -64
  150. edsl/notebooks/Notebook.py +263 -258
  151. edsl/notebooks/NotebookToLaTeX.py +142 -0
  152. edsl/notebooks/__init__.py +1 -1
  153. edsl/prompts/Prompt.py +352 -362
  154. edsl/prompts/__init__.py +2 -2
  155. edsl/questions/ExceptionExplainer.py +77 -0
  156. edsl/questions/HTMLQuestion.py +103 -0
  157. edsl/questions/QuestionBase.py +518 -664
  158. edsl/questions/QuestionBasePromptsMixin.py +221 -217
  159. edsl/questions/QuestionBudget.py +227 -227
  160. edsl/questions/QuestionCheckBox.py +359 -359
  161. edsl/questions/QuestionExtract.py +180 -182
  162. edsl/questions/QuestionFreeText.py +113 -114
  163. edsl/questions/QuestionFunctional.py +166 -166
  164. edsl/questions/QuestionList.py +223 -231
  165. edsl/questions/QuestionMatrix.py +265 -0
  166. edsl/questions/QuestionMultipleChoice.py +330 -286
  167. edsl/questions/QuestionNumerical.py +151 -153
  168. edsl/questions/QuestionRank.py +314 -324
  169. edsl/questions/Quick.py +41 -41
  170. edsl/questions/SimpleAskMixin.py +74 -73
  171. edsl/questions/__init__.py +27 -26
  172. edsl/questions/{AnswerValidatorMixin.py → answer_validator_mixin.py} +334 -289
  173. edsl/questions/compose_questions.py +98 -98
  174. edsl/questions/data_structures.py +20 -0
  175. edsl/questions/decorators.py +21 -21
  176. edsl/questions/derived/QuestionLikertFive.py +76 -76
  177. edsl/questions/derived/QuestionLinearScale.py +90 -87
  178. edsl/questions/derived/QuestionTopK.py +93 -93
  179. edsl/questions/derived/QuestionYesNo.py +82 -82
  180. edsl/questions/descriptors.py +427 -413
  181. edsl/questions/loop_processor.py +149 -0
  182. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  183. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  184. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  185. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  186. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  187. edsl/questions/prompt_templates/question_list.jinja +17 -17
  188. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  189. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  190. edsl/questions/{QuestionBaseGenMixin.py → question_base_gen_mixin.py} +168 -161
  191. edsl/questions/question_registry.py +177 -177
  192. edsl/questions/{RegisterQuestionsMeta.py → register_questions_meta.py} +71 -71
  193. edsl/questions/{ResponseValidatorABC.py → response_validator_abc.py} +188 -174
  194. edsl/questions/response_validator_factory.py +34 -0
  195. edsl/questions/settings.py +12 -12
  196. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  197. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  198. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  199. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  200. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  201. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  202. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  203. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  204. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  205. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  206. edsl/questions/templates/list/question_presentation.jinja +5 -5
  207. edsl/questions/templates/matrix/__init__.py +1 -0
  208. edsl/questions/templates/matrix/answering_instructions.jinja +5 -0
  209. edsl/questions/templates/matrix/question_presentation.jinja +20 -0
  210. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  211. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  212. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  213. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  214. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  215. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  216. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  217. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  218. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  219. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  220. edsl/results/CSSParameterizer.py +108 -108
  221. edsl/results/Dataset.py +587 -424
  222. edsl/results/DatasetExportMixin.py +594 -731
  223. edsl/results/DatasetTree.py +295 -275
  224. edsl/results/MarkdownToDocx.py +122 -0
  225. edsl/results/MarkdownToPDF.py +111 -0
  226. edsl/results/Result.py +557 -465
  227. edsl/results/Results.py +1183 -1165
  228. edsl/results/ResultsExportMixin.py +45 -43
  229. edsl/results/ResultsGGMixin.py +121 -121
  230. edsl/results/TableDisplay.py +125 -198
  231. edsl/results/TextEditor.py +50 -0
  232. edsl/results/__init__.py +2 -2
  233. edsl/results/file_exports.py +252 -0
  234. edsl/results/{ResultsFetchMixin.py → results_fetch_mixin.py} +33 -33
  235. edsl/results/{Selector.py → results_selector.py} +145 -135
  236. edsl/results/{ResultsToolsMixin.py → results_tools_mixin.py} +98 -98
  237. edsl/results/smart_objects.py +96 -0
  238. edsl/results/table_data_class.py +12 -0
  239. edsl/results/table_display.css +77 -77
  240. edsl/results/table_renderers.py +118 -0
  241. edsl/results/tree_explore.py +115 -115
  242. edsl/scenarios/ConstructDownloadLink.py +109 -0
  243. edsl/scenarios/DocumentChunker.py +102 -0
  244. edsl/scenarios/DocxScenario.py +16 -0
  245. edsl/scenarios/FileStore.py +511 -632
  246. edsl/scenarios/PdfExtractor.py +40 -0
  247. edsl/scenarios/Scenario.py +498 -601
  248. edsl/scenarios/ScenarioHtmlMixin.py +65 -64
  249. edsl/scenarios/ScenarioList.py +1458 -1287
  250. edsl/scenarios/ScenarioListExportMixin.py +45 -52
  251. edsl/scenarios/ScenarioListPdfMixin.py +239 -261
  252. edsl/scenarios/__init__.py +3 -4
  253. edsl/scenarios/directory_scanner.py +96 -0
  254. edsl/scenarios/file_methods.py +85 -0
  255. edsl/scenarios/handlers/__init__.py +13 -0
  256. edsl/scenarios/handlers/csv.py +38 -0
  257. edsl/scenarios/handlers/docx.py +76 -0
  258. edsl/scenarios/handlers/html.py +37 -0
  259. edsl/scenarios/handlers/json.py +111 -0
  260. edsl/scenarios/handlers/latex.py +5 -0
  261. edsl/scenarios/handlers/md.py +51 -0
  262. edsl/scenarios/handlers/pdf.py +68 -0
  263. edsl/scenarios/handlers/png.py +39 -0
  264. edsl/scenarios/handlers/pptx.py +105 -0
  265. edsl/scenarios/handlers/py.py +294 -0
  266. edsl/scenarios/handlers/sql.py +313 -0
  267. edsl/scenarios/handlers/sqlite.py +149 -0
  268. edsl/scenarios/handlers/txt.py +33 -0
  269. edsl/scenarios/{ScenarioJoin.py → scenario_join.py} +131 -127
  270. edsl/scenarios/scenario_selector.py +156 -0
  271. edsl/shared.py +1 -1
  272. edsl/study/ObjectEntry.py +173 -173
  273. edsl/study/ProofOfWork.py +113 -113
  274. edsl/study/SnapShot.py +80 -80
  275. edsl/study/Study.py +521 -528
  276. edsl/study/__init__.py +4 -4
  277. edsl/surveys/ConstructDAG.py +92 -0
  278. edsl/surveys/DAG.py +148 -148
  279. edsl/surveys/EditSurvey.py +221 -0
  280. edsl/surveys/InstructionHandler.py +100 -0
  281. edsl/surveys/Memory.py +31 -31
  282. edsl/surveys/MemoryManagement.py +72 -0
  283. edsl/surveys/MemoryPlan.py +244 -244
  284. edsl/surveys/Rule.py +327 -326
  285. edsl/surveys/RuleCollection.py +385 -387
  286. edsl/surveys/RuleManager.py +172 -0
  287. edsl/surveys/Simulator.py +75 -0
  288. edsl/surveys/Survey.py +1280 -1801
  289. edsl/surveys/SurveyCSS.py +273 -261
  290. edsl/surveys/SurveyExportMixin.py +259 -259
  291. edsl/surveys/{SurveyFlowVisualizationMixin.py → SurveyFlowVisualization.py} +181 -179
  292. edsl/surveys/SurveyQualtricsImport.py +284 -284
  293. edsl/surveys/SurveyToApp.py +141 -0
  294. edsl/surveys/__init__.py +5 -3
  295. edsl/surveys/base.py +53 -53
  296. edsl/surveys/descriptors.py +60 -56
  297. edsl/surveys/instructions/ChangeInstruction.py +48 -49
  298. edsl/surveys/instructions/Instruction.py +56 -65
  299. edsl/surveys/instructions/InstructionCollection.py +82 -77
  300. edsl/templates/error_reporting/base.html +23 -23
  301. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  302. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  303. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  304. edsl/templates/error_reporting/interview_details.html +115 -115
  305. edsl/templates/error_reporting/interviews.html +19 -19
  306. edsl/templates/error_reporting/overview.html +4 -4
  307. edsl/templates/error_reporting/performance_plot.html +1 -1
  308. edsl/templates/error_reporting/report.css +73 -73
  309. edsl/templates/error_reporting/report.html +117 -117
  310. edsl/templates/error_reporting/report.js +25 -25
  311. edsl/test_h +1 -0
  312. edsl/tools/__init__.py +1 -1
  313. edsl/tools/clusters.py +192 -192
  314. edsl/tools/embeddings.py +27 -27
  315. edsl/tools/embeddings_plotting.py +118 -118
  316. edsl/tools/plotting.py +112 -112
  317. edsl/tools/summarize.py +18 -18
  318. edsl/utilities/PrettyList.py +56 -0
  319. edsl/utilities/SystemInfo.py +28 -28
  320. edsl/utilities/__init__.py +22 -22
  321. edsl/utilities/ast_utilities.py +25 -25
  322. edsl/utilities/data/Registry.py +6 -6
  323. edsl/utilities/data/__init__.py +1 -1
  324. edsl/utilities/data/scooter_results.json +1 -1
  325. edsl/utilities/decorators.py +77 -77
  326. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  327. edsl/utilities/gcp_bucket/example.py +50 -0
  328. edsl/utilities/interface.py +627 -627
  329. edsl/utilities/is_notebook.py +18 -0
  330. edsl/utilities/is_valid_variable_name.py +11 -0
  331. edsl/utilities/naming_utilities.py +263 -263
  332. edsl/utilities/remove_edsl_version.py +24 -0
  333. edsl/utilities/repair_functions.py +28 -28
  334. edsl/utilities/restricted_python.py +70 -70
  335. edsl/utilities/utilities.py +436 -424
  336. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev4.dist-info}/LICENSE +21 -21
  337. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev4.dist-info}/METADATA +13 -11
  338. edsl-0.1.39.dev4.dist-info/RECORD +361 -0
  339. edsl/language_models/KeyLookup.py +0 -30
  340. edsl/language_models/registry.py +0 -190
  341. edsl/language_models/unused/ReplicateBase.py +0 -83
  342. edsl/results/ResultsDBMixin.py +0 -238
  343. edsl-0.1.39.dev3.dist-info/RECORD +0 -277
  344. {edsl-0.1.39.dev3.dist-info → edsl-0.1.39.dev4.dist-info}/WHEEL +0 -0
edsl/jobs/JobsPrompts.py CHANGED
@@ -1,268 +1,270 @@
1
- from typing import List, TYPE_CHECKING
2
-
3
- from edsl.results.Dataset import Dataset
4
-
5
- if TYPE_CHECKING:
6
- from edsl.jobs import Jobs
7
-
8
- # from edsl.jobs.interviews.Interview import Interview
9
- # from edsl.results.Dataset import Dataset
10
- # from edsl.agents.AgentList import AgentList
11
- # from edsl.scenarios.ScenarioList import ScenarioList
12
- # from edsl.surveys.Survey import Survey
13
-
14
-
15
- class JobsPrompts:
16
- def __init__(self, jobs: "Jobs"):
17
- self.interviews = jobs.interviews()
18
- self.agents = jobs.agents
19
- self.scenarios = jobs.scenarios
20
- self.survey = jobs.survey
21
- self._price_lookup = None
22
-
23
- @property
24
- def price_lookup(self):
25
- if self._price_lookup is None:
26
- from edsl import Coop
27
-
28
- c = Coop()
29
- self._price_lookup = c.fetch_prices()
30
- return self._price_lookup
31
-
32
- def prompts(self) -> "Dataset":
33
- """Return a Dataset of prompts that will be used.
34
-
35
- >>> from edsl.jobs import Jobs
36
- >>> Jobs.example().prompts()
37
- Dataset(...)
38
- """
39
- interviews = self.interviews
40
- interview_indices = []
41
- question_names = []
42
- user_prompts = []
43
- system_prompts = []
44
- scenario_indices = []
45
- agent_indices = []
46
- models = []
47
- costs = []
48
-
49
- for interview_index, interview in enumerate(interviews):
50
- invigilators = [
51
- interview._get_invigilator(question)
52
- for question in self.survey.questions
53
- ]
54
- for _, invigilator in enumerate(invigilators):
55
- prompts = invigilator.get_prompts()
56
- user_prompt = prompts["user_prompt"]
57
- system_prompt = prompts["system_prompt"]
58
- user_prompts.append(user_prompt)
59
- system_prompts.append(system_prompt)
60
- agent_index = self.agents.index(invigilator.agent)
61
- agent_indices.append(agent_index)
62
- interview_indices.append(interview_index)
63
- scenario_index = self.scenarios.index(invigilator.scenario)
64
- scenario_indices.append(scenario_index)
65
- models.append(invigilator.model.model)
66
- question_names.append(invigilator.question.question_name)
67
-
68
- prompt_cost = self.estimate_prompt_cost(
69
- system_prompt=system_prompt,
70
- user_prompt=user_prompt,
71
- price_lookup=self.price_lookup,
72
- inference_service=invigilator.model._inference_service_,
73
- model=invigilator.model.model,
74
- )
75
- costs.append(prompt_cost["cost_usd"])
76
-
77
- d = Dataset(
78
- [
79
- {"user_prompt": user_prompts},
80
- {"system_prompt": system_prompts},
81
- {"interview_index": interview_indices},
82
- {"question_name": question_names},
83
- {"scenario_index": scenario_indices},
84
- {"agent_index": agent_indices},
85
- {"model": models},
86
- {"estimated_cost": costs},
87
- ]
88
- )
89
- return d
90
-
91
- @staticmethod
92
- def estimate_prompt_cost(
93
- system_prompt: str,
94
- user_prompt: str,
95
- price_lookup: dict,
96
- inference_service: str,
97
- model: str,
98
- ) -> dict:
99
- """Estimates the cost of a prompt. Takes piping into account."""
100
- import math
101
-
102
- def get_piping_multiplier(prompt: str):
103
- """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
-
105
- if "{{" in prompt and "}}" in prompt:
106
- return 2
107
- return 1
108
-
109
- # Look up prices per token
110
- key = (inference_service, model)
111
-
112
- try:
113
- relevant_prices = price_lookup[key]
114
-
115
- service_input_token_price = float(
116
- relevant_prices["input"]["service_stated_token_price"]
117
- )
118
- service_input_token_qty = float(
119
- relevant_prices["input"]["service_stated_token_qty"]
120
- )
121
- input_price_per_token = service_input_token_price / service_input_token_qty
122
-
123
- service_output_token_price = float(
124
- relevant_prices["output"]["service_stated_token_price"]
125
- )
126
- service_output_token_qty = float(
127
- relevant_prices["output"]["service_stated_token_qty"]
128
- )
129
- output_price_per_token = (
130
- service_output_token_price / service_output_token_qty
131
- )
132
-
133
- except KeyError:
134
- # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
- # Use a sensible default
136
-
137
- import warnings
138
-
139
- warnings.warn(
140
- "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
- )
142
- input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
- output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
-
145
- # Compute the number of characters (double if the question involves piping)
146
- user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
- str(user_prompt)
148
- )
149
- system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
- str(system_prompt)
151
- )
152
-
153
- # Convert into tokens (1 token approx. equals 4 characters)
154
- input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
-
156
- output_tokens = math.ceil(0.75 * input_tokens)
157
-
158
- cost = (
159
- input_tokens * input_price_per_token
160
- + output_tokens * output_price_per_token
161
- )
162
-
163
- return {
164
- "input_tokens": input_tokens,
165
- "output_tokens": output_tokens,
166
- "cost_usd": cost,
167
- }
168
-
169
- def estimate_job_cost_from_external_prices(
170
- self, price_lookup: dict, iterations: int = 1
171
- ) -> dict:
172
- """
173
- Estimates the cost of a job according to the following assumptions:
174
-
175
- - 1 token = 4 characters.
176
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
-
178
- price_lookup is an external pricing dictionary.
179
- """
180
-
181
- import pandas as pd
182
-
183
- interviews = self.interviews
184
- data = []
185
- for interview in interviews:
186
- invigilators = [
187
- interview._get_invigilator(question)
188
- for question in self.survey.questions
189
- ]
190
- for invigilator in invigilators:
191
- prompts = invigilator.get_prompts()
192
-
193
- # By this point, agent and scenario data has already been added to the prompts
194
- user_prompt = prompts["user_prompt"]
195
- system_prompt = prompts["system_prompt"]
196
- inference_service = invigilator.model._inference_service_
197
- model = invigilator.model.model
198
-
199
- prompt_cost = self.estimate_prompt_cost(
200
- system_prompt=system_prompt,
201
- user_prompt=user_prompt,
202
- price_lookup=price_lookup,
203
- inference_service=inference_service,
204
- model=model,
205
- )
206
-
207
- data.append(
208
- {
209
- "user_prompt": user_prompt,
210
- "system_prompt": system_prompt,
211
- "estimated_input_tokens": prompt_cost["input_tokens"],
212
- "estimated_output_tokens": prompt_cost["output_tokens"],
213
- "estimated_cost_usd": prompt_cost["cost_usd"],
214
- "inference_service": inference_service,
215
- "model": model,
216
- }
217
- )
218
-
219
- df = pd.DataFrame.from_records(data)
220
-
221
- df = (
222
- df.groupby(["inference_service", "model"])
223
- .agg(
224
- {
225
- "estimated_cost_usd": "sum",
226
- "estimated_input_tokens": "sum",
227
- "estimated_output_tokens": "sum",
228
- }
229
- )
230
- .reset_index()
231
- )
232
- df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
- df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
- df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
-
236
- estimated_costs_by_model = df.to_dict("records")
237
-
238
- estimated_total_cost = sum(
239
- model["estimated_cost_usd"] for model in estimated_costs_by_model
240
- )
241
- estimated_total_input_tokens = sum(
242
- model["estimated_input_tokens"] for model in estimated_costs_by_model
243
- )
244
- estimated_total_output_tokens = sum(
245
- model["estimated_output_tokens"] for model in estimated_costs_by_model
246
- )
247
-
248
- output = {
249
- "estimated_total_cost_usd": estimated_total_cost,
250
- "estimated_total_input_tokens": estimated_total_input_tokens,
251
- "estimated_total_output_tokens": estimated_total_output_tokens,
252
- "model_costs": estimated_costs_by_model,
253
- }
254
-
255
- return output
256
-
257
- def estimate_job_cost(self, iterations: int = 1) -> dict:
258
- """
259
- Estimates the cost of a job according to the following assumptions:
260
-
261
- - 1 token = 4 characters.
262
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
-
264
- Fetches prices from Coop.
265
- """
266
- return self.estimate_job_cost_from_external_prices(
267
- price_lookup=self.price_lookup, iterations=iterations
268
- )
1
+ from typing import List, TYPE_CHECKING
2
+
3
+ from edsl.results.Dataset import Dataset
4
+
5
+ if TYPE_CHECKING:
6
+ from edsl.jobs import Jobs
7
+
8
+ # from edsl.jobs.interviews.Interview import Interview
9
+ # from edsl.results.Dataset import Dataset
10
+ # from edsl.agents.AgentList import AgentList
11
+ # from edsl.scenarios.ScenarioList import ScenarioList
12
+ # from edsl.surveys.Survey import Survey
13
+
14
+ from edsl.jobs.FetchInvigilator import FetchInvigilator
15
+
16
+
17
+ class JobsPrompts:
18
+ def __init__(self, jobs: "Jobs"):
19
+ self.interviews = jobs.interviews()
20
+ self.agents = jobs.agents
21
+ self.scenarios = jobs.scenarios
22
+ self.survey = jobs.survey
23
+ self._price_lookup = None
24
+
25
+ @property
26
+ def price_lookup(self):
27
+ if self._price_lookup is None:
28
+ from edsl.coop.coop import Coop
29
+
30
+ c = Coop()
31
+ self._price_lookup = c.fetch_prices()
32
+ return self._price_lookup
33
+
34
+ def prompts(self) -> "Dataset":
35
+ """Return a Dataset of prompts that will be used.
36
+
37
+ >>> from edsl.jobs import Jobs
38
+ >>> Jobs.example().prompts()
39
+ Dataset(...)
40
+ """
41
+ interviews = self.interviews
42
+ interview_indices = []
43
+ question_names = []
44
+ user_prompts = []
45
+ system_prompts = []
46
+ scenario_indices = []
47
+ agent_indices = []
48
+ models = []
49
+ costs = []
50
+
51
+ for interview_index, interview in enumerate(interviews):
52
+ invigilators = [
53
+ FetchInvigilator(interview)(question)
54
+ for question in interview.survey.questions
55
+ ]
56
+ for _, invigilator in enumerate(invigilators):
57
+ prompts = invigilator.get_prompts()
58
+ user_prompt = prompts["user_prompt"]
59
+ system_prompt = prompts["system_prompt"]
60
+ user_prompts.append(user_prompt)
61
+ system_prompts.append(system_prompt)
62
+ agent_index = self.agents.index(invigilator.agent)
63
+ agent_indices.append(agent_index)
64
+ interview_indices.append(interview_index)
65
+ scenario_index = self.scenarios.index(invigilator.scenario)
66
+ scenario_indices.append(scenario_index)
67
+ models.append(invigilator.model.model)
68
+ question_names.append(invigilator.question.question_name)
69
+
70
+ prompt_cost = self.estimate_prompt_cost(
71
+ system_prompt=system_prompt,
72
+ user_prompt=user_prompt,
73
+ price_lookup=self.price_lookup,
74
+ inference_service=invigilator.model._inference_service_,
75
+ model=invigilator.model.model,
76
+ )
77
+ costs.append(prompt_cost["cost_usd"])
78
+
79
+ d = Dataset(
80
+ [
81
+ {"user_prompt": user_prompts},
82
+ {"system_prompt": system_prompts},
83
+ {"interview_index": interview_indices},
84
+ {"question_name": question_names},
85
+ {"scenario_index": scenario_indices},
86
+ {"agent_index": agent_indices},
87
+ {"model": models},
88
+ {"estimated_cost": costs},
89
+ ]
90
+ )
91
+ return d
92
+
93
+ @staticmethod
94
+ def estimate_prompt_cost(
95
+ system_prompt: str,
96
+ user_prompt: str,
97
+ price_lookup: dict,
98
+ inference_service: str,
99
+ model: str,
100
+ ) -> dict:
101
+ """Estimates the cost of a prompt. Takes piping into account."""
102
+ import math
103
+
104
+ def get_piping_multiplier(prompt: str):
105
+ """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
106
+
107
+ if "{{" in prompt and "}}" in prompt:
108
+ return 2
109
+ return 1
110
+
111
+ # Look up prices per token
112
+ key = (inference_service, model)
113
+
114
+ try:
115
+ relevant_prices = price_lookup[key]
116
+
117
+ service_input_token_price = float(
118
+ relevant_prices["input"]["service_stated_token_price"]
119
+ )
120
+ service_input_token_qty = float(
121
+ relevant_prices["input"]["service_stated_token_qty"]
122
+ )
123
+ input_price_per_token = service_input_token_price / service_input_token_qty
124
+
125
+ service_output_token_price = float(
126
+ relevant_prices["output"]["service_stated_token_price"]
127
+ )
128
+ service_output_token_qty = float(
129
+ relevant_prices["output"]["service_stated_token_qty"]
130
+ )
131
+ output_price_per_token = (
132
+ service_output_token_price / service_output_token_qty
133
+ )
134
+
135
+ except KeyError:
136
+ # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
137
+ # Use a sensible default
138
+
139
+ import warnings
140
+
141
+ warnings.warn(
142
+ "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
143
+ )
144
+ input_price_per_token = 0.00000015 # $0.15 / 1M tokens
145
+ output_price_per_token = 0.00000060 # $0.60 / 1M tokens
146
+
147
+ # Compute the number of characters (double if the question involves piping)
148
+ user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
149
+ str(user_prompt)
150
+ )
151
+ system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
152
+ str(system_prompt)
153
+ )
154
+
155
+ # Convert into tokens (1 token approx. equals 4 characters)
156
+ input_tokens = (user_prompt_chars + system_prompt_chars) // 4
157
+
158
+ output_tokens = math.ceil(0.75 * input_tokens)
159
+
160
+ cost = (
161
+ input_tokens * input_price_per_token
162
+ + output_tokens * output_price_per_token
163
+ )
164
+
165
+ return {
166
+ "input_tokens": input_tokens,
167
+ "output_tokens": output_tokens,
168
+ "cost_usd": cost,
169
+ }
170
+
171
+ def estimate_job_cost_from_external_prices(
172
+ self, price_lookup: dict, iterations: int = 1
173
+ ) -> dict:
174
+ """
175
+ Estimates the cost of a job according to the following assumptions:
176
+
177
+ - 1 token = 4 characters.
178
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
179
+
180
+ price_lookup is an external pricing dictionary.
181
+ """
182
+
183
+ import pandas as pd
184
+
185
+ interviews = self.interviews
186
+ data = []
187
+ for interview in interviews:
188
+ invigilators = [
189
+ FetchInvigilator(interview)(question)
190
+ for question in self.survey.questions
191
+ ]
192
+ for invigilator in invigilators:
193
+ prompts = invigilator.get_prompts()
194
+
195
+ # By this point, agent and scenario data has already been added to the prompts
196
+ user_prompt = prompts["user_prompt"]
197
+ system_prompt = prompts["system_prompt"]
198
+ inference_service = invigilator.model._inference_service_
199
+ model = invigilator.model.model
200
+
201
+ prompt_cost = self.estimate_prompt_cost(
202
+ system_prompt=system_prompt,
203
+ user_prompt=user_prompt,
204
+ price_lookup=price_lookup,
205
+ inference_service=inference_service,
206
+ model=model,
207
+ )
208
+
209
+ data.append(
210
+ {
211
+ "user_prompt": user_prompt,
212
+ "system_prompt": system_prompt,
213
+ "estimated_input_tokens": prompt_cost["input_tokens"],
214
+ "estimated_output_tokens": prompt_cost["output_tokens"],
215
+ "estimated_cost_usd": prompt_cost["cost_usd"],
216
+ "inference_service": inference_service,
217
+ "model": model,
218
+ }
219
+ )
220
+
221
+ df = pd.DataFrame.from_records(data)
222
+
223
+ df = (
224
+ df.groupby(["inference_service", "model"])
225
+ .agg(
226
+ {
227
+ "estimated_cost_usd": "sum",
228
+ "estimated_input_tokens": "sum",
229
+ "estimated_output_tokens": "sum",
230
+ }
231
+ )
232
+ .reset_index()
233
+ )
234
+ df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
235
+ df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
236
+ df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
237
+
238
+ estimated_costs_by_model = df.to_dict("records")
239
+
240
+ estimated_total_cost = sum(
241
+ model["estimated_cost_usd"] for model in estimated_costs_by_model
242
+ )
243
+ estimated_total_input_tokens = sum(
244
+ model["estimated_input_tokens"] for model in estimated_costs_by_model
245
+ )
246
+ estimated_total_output_tokens = sum(
247
+ model["estimated_output_tokens"] for model in estimated_costs_by_model
248
+ )
249
+
250
+ output = {
251
+ "estimated_total_cost_usd": estimated_total_cost,
252
+ "estimated_total_input_tokens": estimated_total_input_tokens,
253
+ "estimated_total_output_tokens": estimated_total_output_tokens,
254
+ "model_costs": estimated_costs_by_model,
255
+ }
256
+
257
+ return output
258
+
259
+ def estimate_job_cost(self, iterations: int = 1) -> dict:
260
+ """
261
+ Estimates the cost of a job according to the following assumptions:
262
+
263
+ - 1 token = 4 characters.
264
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
265
+
266
+ Fetches prices from Coop.
267
+ """
268
+ return self.estimate_job_cost_from_external_prices(
269
+ price_lookup=self.price_lookup, iterations=iterations
270
+ )