edsl 0.1.38__py3-none-any.whl → 0.1.38.dev2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. edsl/Base.py +31 -60
  2. edsl/__version__.py +1 -1
  3. edsl/agents/Agent.py +9 -18
  4. edsl/agents/AgentList.py +8 -59
  5. edsl/agents/Invigilator.py +7 -18
  6. edsl/agents/InvigilatorBase.py +19 -0
  7. edsl/agents/PromptConstructor.py +4 -5
  8. edsl/config.py +0 -8
  9. edsl/coop/coop.py +7 -74
  10. edsl/data/Cache.py +2 -27
  11. edsl/data/CacheEntry.py +3 -8
  12. edsl/data/RemoteCacheSync.py +19 -0
  13. edsl/enums.py +0 -2
  14. edsl/inference_services/GoogleService.py +15 -7
  15. edsl/inference_services/registry.py +0 -2
  16. edsl/jobs/Jobs.py +548 -88
  17. edsl/jobs/interviews/Interview.py +11 -11
  18. edsl/jobs/runners/JobsRunnerAsyncio.py +35 -140
  19. edsl/jobs/runners/JobsRunnerStatus.py +2 -0
  20. edsl/jobs/tasks/TaskHistory.py +16 -15
  21. edsl/language_models/LanguageModel.py +84 -44
  22. edsl/language_models/ModelList.py +1 -47
  23. edsl/language_models/registry.py +4 -57
  24. edsl/prompts/Prompt.py +3 -8
  25. edsl/questions/QuestionBase.py +16 -20
  26. edsl/questions/QuestionExtract.py +4 -3
  27. edsl/questions/question_registry.py +6 -36
  28. edsl/results/Dataset.py +15 -146
  29. edsl/results/DatasetExportMixin.py +217 -231
  30. edsl/results/DatasetTree.py +4 -134
  31. edsl/results/Result.py +9 -18
  32. edsl/results/Results.py +51 -145
  33. edsl/scenarios/FileStore.py +13 -187
  34. edsl/scenarios/Scenario.py +4 -61
  35. edsl/scenarios/ScenarioList.py +62 -237
  36. edsl/surveys/Survey.py +2 -16
  37. edsl/surveys/SurveyFlowVisualizationMixin.py +9 -67
  38. edsl/surveys/instructions/Instruction.py +0 -12
  39. edsl/templates/error_reporting/interview_details.html +3 -3
  40. edsl/templates/error_reporting/interviews.html +9 -18
  41. edsl/utilities/utilities.py +0 -15
  42. {edsl-0.1.38.dist-info → edsl-0.1.38.dev2.dist-info}/METADATA +1 -2
  43. {edsl-0.1.38.dist-info → edsl-0.1.38.dev2.dist-info}/RECORD +45 -53
  44. edsl/inference_services/PerplexityService.py +0 -163
  45. edsl/jobs/JobsChecks.py +0 -147
  46. edsl/jobs/JobsPrompts.py +0 -268
  47. edsl/jobs/JobsRemoteInferenceHandler.py +0 -239
  48. edsl/results/CSSParameterizer.py +0 -108
  49. edsl/results/TableDisplay.py +0 -198
  50. edsl/results/table_display.css +0 -78
  51. edsl/scenarios/ScenarioJoin.py +0 -127
  52. {edsl-0.1.38.dist-info → edsl-0.1.38.dev2.dist-info}/LICENSE +0 -0
  53. {edsl-0.1.38.dist-info → edsl-0.1.38.dev2.dist-info}/WHEEL +0 -0
edsl/jobs/JobsPrompts.py DELETED
@@ -1,268 +0,0 @@
1
- from typing import List, TYPE_CHECKING
2
-
3
- from edsl.results.Dataset import Dataset
4
-
5
- if TYPE_CHECKING:
6
- from edsl.jobs import Jobs
7
-
8
- # from edsl.jobs.interviews.Interview import Interview
9
- # from edsl.results.Dataset import Dataset
10
- # from edsl.agents.AgentList import AgentList
11
- # from edsl.scenarios.ScenarioList import ScenarioList
12
- # from edsl.surveys.Survey import Survey
13
-
14
-
15
- class JobsPrompts:
16
- def __init__(self, jobs: "Jobs"):
17
- self.interviews = jobs.interviews()
18
- self.agents = jobs.agents
19
- self.scenarios = jobs.scenarios
20
- self.survey = jobs.survey
21
- self._price_lookup = None
22
-
23
- @property
24
- def price_lookup(self):
25
- if self._price_lookup is None:
26
- from edsl import Coop
27
-
28
- c = Coop()
29
- self._price_lookup = c.fetch_prices()
30
- return self._price_lookup
31
-
32
- def prompts(self) -> "Dataset":
33
- """Return a Dataset of prompts that will be used.
34
-
35
- >>> from edsl.jobs import Jobs
36
- >>> Jobs.example().prompts()
37
- Dataset(...)
38
- """
39
- interviews = self.interviews
40
- interview_indices = []
41
- question_names = []
42
- user_prompts = []
43
- system_prompts = []
44
- scenario_indices = []
45
- agent_indices = []
46
- models = []
47
- costs = []
48
-
49
- for interview_index, interview in enumerate(interviews):
50
- invigilators = [
51
- interview._get_invigilator(question)
52
- for question in self.survey.questions
53
- ]
54
- for _, invigilator in enumerate(invigilators):
55
- prompts = invigilator.get_prompts()
56
- user_prompt = prompts["user_prompt"]
57
- system_prompt = prompts["system_prompt"]
58
- user_prompts.append(user_prompt)
59
- system_prompts.append(system_prompt)
60
- agent_index = self.agents.index(invigilator.agent)
61
- agent_indices.append(agent_index)
62
- interview_indices.append(interview_index)
63
- scenario_index = self.scenarios.index(invigilator.scenario)
64
- scenario_indices.append(scenario_index)
65
- models.append(invigilator.model.model)
66
- question_names.append(invigilator.question.question_name)
67
-
68
- prompt_cost = self.estimate_prompt_cost(
69
- system_prompt=system_prompt,
70
- user_prompt=user_prompt,
71
- price_lookup=self.price_lookup,
72
- inference_service=invigilator.model._inference_service_,
73
- model=invigilator.model.model,
74
- )
75
- costs.append(prompt_cost["cost_usd"])
76
-
77
- d = Dataset(
78
- [
79
- {"user_prompt": user_prompts},
80
- {"system_prompt": system_prompts},
81
- {"interview_index": interview_indices},
82
- {"question_name": question_names},
83
- {"scenario_index": scenario_indices},
84
- {"agent_index": agent_indices},
85
- {"model": models},
86
- {"estimated_cost": costs},
87
- ]
88
- )
89
- return d
90
-
91
- @staticmethod
92
- def estimate_prompt_cost(
93
- system_prompt: str,
94
- user_prompt: str,
95
- price_lookup: dict,
96
- inference_service: str,
97
- model: str,
98
- ) -> dict:
99
- """Estimates the cost of a prompt. Takes piping into account."""
100
- import math
101
-
102
- def get_piping_multiplier(prompt: str):
103
- """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
-
105
- if "{{" in prompt and "}}" in prompt:
106
- return 2
107
- return 1
108
-
109
- # Look up prices per token
110
- key = (inference_service, model)
111
-
112
- try:
113
- relevant_prices = price_lookup[key]
114
-
115
- service_input_token_price = float(
116
- relevant_prices["input"]["service_stated_token_price"]
117
- )
118
- service_input_token_qty = float(
119
- relevant_prices["input"]["service_stated_token_qty"]
120
- )
121
- input_price_per_token = service_input_token_price / service_input_token_qty
122
-
123
- service_output_token_price = float(
124
- relevant_prices["output"]["service_stated_token_price"]
125
- )
126
- service_output_token_qty = float(
127
- relevant_prices["output"]["service_stated_token_qty"]
128
- )
129
- output_price_per_token = (
130
- service_output_token_price / service_output_token_qty
131
- )
132
-
133
- except KeyError:
134
- # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
- # Use a sensible default
136
-
137
- import warnings
138
-
139
- warnings.warn(
140
- "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
- )
142
- input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
- output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
-
145
- # Compute the number of characters (double if the question involves piping)
146
- user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
- str(user_prompt)
148
- )
149
- system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
- str(system_prompt)
151
- )
152
-
153
- # Convert into tokens (1 token approx. equals 4 characters)
154
- input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
-
156
- output_tokens = math.ceil(0.75 * input_tokens)
157
-
158
- cost = (
159
- input_tokens * input_price_per_token
160
- + output_tokens * output_price_per_token
161
- )
162
-
163
- return {
164
- "input_tokens": input_tokens,
165
- "output_tokens": output_tokens,
166
- "cost_usd": cost,
167
- }
168
-
169
- def estimate_job_cost_from_external_prices(
170
- self, price_lookup: dict, iterations: int = 1
171
- ) -> dict:
172
- """
173
- Estimates the cost of a job according to the following assumptions:
174
-
175
- - 1 token = 4 characters.
176
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
-
178
- price_lookup is an external pricing dictionary.
179
- """
180
-
181
- import pandas as pd
182
-
183
- interviews = self.interviews
184
- data = []
185
- for interview in interviews:
186
- invigilators = [
187
- interview._get_invigilator(question)
188
- for question in self.survey.questions
189
- ]
190
- for invigilator in invigilators:
191
- prompts = invigilator.get_prompts()
192
-
193
- # By this point, agent and scenario data has already been added to the prompts
194
- user_prompt = prompts["user_prompt"]
195
- system_prompt = prompts["system_prompt"]
196
- inference_service = invigilator.model._inference_service_
197
- model = invigilator.model.model
198
-
199
- prompt_cost = self.estimate_prompt_cost(
200
- system_prompt=system_prompt,
201
- user_prompt=user_prompt,
202
- price_lookup=price_lookup,
203
- inference_service=inference_service,
204
- model=model,
205
- )
206
-
207
- data.append(
208
- {
209
- "user_prompt": user_prompt,
210
- "system_prompt": system_prompt,
211
- "estimated_input_tokens": prompt_cost["input_tokens"],
212
- "estimated_output_tokens": prompt_cost["output_tokens"],
213
- "estimated_cost_usd": prompt_cost["cost_usd"],
214
- "inference_service": inference_service,
215
- "model": model,
216
- }
217
- )
218
-
219
- df = pd.DataFrame.from_records(data)
220
-
221
- df = (
222
- df.groupby(["inference_service", "model"])
223
- .agg(
224
- {
225
- "estimated_cost_usd": "sum",
226
- "estimated_input_tokens": "sum",
227
- "estimated_output_tokens": "sum",
228
- }
229
- )
230
- .reset_index()
231
- )
232
- df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
- df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
- df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
-
236
- estimated_costs_by_model = df.to_dict("records")
237
-
238
- estimated_total_cost = sum(
239
- model["estimated_cost_usd"] for model in estimated_costs_by_model
240
- )
241
- estimated_total_input_tokens = sum(
242
- model["estimated_input_tokens"] for model in estimated_costs_by_model
243
- )
244
- estimated_total_output_tokens = sum(
245
- model["estimated_output_tokens"] for model in estimated_costs_by_model
246
- )
247
-
248
- output = {
249
- "estimated_total_cost_usd": estimated_total_cost,
250
- "estimated_total_input_tokens": estimated_total_input_tokens,
251
- "estimated_total_output_tokens": estimated_total_output_tokens,
252
- "model_costs": estimated_costs_by_model,
253
- }
254
-
255
- return output
256
-
257
- def estimate_job_cost(self, iterations: int = 1) -> dict:
258
- """
259
- Estimates the cost of a job according to the following assumptions:
260
-
261
- - 1 token = 4 characters.
262
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
-
264
- Fetches prices from Coop.
265
- """
266
- return self.estimate_job_cost_from_external_prices(
267
- price_lookup=self.price_lookup, iterations=iterations
268
- )
@@ -1,239 +0,0 @@
1
- from typing import Optional, Union, Literal
2
- import requests
3
- import sys
4
- from edsl.exceptions.coop import CoopServerResponseError
5
-
6
- # from edsl.enums import VisibilityType
7
- from edsl.results import Results
8
-
9
-
10
- class JobsRemoteInferenceHandler:
11
- def __init__(self, jobs, verbose=False, poll_interval=3):
12
- """
13
- >>> from edsl.jobs import Jobs
14
- >>> jh = JobsRemoteInferenceHandler(Jobs.example(), verbose=True)
15
- >>> jh.use_remote_inference(True)
16
- False
17
- >>> jh._poll_remote_inference_job({'uuid':1234}, testing_simulated_response={"status": "failed"}) # doctest: +NORMALIZE_WHITESPACE
18
- Job failed.
19
- ...
20
- >>> jh._poll_remote_inference_job({'uuid':1234}, testing_simulated_response={"status": "completed"}) # doctest: +NORMALIZE_WHITESPACE
21
- Job completed and Results stored on Coop: None.
22
- Results(...)
23
- """
24
- self.jobs = jobs
25
- self.verbose = verbose
26
- self.poll_interval = poll_interval
27
-
28
- self._remote_job_creation_data = None
29
- self._job_uuid = None
30
-
31
- @property
32
- def remote_job_creation_data(self):
33
- return self._remote_job_creation_data
34
-
35
- @property
36
- def job_uuid(self):
37
- return self._job_uuid
38
-
39
- def use_remote_inference(self, disable_remote_inference: bool) -> bool:
40
- if disable_remote_inference:
41
- return False
42
- if not disable_remote_inference:
43
- try:
44
- from edsl import Coop
45
-
46
- user_edsl_settings = Coop().edsl_settings
47
- return user_edsl_settings.get("remote_inference", False)
48
- except requests.ConnectionError:
49
- pass
50
- except CoopServerResponseError as e:
51
- pass
52
-
53
- return False
54
-
55
- def create_remote_inference_job(
56
- self,
57
- iterations: int = 1,
58
- remote_inference_description: Optional[str] = None,
59
- remote_inference_results_visibility: Optional["VisibilityType"] = "unlisted",
60
- verbose=False,
61
- ):
62
- """ """
63
- from edsl.config import CONFIG
64
- from edsl.coop.coop import Coop
65
- from rich import print as rich_print
66
-
67
- coop = Coop()
68
- print("Remote inference activated. Sending job to server...")
69
- remote_job_creation_data = coop.remote_inference_create(
70
- self.jobs,
71
- description=remote_inference_description,
72
- status="queued",
73
- iterations=iterations,
74
- initial_results_visibility=remote_inference_results_visibility,
75
- )
76
- job_uuid = remote_job_creation_data.get("uuid")
77
- print(f"Job sent to server. (Job uuid={job_uuid}).")
78
-
79
- expected_parrot_url = CONFIG.get("EXPECTED_PARROT_URL")
80
- progress_bar_url = f"{expected_parrot_url}/home/remote-job-progress/{job_uuid}"
81
-
82
- rich_print(
83
- f"View job progress here: [#38bdf8][link={progress_bar_url}]{progress_bar_url}[/link][/#38bdf8]"
84
- )
85
-
86
- self._remote_job_creation_data = remote_job_creation_data
87
- self._job_uuid = job_uuid
88
- # return remote_job_creation_data
89
-
90
- @staticmethod
91
- def check_status(job_uuid):
92
- from edsl.coop.coop import Coop
93
-
94
- coop = Coop()
95
- return coop.remote_inference_get(job_uuid)
96
-
97
- def poll_remote_inference_job(self):
98
- return self._poll_remote_inference_job(
99
- self.remote_job_creation_data, verbose=self.verbose
100
- )
101
-
102
- def _poll_remote_inference_job(
103
- self,
104
- remote_job_creation_data: dict,
105
- verbose=False,
106
- poll_interval: Optional[float] = None,
107
- testing_simulated_response: Optional[dict] = None,
108
- ) -> Union[Results, None]:
109
- import time
110
- from datetime import datetime
111
- from edsl.config import CONFIG
112
- from edsl.coop.coop import Coop
113
-
114
- if poll_interval is None:
115
- poll_interval = self.poll_interval
116
-
117
- expected_parrot_url = CONFIG.get("EXPECTED_PARROT_URL")
118
-
119
- job_uuid = remote_job_creation_data.get("uuid")
120
- coop = Coop()
121
-
122
- if testing_simulated_response is not None:
123
- remote_job_data_fetcher = lambda job_uuid: testing_simulated_response
124
- object_fetcher = (
125
- lambda results_uuid, expected_object_type: Results.example()
126
- )
127
- else:
128
- remote_job_data_fetcher = coop.remote_inference_get
129
- object_fetcher = coop.get
130
-
131
- job_in_queue = True
132
- while job_in_queue:
133
- remote_job_data = remote_job_data_fetcher(job_uuid)
134
- status = remote_job_data.get("status")
135
- if status == "cancelled":
136
- print("\r" + " " * 80 + "\r", end="")
137
- print("Job cancelled by the user.")
138
- print(
139
- f"See {expected_parrot_url}/home/remote-inference for more details."
140
- )
141
- return None
142
- elif status == "failed":
143
- print("\r" + " " * 80 + "\r", end="")
144
- # write to stderr
145
- latest_error_report_url = remote_job_data.get("latest_error_report_url")
146
- if latest_error_report_url:
147
- print("Job failed.")
148
- print(
149
- f"Your job generated exceptions. Details on these exceptions can be found in the following report: {latest_error_report_url}"
150
- )
151
- print(
152
- f"Need support? Post a message at the Expected Parrot Discord channel (https://discord.com/invite/mxAYkjfy9m) or send an email to info@expectedparrot.com."
153
- )
154
- else:
155
- print("Job failed.")
156
- print(
157
- f"See {expected_parrot_url}/home/remote-inference for more details."
158
- )
159
- return None
160
- elif status == "completed":
161
- results_uuid = remote_job_data.get("results_uuid")
162
- results_url = remote_job_data.get("results_url")
163
- results = object_fetcher(results_uuid, expected_object_type="results")
164
- print("\r" + " " * 80 + "\r", end="")
165
- print(f"Job completed and Results stored on Coop: {results_url}.")
166
- return results
167
- else:
168
- duration = poll_interval
169
- time_checked = datetime.now().strftime("%Y-%m-%d %I:%M:%S %p")
170
- frames = ["⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏"]
171
- start_time = time.time()
172
- i = 0
173
- while time.time() - start_time < duration:
174
- print(
175
- f"\r{frames[i % len(frames)]} Job status: {status} - last update: {time_checked}",
176
- end="",
177
- flush=True,
178
- )
179
- time.sleep(0.1)
180
- i += 1
181
-
182
- def use_remote_inference(self, disable_remote_inference: bool) -> bool:
183
- if disable_remote_inference:
184
- return False
185
- if not disable_remote_inference:
186
- try:
187
- from edsl import Coop
188
-
189
- user_edsl_settings = Coop().edsl_settings
190
- return user_edsl_settings.get("remote_inference", False)
191
- except requests.ConnectionError:
192
- pass
193
- except CoopServerResponseError as e:
194
- pass
195
-
196
- return False
197
-
198
- async def create_and_poll_remote_job(
199
- self,
200
- iterations: int = 1,
201
- remote_inference_description: Optional[str] = None,
202
- remote_inference_results_visibility: Optional[
203
- Literal["private", "public", "unlisted"]
204
- ] = "unlisted",
205
- ) -> Union[Results, None]:
206
- """
207
- Creates and polls a remote inference job asynchronously.
208
- Reuses existing synchronous methods but runs them in an async context.
209
-
210
- :param iterations: Number of times to run each interview
211
- :param remote_inference_description: Optional description for the remote job
212
- :param remote_inference_results_visibility: Visibility setting for results
213
- :return: Results object if successful, None if job fails or is cancelled
214
- """
215
- import asyncio
216
- from functools import partial
217
-
218
- # Create job using existing method
219
- loop = asyncio.get_event_loop()
220
- remote_job_creation_data = await loop.run_in_executor(
221
- None,
222
- partial(
223
- self.create_remote_inference_job,
224
- iterations=iterations,
225
- remote_inference_description=remote_inference_description,
226
- remote_inference_results_visibility=remote_inference_results_visibility,
227
- ),
228
- )
229
-
230
- # Poll using existing method but with async sleep
231
- return await loop.run_in_executor(
232
- None, partial(self.poll_remote_inference_job, remote_job_creation_data)
233
- )
234
-
235
-
236
- if __name__ == "__main__":
237
- import doctest
238
-
239
- doctest.testmod(optionflags=doctest.ELLIPSIS)
@@ -1,108 +0,0 @@
1
- import re
2
- from typing import Dict, Set, Optional
3
-
4
-
5
- class CSSParameterizer:
6
- """A utility class to parameterize CSS with custom properties (variables)."""
7
-
8
- def __init__(self, css_content: str):
9
- """
10
- Initialize with CSS content to be parameterized.
11
-
12
- Args:
13
- css_content (str): The CSS content containing var() declarations
14
- """
15
- self.css_content = css_content
16
- self._extract_variables()
17
-
18
- def _extract_variables(self) -> None:
19
- """Extract all CSS custom properties (variables) from the CSS content."""
20
- # Find all var(...) declarations in the CSS
21
- var_pattern = r"var\((--[a-zA-Z0-9-]+)\)"
22
- self.variables = set(re.findall(var_pattern, self.css_content))
23
-
24
- def _validate_parameters(self, parameters: Dict[str, str]) -> Set[str]:
25
- """
26
- Validate the provided parameters against the CSS variables.
27
-
28
- Args:
29
- parameters (Dict[str, str]): Dictionary of variable names and their values
30
-
31
- Returns:
32
- Set[str]: Set of missing variables
33
- """
34
- # Convert parameter keys to CSS variable format if they don't already have --
35
- formatted_params = {
36
- f"--{k}" if not k.startswith("--") else k for k in parameters.keys()
37
- }
38
-
39
- # print("Variables from CSS:", self.variables)
40
- # print("Formatted parameters:", formatted_params)
41
-
42
- # Find missing and extra variables
43
- missing_vars = self.variables - formatted_params
44
- extra_vars = formatted_params - self.variables
45
-
46
- if extra_vars:
47
- print(f"Warning: Found unused parameters: {extra_vars}")
48
-
49
- return missing_vars
50
-
51
- def generate_root(self, **parameters: str) -> Optional[str]:
52
- """
53
- Generate a :root block with the provided parameters.
54
-
55
- Args:
56
- **parameters: Keyword arguments where keys are variable names and values are their values
57
-
58
- Returns:
59
- str: Generated :root block with variables, or None if validation fails
60
-
61
- Example:
62
- >>> css = "body { height: var(--bodyHeight); }"
63
- >>> parameterizer = CSSParameterizer(css)
64
- >>> parameterizer.apply_parameters({'bodyHeight':"100vh"})
65
- ':root {\\n --bodyHeight: 100vh;\\n}\\n\\nbody { height: var(--bodyHeight); }'
66
- """
67
- missing_vars = self._validate_parameters(parameters)
68
-
69
- if missing_vars:
70
- print(f"Error: Missing required variables: {missing_vars}")
71
- return None
72
-
73
- # Format parameters with -- prefix if not present
74
- formatted_params = {
75
- f"--{k}" if not k.startswith("--") else k: v for k, v in parameters.items()
76
- }
77
-
78
- # Generate the :root block
79
- root_block = [":root {"]
80
- for var_name, value in sorted(formatted_params.items()):
81
- if var_name in self.variables:
82
- root_block.append(f" {var_name}: {value};")
83
- root_block.append("}")
84
-
85
- return "\n".join(root_block)
86
-
87
- def apply_parameters(self, parameters: dict) -> Optional[str]:
88
- """
89
- Generate the complete CSS with the :root block and original CSS content.
90
-
91
- Args:
92
- **parameters: Keyword arguments where keys are variable names and values are their values
93
-
94
- Returns:
95
- str: Complete CSS with :root block and original content, or None if validation fails
96
- """
97
- root_block = self.generate_root(**parameters)
98
- if root_block is None:
99
- return None
100
-
101
- return f"{root_block}\n\n{self.css_content}"
102
-
103
-
104
- # Example usage
105
- if __name__ == "__main__":
106
- import doctest
107
-
108
- doctest.testmod()