edsl 0.1.37.dev6__py3-none-any.whl → 0.1.38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (271) hide show
  1. edsl/Base.py +332 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -855
  7. edsl/agents/AgentList.py +413 -350
  8. edsl/agents/Invigilator.py +233 -222
  9. edsl/agents/InvigilatorBase.py +265 -284
  10. edsl/agents/PromptConstructor.py +354 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -289
  26. edsl/config.py +157 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -958
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -527
  37. edsl/data/CacheEntry.py +233 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +78 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +175 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -38
  48. edsl/exceptions/cache.py +5 -0
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/PerplexityService.py +163 -0
  72. edsl/inference_services/TestService.py +89 -89
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -39
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -56
  79. edsl/jobs/Jobs.py +898 -1347
  80. edsl/jobs/JobsChecks.py +147 -0
  81. edsl/jobs/JobsPrompts.py +268 -0
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -0
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -63
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -248
  87. edsl/jobs/interviews/Interview.py +661 -661
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -338
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -332
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -442
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -163
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -30
  106. edsl/language_models/LanguageModel.py +668 -706
  107. edsl/language_models/ModelList.py +155 -102
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -3
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -137
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -83
  115. edsl/language_models/utilities.py +64 -64
  116. edsl/notebooks/Notebook.py +258 -259
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -357
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -289
  121. edsl/questions/QuestionBase.py +664 -656
  122. edsl/questions/QuestionBaseGenMixin.py +161 -161
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -234
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -183
  127. edsl/questions/QuestionFreeText.py +114 -114
  128. edsl/questions/QuestionFunctional.py +166 -159
  129. edsl/questions/QuestionList.py +231 -231
  130. edsl/questions/QuestionMultipleChoice.py +286 -286
  131. edsl/questions/QuestionNumerical.py +153 -153
  132. edsl/questions/QuestionRank.py +324 -324
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -174
  136. edsl/questions/SimpleAskMixin.py +73 -73
  137. edsl/questions/__init__.py +26 -26
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -87
  142. edsl/questions/derived/QuestionTopK.py +93 -91
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -413
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -147
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -0
  177. edsl/results/Dataset.py +424 -293
  178. edsl/results/DatasetExportMixin.py +731 -717
  179. edsl/results/DatasetTree.py +275 -145
  180. edsl/results/Result.py +465 -450
  181. edsl/results/Results.py +1165 -1071
  182. edsl/results/ResultsDBMixin.py +238 -238
  183. edsl/results/ResultsExportMixin.py +43 -43
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -135
  188. edsl/results/TableDisplay.py +198 -0
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +78 -0
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -458
  193. edsl/scenarios/Scenario.py +601 -546
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  195. edsl/scenarios/ScenarioJoin.py +127 -0
  196. edsl/scenarios/ScenarioList.py +1287 -1112
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  199. edsl/scenarios/__init__.py +4 -4
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -528
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -330
  210. edsl/surveys/RuleCollection.py +387 -387
  211. edsl/surveys/Survey.py +1801 -1795
  212. edsl/surveys/SurveyCSS.py +261 -261
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/SurveyFlowVisualizationMixin.py +179 -121
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -3
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -56
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -47
  220. edsl/surveys/instructions/Instruction.py +65 -51
  221. edsl/surveys/instructions/InstructionCollection.py +77 -77
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -10
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/{conjure → utilities}/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -409
  252. {edsl-0.1.37.dev6.dist-info → edsl-0.1.38.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.37.dev6.dist-info → edsl-0.1.38.dist-info}/METADATA +2 -1
  254. edsl-0.1.38.dist-info/RECORD +277 -0
  255. edsl/conjure/AgentConstructionMixin.py +0 -160
  256. edsl/conjure/Conjure.py +0 -62
  257. edsl/conjure/InputData.py +0 -659
  258. edsl/conjure/InputDataCSV.py +0 -48
  259. edsl/conjure/InputDataMixinQuestionStats.py +0 -182
  260. edsl/conjure/InputDataPyRead.py +0 -91
  261. edsl/conjure/InputDataSPSS.py +0 -8
  262. edsl/conjure/InputDataStata.py +0 -8
  263. edsl/conjure/QuestionOptionMixin.py +0 -76
  264. edsl/conjure/QuestionTypeMixin.py +0 -23
  265. edsl/conjure/RawQuestion.py +0 -65
  266. edsl/conjure/SurveyResponses.py +0 -7
  267. edsl/conjure/__init__.py +0 -9
  268. edsl/conjure/examples/placeholder.txt +0 -0
  269. edsl/conjure/utilities.py +0 -201
  270. edsl-0.1.37.dev6.dist-info/RECORD +0 -283
  271. {edsl-0.1.37.dev6.dist-info → edsl-0.1.38.dist-info}/WHEEL +0 -0
edsl/agents/Agent.py CHANGED
@@ -1,855 +1,867 @@
1
- """An Agent is an AI agent that can reference a set of traits in answering questions."""
2
-
3
- from __future__ import annotations
4
- import copy
5
- import inspect
6
- import types
7
- from typing import Callable, Optional, Union, Any, TYPE_CHECKING
8
-
9
- if TYPE_CHECKING:
10
- from edsl import Cache, Survey, Scenario
11
- from edsl.language_models import LanguageModel
12
- from edsl.surveys.MemoryPlan import MemoryPlan
13
- from edsl.questions import QuestionBase
14
- from edsl.agents.Invigilator import InvigilatorBase
15
-
16
- from uuid import uuid4
17
-
18
- from edsl.Base import Base
19
- from edsl.prompts import Prompt
20
- from edsl.exceptions import QuestionScenarioRenderError
21
-
22
- from edsl.exceptions.agents import (
23
- AgentErrors,
24
- AgentCombinationError,
25
- AgentDirectAnswerFunctionError,
26
- AgentDynamicTraitsFunctionError,
27
- )
28
-
29
- from edsl.agents.descriptors import (
30
- TraitsDescriptor,
31
- CodebookDescriptor,
32
- InstructionDescriptor,
33
- NameDescriptor,
34
- )
35
- from edsl.utilities.decorators import (
36
- sync_wrapper,
37
- add_edsl_version,
38
- remove_edsl_version,
39
- )
40
- from edsl.data_transfer_models import AgentResponseDict
41
- from edsl.utilities.restricted_python import create_restricted_function
42
-
43
-
44
- class Agent(Base):
45
- """An class representing an agent that can answer questions."""
46
-
47
- __doc__ = "https://docs.expectedparrot.com/en/latest/agents.html"
48
-
49
- default_instruction = """You are answering questions as if you were a human. Do not break character."""
50
-
51
- _traits = TraitsDescriptor()
52
- codebook = CodebookDescriptor()
53
- instruction = InstructionDescriptor()
54
- name = NameDescriptor()
55
- dynamic_traits_function_name = ""
56
- answer_question_directly_function_name = ""
57
- has_dynamic_traits_function = False
58
-
59
- def __init__(
60
- self,
61
- traits: Optional[dict] = None,
62
- name: Optional[str] = None,
63
- codebook: Optional[dict] = None,
64
- instruction: Optional[str] = None,
65
- traits_presentation_template: Optional[str] = None,
66
- dynamic_traits_function: Optional[Callable] = None,
67
- dynamic_traits_function_source_code: Optional[str] = None,
68
- dynamic_traits_function_name: Optional[str] = None,
69
- answer_question_directly_source_code: Optional[str] = None,
70
- answer_question_directly_function_name: Optional[str] = None,
71
- ):
72
- """Initialize a new instance of Agent.
73
-
74
- :param traits: A dictionary of traits that the agent has. The keys need to be valid identifiers.
75
- :param name: A name for the agent
76
- :param codebook: A codebook mapping trait keys to trait descriptions.
77
- :param instruction: Instructions for the agent in how to answer questions.
78
- :param trait_presentation_template: A template for how to present the agent's traits.
79
- :param dynamic_traits_function: A function that returns a dictionary of traits.
80
-
81
- The `traits` parameter is a dictionary of traits that the agent has.
82
- These traits are used to construct a prompt that is presented to the LLM.
83
- In the absence of a `traits_presentation_template`, the default is used.
84
- This is a template that is used to present the agent's traits to the LLM.
85
- See :py:class:`edsl.prompts.library.agent_persona.AgentPersona` for more information.
86
-
87
- Example usage:
88
-
89
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
90
- >>> a.traits
91
- {'age': 10, 'hair': 'brown', 'height': 5.5}
92
-
93
- These traits are used to construct a prompt that is presented to the LLM.
94
-
95
- In the absence of a `traits_presentation_template`, the default is used.
96
-
97
- >>> a = Agent(traits = {"age": 10}, traits_presentation_template = "I am a {{age}} year old.")
98
- >>> repr(a.agent_persona)
99
- 'Prompt(text=\"""I am a {{age}} year old.\""")'
100
-
101
- When this is rendered for presentation to the LLM, it will replace the `{{age}}` with the actual age.
102
- it is also possible to use the `codebook` to provide a more human-readable description of the trait.
103
- Here is an example where we give a prefix to the age trait (namely the age):
104
-
105
- >>> traits = {"age": 10, "hair": "brown", "height": 5.5}
106
- >>> codebook = {'age': 'Their age is'}
107
- >>> a = Agent(traits = traits, codebook = codebook, traits_presentation_template = "This agent is Dave. {{codebook['age']}} {{age}}")
108
- >>> d = a.traits | {'codebook': a.codebook}
109
- >>> a.agent_persona.render(d)
110
- Prompt(text=\"""This agent is Dave. Their age is 10\""")
111
-
112
- Instructions
113
- ------------
114
- The agent can also have instructions. These are instructions that are given to the agent when answering questions.
115
-
116
- >>> Agent.default_instruction
117
- 'You are answering questions as if you were a human. Do not break character.'
118
-
119
- See see how these are used to actually construct the prompt that is presented to the LLM, see :py:class:`edsl.agents.Invigilator.InvigilatorBase`.
120
-
121
- """
122
- self.name = name
123
- self._traits = traits or dict()
124
- self.codebook = codebook or dict()
125
- if instruction is None:
126
- self.instruction = self.default_instruction
127
- else:
128
- self.instruction = instruction
129
- # self.instruction = instruction or self.default_instruction
130
- self.dynamic_traits_function = dynamic_traits_function
131
-
132
- # Deal with dynamic traits function
133
- if self.dynamic_traits_function:
134
- self.dynamic_traits_function_name = self.dynamic_traits_function.__name__
135
- self.has_dynamic_traits_function = True
136
- else:
137
- self.has_dynamic_traits_function = False
138
-
139
- if dynamic_traits_function_source_code:
140
- self.dynamic_traits_function_name = dynamic_traits_function_name
141
- self.dynamic_traits_function = create_restricted_function(
142
- dynamic_traits_function_name, dynamic_traits_function
143
- )
144
-
145
- # Deal with direct answer function
146
- if answer_question_directly_source_code:
147
- self.answer_question_directly_function_name = (
148
- answer_question_directly_function_name
149
- )
150
- protected_method = create_restricted_function(
151
- answer_question_directly_function_name,
152
- answer_question_directly_source_code,
153
- )
154
- bound_method = types.MethodType(protected_method, self)
155
- setattr(self, "answer_question_directly", bound_method)
156
-
157
- self._check_dynamic_traits_function()
158
-
159
- self.current_question = None
160
-
161
- if traits_presentation_template is not None:
162
- self._traits_presentation_template = traits_presentation_template
163
- self.traits_presentation_template = traits_presentation_template
164
- else:
165
- self.traits_presentation_template = "Your traits: {{traits}}"
166
-
167
- @property
168
- def agent_persona(self) -> Prompt:
169
- return Prompt(text=self.traits_presentation_template)
170
-
171
- def prompt(self) -> str:
172
- """Return the prompt for the agent.
173
-
174
- Example usage:
175
-
176
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
177
- >>> a.prompt()
178
- Prompt(text=\"""Your traits: {'age': 10, 'hair': 'brown', 'height': 5.5}\""")
179
- """
180
- replacement_dict = (
181
- self.traits | {"traits": self.traits} | {"codebook": self.codebook}
182
- )
183
- if undefined := self.agent_persona.undefined_template_variables(
184
- replacement_dict
185
- ):
186
- raise QuestionScenarioRenderError(
187
- f"Agent persona still has variables that were not rendered: {undefined}"
188
- )
189
- else:
190
- return self.agent_persona.render(replacement_dict)
191
-
192
- def _check_dynamic_traits_function(self) -> None:
193
- """Check whether dynamic trait function is valid.
194
-
195
- This checks whether the dynamic traits function is valid.
196
-
197
- >>> def f(question): return {"age": 10, "hair": "brown", "height": 5.5}
198
- >>> a = Agent(dynamic_traits_function = f)
199
- >>> a._check_dynamic_traits_function()
200
-
201
- >>> def g(question, poo): return {"age": 10, "hair": "brown", "height": 5.5}
202
- >>> a = Agent(dynamic_traits_function = g)
203
- Traceback (most recent call last):
204
- ...
205
- edsl.exceptions.agents.AgentDynamicTraitsFunctionError: ...
206
- """
207
- if self.has_dynamic_traits_function:
208
- sig = inspect.signature(self.dynamic_traits_function)
209
- if "question" in sig.parameters:
210
- if len(sig.parameters) > 1:
211
- raise AgentDynamicTraitsFunctionError(
212
- message=f"The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should only have one parameter: 'question'."
213
- )
214
- else:
215
- if len(sig.parameters) > 0:
216
- raise AgentDynamicTraitsFunctionError(
217
- f"""The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should have no parameters or
218
- just a single parameter: 'question'."""
219
- )
220
-
221
- @property
222
- def traits(self) -> dict[str, str]:
223
- """An agent's traits, which is a dictionary.
224
-
225
- The agent could have a a dynamic traits function (`dynamic_traits_function`) that returns a dictionary of traits
226
- when called. This function can also take a `question` as an argument.
227
- If so, the dynamic traits function is called and the result is returned.
228
- Otherwise, the traits are returned.
229
-
230
- Example:
231
-
232
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
233
- >>> a.traits
234
- {'age': 10, 'hair': 'brown', 'height': 5.5}
235
-
236
- """
237
- if self.has_dynamic_traits_function:
238
- sig = inspect.signature(self.dynamic_traits_function)
239
- if "question" in sig.parameters:
240
- return self.dynamic_traits_function(question=self.current_question)
241
- else:
242
- return self.dynamic_traits_function()
243
- else:
244
- return self._traits
245
-
246
- def rename(
247
- self, old_name_or_dict: Union[str, dict], new_name: Optional[str] = None
248
- ) -> Agent:
249
- """Rename a trait.
250
-
251
- Example usage:
252
-
253
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
254
- >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
255
- True
256
-
257
- >>> a.rename({'years': 'smage'})
258
- Agent(traits = {'hair': 'brown', 'height': 5.5, 'smage': 10})
259
-
260
- """
261
- if isinstance(old_name_or_dict, dict) and new_name is None:
262
- for old_name, new_name in old_name_or_dict.items():
263
- self = self._rename(old_name, new_name)
264
- return self
265
-
266
- if isinstance(old_name_or_dict, dict) and new_name:
267
- raise AgentErrors(
268
- f"You passed a dict: {old_name_or_dict} and a new name: {new_name}. You should pass only a dict."
269
- )
270
-
271
- if isinstance(old_name_or_dict, str):
272
- self._rename(old_name_or_dict, new_name)
273
- return self
274
-
275
- raise AgentErrors("Something is not right with Agent renaming")
276
-
277
- def _rename(self, old_name: str, new_name: str) -> Agent:
278
- """Rename a trait.
279
-
280
- Example usage:
281
-
282
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
283
- >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
284
- True
285
- """
286
- self.traits[new_name] = self.traits.pop(old_name)
287
- return self
288
-
289
- def __getitem__(self, key):
290
- """Allow for accessing traits using the bracket notation.
291
-
292
- Example:
293
-
294
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
295
- >>> a['traits']['age']
296
- 10
297
-
298
- """
299
- return getattr(self, key)
300
-
301
- def remove_direct_question_answering_method(self) -> None:
302
- """Remove the direct question answering method.
303
-
304
- Example usage:
305
-
306
- >>> a = Agent()
307
- >>> def f(self, question, scenario): return "I am a direct answer."
308
- >>> a.add_direct_question_answering_method(f)
309
- >>> a.remove_direct_question_answering_method()
310
- >>> hasattr(a, "answer_question_directly")
311
- False
312
- """
313
- if hasattr(self, "answer_question_directly"):
314
- delattr(self, "answer_question_directly")
315
-
316
- def add_direct_question_answering_method(
317
- self,
318
- method: Callable,
319
- validate_response: bool = False,
320
- translate_response: bool = False,
321
- ) -> None:
322
- """Add a method to the agent that can answer a particular question type.
323
- https://docs.expectedparrot.com/en/latest/agents.html#agent-direct-answering-methods
324
-
325
- :param method: A method that can answer a question directly.
326
- :param validate_response: Whether to validate the response.
327
- :param translate_response: Whether to translate the response.
328
-
329
- Example usage:
330
-
331
- >>> a = Agent()
332
- >>> def f(self, question, scenario): return "I am a direct answer."
333
- >>> a.add_direct_question_answering_method(f)
334
- >>> a.answer_question_directly(question = None, scenario = None)
335
- 'I am a direct answer.'
336
- """
337
- if hasattr(self, "answer_question_directly"):
338
- import warnings
339
-
340
- warnings.warn(
341
- "Warning: overwriting existing answer_question_directly method"
342
- )
343
-
344
- self.validate_response = validate_response
345
- self.translate_response = translate_response
346
-
347
- signature = inspect.signature(method)
348
- for argument in ["question", "scenario", "self"]:
349
- if argument not in signature.parameters:
350
- raise AgentDirectAnswerFunctionError(
351
- f"The method {method} does not have a '{argument}' parameter."
352
- )
353
- bound_method = types.MethodType(method, self)
354
- setattr(self, "answer_question_directly", bound_method)
355
- self.answer_question_directly_function_name = bound_method.__name__
356
-
357
- def create_invigilator(
358
- self,
359
- *,
360
- question: "QuestionBase",
361
- cache: "Cache",
362
- survey: Optional["Survey"] = None,
363
- scenario: Optional["Scenario"] = None,
364
- model: Optional["LanguageModel"] = None,
365
- debug: bool = False,
366
- memory_plan: Optional["MemoryPlan"] = None,
367
- current_answers: Optional[dict] = None,
368
- iteration: int = 1,
369
- sidecar_model=None,
370
- raise_validation_errors: bool = True,
371
- ) -> "InvigilatorBase":
372
- """Create an Invigilator.
373
-
374
- An invigilator is an object that is responsible for administering a question to an agent.
375
- There are several different types of invigilators, depending on the type of question and the agent.
376
- For example, there are invigilators for functional questions (i.e., question is of type :class:`edsl.questions.QuestionFunctional`:), for direct questions, and for LLM questions.
377
-
378
- >>> a = Agent(traits = {})
379
- >>> a.create_invigilator(question = None, cache = False)
380
- InvigilatorAI(...)
381
-
382
- An invigator is an object that is responsible for administering a question to an agent and
383
- recording the responses.
384
- """
385
- from edsl import Model, Scenario
386
-
387
- cache = cache
388
- self.current_question = question
389
- model = model or Model()
390
- scenario = scenario or Scenario()
391
- invigilator = self._create_invigilator(
392
- question=question,
393
- scenario=scenario,
394
- survey=survey,
395
- model=model,
396
- debug=debug,
397
- memory_plan=memory_plan,
398
- current_answers=current_answers,
399
- iteration=iteration,
400
- cache=cache,
401
- sidecar_model=sidecar_model,
402
- raise_validation_errors=raise_validation_errors,
403
- )
404
- if hasattr(self, "validate_response"):
405
- invigilator.validate_response = self.validate_response
406
- if hasattr(self, "translate_response"):
407
- invigilator.translate_response = self.translate_response
408
- return invigilator
409
-
410
- async def async_answer_question(
411
- self,
412
- *,
413
- question: QuestionBase,
414
- cache: Cache,
415
- scenario: Optional[Scenario] = None,
416
- survey: Optional[Survey] = None,
417
- model: Optional[LanguageModel] = None,
418
- debug: bool = False,
419
- memory_plan: Optional[MemoryPlan] = None,
420
- current_answers: Optional[dict] = None,
421
- iteration: int = 0,
422
- ) -> AgentResponseDict:
423
- """
424
- Answer a posed question.
425
-
426
- :param question: The question to answer.
427
- :param scenario: The scenario in which the question is asked.
428
- :param model: The language model to use.
429
- :param debug: Whether to run in debug mode.
430
- :param memory_plan: The memory plan to use.
431
- :param current_answers: The current answers.
432
- :param iteration: The iteration number.
433
-
434
- >>> a = Agent(traits = {})
435
- >>> a.add_direct_question_answering_method(lambda self, question, scenario: "I am a direct answer.")
436
- >>> from edsl import QuestionFreeText
437
- >>> q = QuestionFreeText.example()
438
- >>> a.answer_question(question = q, cache = False).answer
439
- 'I am a direct answer.'
440
-
441
- This is a function where an agent returns an answer to a particular question.
442
- However, there are several different ways an agent can answer a question, so the
443
- actual functionality is delegated to an :class:`edsl.agents.InvigilatorBase`: object.
444
- """
445
- invigilator = self.create_invigilator(
446
- question=question,
447
- cache=cache,
448
- scenario=scenario,
449
- survey=survey,
450
- model=model,
451
- debug=debug,
452
- memory_plan=memory_plan,
453
- current_answers=current_answers,
454
- iteration=iteration,
455
- )
456
- response: AgentResponseDict = await invigilator.async_answer_question()
457
- return response
458
-
459
- answer_question = sync_wrapper(async_answer_question)
460
-
461
- def _create_invigilator(
462
- self,
463
- question: QuestionBase,
464
- cache: Optional[Cache] = None,
465
- scenario: Optional[Scenario] = None,
466
- model: Optional[LanguageModel] = None,
467
- survey: Optional[Survey] = None,
468
- debug: bool = False,
469
- memory_plan: Optional[MemoryPlan] = None,
470
- current_answers: Optional[dict] = None,
471
- iteration: int = 0,
472
- sidecar_model=None,
473
- raise_validation_errors: bool = True,
474
- ) -> "InvigilatorBase":
475
- """Create an Invigilator."""
476
- from edsl import Model
477
- from edsl import Scenario
478
-
479
- model = model or Model()
480
- scenario = scenario or Scenario()
481
-
482
- from edsl.agents.Invigilator import (
483
- InvigilatorHuman,
484
- InvigilatorFunctional,
485
- InvigilatorAI,
486
- InvigilatorBase,
487
- )
488
-
489
- if cache is None:
490
- from edsl.data.Cache import Cache
491
-
492
- cache = Cache()
493
-
494
- if debug:
495
- raise NotImplementedError("Debug mode is not yet implemented.")
496
- # use the question's _simulate_answer method
497
- # invigilator_class = InvigilatorDebug
498
- elif hasattr(question, "answer_question_directly"):
499
- # It's a functional question and the answer only depends on the agent's traits & the scenario
500
- invigilator_class = InvigilatorFunctional
501
- elif hasattr(self, "answer_question_directly"):
502
- # this of the case where the agent has a method that can answer the question directly
503
- # this occurrs when 'answer_question_directly' has been given to the
504
- # which happens when the agent is created from an existing survey
505
- invigilator_class = InvigilatorHuman
506
- else:
507
- # this means an LLM agent will be used. This is the standard case.
508
- invigilator_class = InvigilatorAI
509
-
510
- if sidecar_model is not None:
511
- # this is the case when a 'simple' model is being used
512
- from edsl.agents.Invigilator import InvigilatorSidecar
513
-
514
- invigilator_class = InvigilatorSidecar
515
-
516
- invigilator = invigilator_class(
517
- self,
518
- question=question,
519
- scenario=scenario,
520
- survey=survey,
521
- model=model,
522
- memory_plan=memory_plan,
523
- current_answers=current_answers,
524
- iteration=iteration,
525
- cache=cache,
526
- sidecar_model=sidecar_model,
527
- raise_validation_errors=raise_validation_errors,
528
- )
529
- return invigilator
530
-
531
- def select(self, *traits: str) -> Agent:
532
- """Selects agents with only the references traits
533
-
534
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
535
-
536
-
537
- >>> a.select("age", "height")
538
- Agent(traits = {'age': 10, 'height': 5.5})
539
-
540
- >>> a.select("age")
541
- Agent(traits = {'age': 10})
542
-
543
- """
544
-
545
- if len(traits) == 1:
546
- traits_to_select = [list(traits)[0]]
547
- else:
548
- traits_to_select = list(traits)
549
-
550
- return Agent(traits={trait: self.traits[trait] for trait in traits_to_select})
551
-
552
- def __add__(self, other_agent: Optional[Agent] = None) -> Agent:
553
- """
554
- Combine two agents by joining their traits.
555
-
556
- The agents must not have overlapping traits.
557
-
558
- Example usage:
559
-
560
- >>> a1 = Agent(traits = {"age": 10})
561
- >>> a2 = Agent(traits = {"height": 5.5})
562
- >>> a1 + a2
563
- Agent(traits = {'age': 10, 'height': 5.5})
564
- >>> a1 + a1
565
- Traceback (most recent call last):
566
- ...
567
- edsl.exceptions.agents.AgentCombinationError: The agents have overlapping traits: {'age'}.
568
- ...
569
- """
570
- if other_agent is None:
571
- return self
572
- elif common_traits := set(self.traits.keys()) & set(other_agent.traits.keys()):
573
- raise AgentCombinationError(
574
- f"The agents have overlapping traits: {common_traits}."
575
- )
576
- else:
577
- new_agent = Agent(traits=copy.deepcopy(self.traits))
578
- new_agent.traits.update(other_agent.traits)
579
- return new_agent
580
-
581
- def __eq__(self, other: Agent) -> bool:
582
- """Check if two agents are equal.
583
-
584
- This only checks the traits.
585
- >>> a1 = Agent(traits = {"age": 10})
586
- >>> a2 = Agent(traits = {"age": 10})
587
- >>> a1 == a2
588
- True
589
- >>> a3 = Agent(traits = {"age": 11})
590
- >>> a1 == a3
591
- False
592
- """
593
- return self.data == other.data
594
-
595
- def __getattr__(self, name):
596
- # This will be called only if 'name' is not found in the usual places
597
- if name == "has_dynamic_traits_function":
598
- return self.has_dynamic_traits_function
599
-
600
- if name in self._traits:
601
- return self._traits[name]
602
-
603
- raise AttributeError(
604
- f"'{type(self).__name__}' object has no attribute '{name}'"
605
- )
606
-
607
- def __getstate__(self):
608
- state = self.__dict__.copy()
609
- # Include any additional state that needs to be serialized
610
- return state
611
-
612
- def __setstate__(self, state):
613
- self.__dict__.update(state)
614
- # Ensure _traits is initialized if it's missing
615
- if "_traits" not in self.__dict__:
616
- self._traits = {}
617
-
618
- def print(self) -> None:
619
- from rich import print_json
620
- import json
621
-
622
- print_json(json.dumps(self.to_dict()))
623
-
624
- def __repr__(self) -> str:
625
- """Return representation of Agent."""
626
- class_name = self.__class__.__name__
627
- items = [
628
- f'{k} = """{v}"""' if isinstance(v, str) else f"{k} = {v}"
629
- for k, v in self.data.items()
630
- if k != "question_type"
631
- ]
632
- return f"{class_name}({', '.join(items)})"
633
-
634
- def _repr_html_(self):
635
- from edsl.utilities.utilities import data_to_html
636
-
637
- return data_to_html(self.to_dict())
638
-
639
- #######################
640
- # SERIALIZATION METHODS
641
- #######################
642
- @property
643
- def data(self) -> dict:
644
- """Format the data for serialization.
645
-
646
- TODO: Warn if has dynamic traits function or direct answer function that cannot be serialized.
647
- TODO: Add ability to have coop-hosted functions that are serializable.
648
- """
649
-
650
- raw_data = {
651
- k.replace("_", "", 1): v
652
- for k, v in self.__dict__.items()
653
- if k.startswith("_")
654
- }
655
-
656
- if hasattr(self, "set_instructions"):
657
- if not self.set_instructions:
658
- raw_data.pop("instruction")
659
- if self.codebook == {}:
660
- raw_data.pop("codebook")
661
- if self.name == None:
662
- raw_data.pop("name")
663
-
664
- if hasattr(self, "dynamic_traits_function"):
665
- raw_data.pop(
666
- "dynamic_traits_function", None
667
- ) # in case dynamic_traits_function will appear with _ in self.__dict__
668
- dynamic_traits_func = self.dynamic_traits_function
669
- if dynamic_traits_func:
670
- func = inspect.getsource(dynamic_traits_func)
671
- raw_data["dynamic_traits_function_source_code"] = func
672
- raw_data[
673
- "dynamic_traits_function_name"
674
- ] = self.dynamic_traits_function_name
675
- if hasattr(self, "answer_question_directly"):
676
- raw_data.pop(
677
- "answer_question_directly", None
678
- ) # in case answer_question_directly will appear with _ in self.__dict__
679
- answer_question_directly_func = self.answer_question_directly
680
-
681
- if (
682
- answer_question_directly_func
683
- and raw_data.get("answer_question_directly_source_code", None) != None
684
- ):
685
- raw_data["answer_question_directly_source_code"] = inspect.getsource(
686
- answer_question_directly_func
687
- )
688
- raw_data[
689
- "answer_question_directly_function_name"
690
- ] = self.answer_question_directly_function_name
691
-
692
- return raw_data
693
-
694
- def __hash__(self) -> int:
695
- from edsl.utilities.utilities import dict_hash
696
-
697
- return dict_hash(self._to_dict())
698
-
699
- def _to_dict(self) -> dict[str, Union[dict, bool]]:
700
- """Serialize to a dictionary without EDSL info"""
701
- return self.data
702
-
703
- @add_edsl_version
704
- def to_dict(self) -> dict[str, Union[dict, bool]]:
705
- """Serialize to a dictionary with EDSL info.
706
-
707
- Example usage:
708
-
709
- >>> a = Agent(name = "Steve", traits = {"age": 10, "hair": "brown", "height": 5.5})
710
- >>> a.to_dict()
711
- {'name': 'Steve', 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}, 'edsl_version': '...', 'edsl_class_name': 'Agent'}
712
- """
713
- return self._to_dict()
714
-
715
- @classmethod
716
- @remove_edsl_version
717
- def from_dict(cls, agent_dict: dict[str, Union[dict, bool]]) -> Agent:
718
- """Deserialize from a dictionary.
719
-
720
- Example usage:
721
-
722
- >>> Agent.from_dict({'name': "Steve", 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}})
723
- Agent(name = \"""Steve\""", traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
724
-
725
- """
726
- return cls(**agent_dict)
727
-
728
- def _table(self) -> tuple[dict, list]:
729
- """Prepare generic table data."""
730
- table_data = []
731
- for attr_name, attr_value in self.__dict__.items():
732
- table_data.append({"Attribute": attr_name, "Value": repr(attr_value)})
733
- column_names = ["Attribute", "Value"]
734
- return table_data, column_names
735
-
736
- def add_trait(self, trait_name_or_dict: str, value: Optional[Any] = None) -> Agent:
737
- """Adds a trait to an agent and returns that agent"""
738
- if isinstance(trait_name_or_dict, dict) and value is None:
739
- self.traits.update(trait_name_or_dict)
740
- return self
741
-
742
- if isinstance(trait_name_or_dict, dict) and value:
743
- raise AgentErrors(
744
- f"You passed a dict: {trait_name_or_dict} and a value: {value}. You should pass only a dict."
745
- )
746
-
747
- if isinstance(trait_name_or_dict, str):
748
- trait = trait_name_or_dict
749
- self.traits[trait] = value
750
- return self
751
-
752
- raise AgentErrors("Something is not right with adding a trait to an Agent")
753
-
754
- def remove_trait(self, trait: str) -> Agent:
755
- """Remove a trait from the agent.
756
-
757
- Example usage:
758
-
759
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
760
- >>> a.remove_trait("age")
761
- Agent(traits = {'hair': 'brown', 'height': 5.5})
762
- """
763
- _ = self.traits.pop(trait)
764
- return self
765
-
766
- def translate_traits(self, values_codebook: dict) -> Agent:
767
- """Translate traits to a new codebook.
768
-
769
- >>> a = Agent(traits = {"age": 10, "hair": 1, "height": 5.5})
770
- >>> a.translate_traits({"hair": {1:"brown"}})
771
- Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
772
-
773
- :param values_codebook: The new codebook.
774
- """
775
- for key, value in self.traits.items():
776
- if key in values_codebook:
777
- self.traits[key] = values_codebook[key][value]
778
- return self
779
-
780
- def rich_print(self):
781
- """Display an object as a rich table.
782
-
783
- Example usage:
784
-
785
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
786
- >>> a.rich_print()
787
- <rich.table.Table object at ...>
788
- """
789
- from rich.table import Table
790
-
791
- table_data, column_names = self._table()
792
- table = Table(title=f"{self.__class__.__name__} Attributes")
793
- for column in column_names:
794
- table.add_column(column, style="bold")
795
-
796
- for row in table_data:
797
- row_data = [row[column] for column in column_names]
798
- table.add_row(*row_data)
799
-
800
- return table
801
-
802
- @classmethod
803
- def example(cls, randomize: bool = False) -> Agent:
804
- """
805
- Returns an example Agent instance.
806
-
807
- :param randomize: If True, adds a random string to the value of an example key.
808
- """
809
- addition = "" if not randomize else str(uuid4())
810
- return cls(traits={"age": 22, "hair": f"brown{addition}", "height": 5.5})
811
-
812
- def code(self) -> str:
813
- """Return the code for the agent.
814
-
815
- Example usage:
816
-
817
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
818
- >>> print(a.code())
819
- from edsl import Agent
820
- agent = Agent(traits={'age': 10, 'hair': 'brown', 'height': 5.5})
821
- """
822
- return f"from edsl import Agent\nagent = Agent(traits={self.traits})"
823
-
824
-
825
- def main():
826
- """
827
- Give an example of usage.
828
-
829
- WARNING: Consume API credits
830
- """
831
- from edsl.agents import Agent
832
- from edsl.questions import QuestionMultipleChoice
833
-
834
- # a simple agent
835
- agent = Agent(traits={"age": 10, "hair": "brown", "height": 5.5})
836
- agent.traits
837
- agent.print()
838
- # combining two agents
839
- agent = Agent(traits={"age": 10}) + Agent(traits={"height": 5.5})
840
- agent.traits
841
- # Agent -> Job using the to() method
842
- agent = Agent(traits={"allergies": "peanut"})
843
- question = QuestionMultipleChoice(
844
- question_text="Would you enjoy a PB&J?",
845
- question_options=["Yes", "No"],
846
- question_name="food_preference",
847
- )
848
- job = question.by(agent)
849
- results = job.run()
850
-
851
-
852
- if __name__ == "__main__":
853
- import doctest
854
-
855
- doctest.testmod(optionflags=doctest.ELLIPSIS)
1
+ """An Agent is an AI agent that can reference a set of traits in answering questions."""
2
+
3
+ from __future__ import annotations
4
+ import copy
5
+ import inspect
6
+ import types
7
+ from typing import Callable, Optional, Union, Any, TYPE_CHECKING
8
+
9
+ if TYPE_CHECKING:
10
+ from edsl import Cache, Survey, Scenario
11
+ from edsl.language_models import LanguageModel
12
+ from edsl.surveys.MemoryPlan import MemoryPlan
13
+ from edsl.questions import QuestionBase
14
+ from edsl.agents.Invigilator import InvigilatorBase
15
+
16
+ from uuid import uuid4
17
+
18
+ from edsl.Base import Base
19
+ from edsl.prompts import Prompt
20
+ from edsl.exceptions import QuestionScenarioRenderError
21
+
22
+ from edsl.exceptions.agents import (
23
+ AgentErrors,
24
+ AgentCombinationError,
25
+ AgentDirectAnswerFunctionError,
26
+ AgentDynamicTraitsFunctionError,
27
+ )
28
+
29
+ from edsl.agents.descriptors import (
30
+ TraitsDescriptor,
31
+ CodebookDescriptor,
32
+ InstructionDescriptor,
33
+ NameDescriptor,
34
+ )
35
+ from edsl.utilities.decorators import (
36
+ sync_wrapper,
37
+ add_edsl_version,
38
+ remove_edsl_version,
39
+ )
40
+ from edsl.data_transfer_models import AgentResponseDict
41
+ from edsl.utilities.restricted_python import create_restricted_function
42
+
43
+
44
+ class Agent(Base):
45
+ """An class representing an agent that can answer questions."""
46
+
47
+ __doc__ = "https://docs.expectedparrot.com/en/latest/agents.html"
48
+
49
+ default_instruction = """You are answering questions as if you were a human. Do not break character."""
50
+
51
+ _traits = TraitsDescriptor()
52
+ codebook = CodebookDescriptor()
53
+ instruction = InstructionDescriptor()
54
+ name = NameDescriptor()
55
+ dynamic_traits_function_name = ""
56
+ answer_question_directly_function_name = ""
57
+ has_dynamic_traits_function = False
58
+
59
+ def __init__(
60
+ self,
61
+ traits: Optional[dict] = None,
62
+ name: Optional[str] = None,
63
+ codebook: Optional[dict] = None,
64
+ instruction: Optional[str] = None,
65
+ traits_presentation_template: Optional[str] = None,
66
+ dynamic_traits_function: Optional[Callable] = None,
67
+ dynamic_traits_function_source_code: Optional[str] = None,
68
+ dynamic_traits_function_name: Optional[str] = None,
69
+ answer_question_directly_source_code: Optional[str] = None,
70
+ answer_question_directly_function_name: Optional[str] = None,
71
+ ):
72
+ """Initialize a new instance of Agent.
73
+
74
+ :param traits: A dictionary of traits that the agent has. The keys need to be valid identifiers.
75
+ :param name: A name for the agent
76
+ :param codebook: A codebook mapping trait keys to trait descriptions.
77
+ :param instruction: Instructions for the agent in how to answer questions.
78
+ :param trait_presentation_template: A template for how to present the agent's traits.
79
+ :param dynamic_traits_function: A function that returns a dictionary of traits.
80
+
81
+ The `traits` parameter is a dictionary of traits that the agent has.
82
+ These traits are used to construct a prompt that is presented to the LLM.
83
+ In the absence of a `traits_presentation_template`, the default is used.
84
+ This is a template that is used to present the agent's traits to the LLM.
85
+ See :py:class:`edsl.prompts.library.agent_persona.AgentPersona` for more information.
86
+
87
+ Example usage:
88
+
89
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
90
+ >>> a.traits
91
+ {'age': 10, 'hair': 'brown', 'height': 5.5}
92
+
93
+ These traits are used to construct a prompt that is presented to the LLM.
94
+
95
+ In the absence of a `traits_presentation_template`, the default is used.
96
+
97
+ >>> a = Agent(traits = {"age": 10}, traits_presentation_template = "I am a {{age}} year old.")
98
+ >>> repr(a.agent_persona)
99
+ 'Prompt(text=\"""I am a {{age}} year old.\""")'
100
+
101
+ When this is rendered for presentation to the LLM, it will replace the `{{age}}` with the actual age.
102
+ it is also possible to use the `codebook` to provide a more human-readable description of the trait.
103
+ Here is an example where we give a prefix to the age trait (namely the age):
104
+
105
+ >>> traits = {"age": 10, "hair": "brown", "height": 5.5}
106
+ >>> codebook = {'age': 'Their age is'}
107
+ >>> a = Agent(traits = traits, codebook = codebook, traits_presentation_template = "This agent is Dave. {{codebook['age']}} {{age}}")
108
+ >>> d = a.traits | {'codebook': a.codebook}
109
+ >>> a.agent_persona.render(d)
110
+ Prompt(text=\"""This agent is Dave. Their age is 10\""")
111
+
112
+ Instructions
113
+ ------------
114
+ The agent can also have instructions. These are instructions that are given to the agent when answering questions.
115
+
116
+ >>> Agent.default_instruction
117
+ 'You are answering questions as if you were a human. Do not break character.'
118
+
119
+ See see how these are used to actually construct the prompt that is presented to the LLM, see :py:class:`edsl.agents.Invigilator.InvigilatorBase`.
120
+
121
+ """
122
+ self.name = name
123
+ self._traits = traits or dict()
124
+ self.codebook = codebook or dict()
125
+ if instruction is None:
126
+ self.instruction = self.default_instruction
127
+ else:
128
+ self.instruction = instruction
129
+ # self.instruction = instruction or self.default_instruction
130
+ self.dynamic_traits_function = dynamic_traits_function
131
+
132
+ # Deal with dynamic traits function
133
+ if self.dynamic_traits_function:
134
+ self.dynamic_traits_function_name = self.dynamic_traits_function.__name__
135
+ self.has_dynamic_traits_function = True
136
+ else:
137
+ self.has_dynamic_traits_function = False
138
+
139
+ if dynamic_traits_function_source_code:
140
+ self.dynamic_traits_function_name = dynamic_traits_function_name
141
+ self.dynamic_traits_function = create_restricted_function(
142
+ dynamic_traits_function_name, dynamic_traits_function
143
+ )
144
+
145
+ # Deal with direct answer function
146
+ if answer_question_directly_source_code:
147
+ self.answer_question_directly_function_name = (
148
+ answer_question_directly_function_name
149
+ )
150
+ protected_method = create_restricted_function(
151
+ answer_question_directly_function_name,
152
+ answer_question_directly_source_code,
153
+ )
154
+ bound_method = types.MethodType(protected_method, self)
155
+ setattr(self, "answer_question_directly", bound_method)
156
+
157
+ self._check_dynamic_traits_function()
158
+
159
+ self.current_question = None
160
+
161
+ if traits_presentation_template is not None:
162
+ self._traits_presentation_template = traits_presentation_template
163
+ self.traits_presentation_template = traits_presentation_template
164
+ else:
165
+ self.traits_presentation_template = "Your traits: {{traits}}"
166
+
167
+ @property
168
+ def agent_persona(self) -> Prompt:
169
+ return Prompt(text=self.traits_presentation_template)
170
+
171
+ def prompt(self) -> str:
172
+ """Return the prompt for the agent.
173
+
174
+ Example usage:
175
+
176
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
177
+ >>> a.prompt()
178
+ Prompt(text=\"""Your traits: {'age': 10, 'hair': 'brown', 'height': 5.5}\""")
179
+ """
180
+ replacement_dict = (
181
+ self.traits | {"traits": self.traits} | {"codebook": self.codebook}
182
+ )
183
+ if undefined := self.agent_persona.undefined_template_variables(
184
+ replacement_dict
185
+ ):
186
+ raise QuestionScenarioRenderError(
187
+ f"Agent persona still has variables that were not rendered: {undefined}"
188
+ )
189
+ else:
190
+ return self.agent_persona.render(replacement_dict)
191
+
192
+ def _check_dynamic_traits_function(self) -> None:
193
+ """Check whether dynamic trait function is valid.
194
+
195
+ This checks whether the dynamic traits function is valid.
196
+
197
+ >>> def f(question): return {"age": 10, "hair": "brown", "height": 5.5}
198
+ >>> a = Agent(dynamic_traits_function = f)
199
+ >>> a._check_dynamic_traits_function()
200
+
201
+ >>> def g(question, poo): return {"age": 10, "hair": "brown", "height": 5.5}
202
+ >>> a = Agent(dynamic_traits_function = g)
203
+ Traceback (most recent call last):
204
+ ...
205
+ edsl.exceptions.agents.AgentDynamicTraitsFunctionError: ...
206
+ """
207
+ if self.has_dynamic_traits_function:
208
+ sig = inspect.signature(self.dynamic_traits_function)
209
+ if "question" in sig.parameters:
210
+ if len(sig.parameters) > 1:
211
+ raise AgentDynamicTraitsFunctionError(
212
+ message=f"The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should only have one parameter: 'question'."
213
+ )
214
+ else:
215
+ if len(sig.parameters) > 0:
216
+ raise AgentDynamicTraitsFunctionError(
217
+ f"""The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should have no parameters or
218
+ just a single parameter: 'question'."""
219
+ )
220
+
221
+ @property
222
+ def traits(self) -> dict[str, str]:
223
+ """An agent's traits, which is a dictionary.
224
+
225
+ The agent could have a a dynamic traits function (`dynamic_traits_function`) that returns a dictionary of traits
226
+ when called. This function can also take a `question` as an argument.
227
+ If so, the dynamic traits function is called and the result is returned.
228
+ Otherwise, the traits are returned.
229
+
230
+ Example:
231
+
232
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
233
+ >>> a.traits
234
+ {'age': 10, 'hair': 'brown', 'height': 5.5}
235
+
236
+ """
237
+ if self.has_dynamic_traits_function:
238
+ sig = inspect.signature(self.dynamic_traits_function)
239
+ if "question" in sig.parameters:
240
+ return self.dynamic_traits_function(question=self.current_question)
241
+ else:
242
+ return self.dynamic_traits_function()
243
+ else:
244
+ return self._traits
245
+
246
+ def _repr_html_(self):
247
+ # d = self.to_dict(add_edsl_version=False)
248
+ d = self.traits
249
+ data = [[k, v] for k, v in d.items()]
250
+ from tabulate import tabulate
251
+
252
+ table = str(tabulate(data, headers=["keys", "values"], tablefmt="html"))
253
+ return f"<pre>{table}</pre>"
254
+
255
+ def rename(
256
+ self, old_name_or_dict: Union[str, dict], new_name: Optional[str] = None
257
+ ) -> Agent:
258
+ """Rename a trait.
259
+
260
+ Example usage:
261
+
262
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
263
+ >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
264
+ True
265
+
266
+ >>> a.rename({'years': 'smage'})
267
+ Agent(traits = {'hair': 'brown', 'height': 5.5, 'smage': 10})
268
+
269
+ """
270
+ if isinstance(old_name_or_dict, dict) and new_name is None:
271
+ for old_name, new_name in old_name_or_dict.items():
272
+ self = self._rename(old_name, new_name)
273
+ return self
274
+
275
+ if isinstance(old_name_or_dict, dict) and new_name:
276
+ raise AgentErrors(
277
+ f"You passed a dict: {old_name_or_dict} and a new name: {new_name}. You should pass only a dict."
278
+ )
279
+
280
+ if isinstance(old_name_or_dict, str):
281
+ self._rename(old_name_or_dict, new_name)
282
+ return self
283
+
284
+ raise AgentErrors("Something is not right with Agent renaming")
285
+
286
+ def _rename(self, old_name: str, new_name: str) -> Agent:
287
+ """Rename a trait.
288
+
289
+ Example usage:
290
+
291
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
292
+ >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
293
+ True
294
+ """
295
+ self.traits[new_name] = self.traits.pop(old_name)
296
+ return self
297
+
298
+ def __getitem__(self, key):
299
+ """Allow for accessing traits using the bracket notation.
300
+
301
+ Example:
302
+
303
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
304
+ >>> a['traits']['age']
305
+ 10
306
+
307
+ """
308
+ return getattr(self, key)
309
+
310
+ def remove_direct_question_answering_method(self) -> None:
311
+ """Remove the direct question answering method.
312
+
313
+ Example usage:
314
+
315
+ >>> a = Agent()
316
+ >>> def f(self, question, scenario): return "I am a direct answer."
317
+ >>> a.add_direct_question_answering_method(f)
318
+ >>> a.remove_direct_question_answering_method()
319
+ >>> hasattr(a, "answer_question_directly")
320
+ False
321
+ """
322
+ if hasattr(self, "answer_question_directly"):
323
+ delattr(self, "answer_question_directly")
324
+
325
+ def add_direct_question_answering_method(
326
+ self,
327
+ method: Callable,
328
+ validate_response: bool = False,
329
+ translate_response: bool = False,
330
+ ) -> None:
331
+ """Add a method to the agent that can answer a particular question type.
332
+ https://docs.expectedparrot.com/en/latest/agents.html#agent-direct-answering-methods
333
+
334
+ :param method: A method that can answer a question directly.
335
+ :param validate_response: Whether to validate the response.
336
+ :param translate_response: Whether to translate the response.
337
+
338
+ Example usage:
339
+
340
+ >>> a = Agent()
341
+ >>> def f(self, question, scenario): return "I am a direct answer."
342
+ >>> a.add_direct_question_answering_method(f)
343
+ >>> a.answer_question_directly(question = None, scenario = None)
344
+ 'I am a direct answer.'
345
+ """
346
+ if hasattr(self, "answer_question_directly"):
347
+ import warnings
348
+
349
+ warnings.warn(
350
+ "Warning: overwriting existing answer_question_directly method"
351
+ )
352
+
353
+ self.validate_response = validate_response
354
+ self.translate_response = translate_response
355
+
356
+ signature = inspect.signature(method)
357
+ for argument in ["question", "scenario", "self"]:
358
+ if argument not in signature.parameters:
359
+ raise AgentDirectAnswerFunctionError(
360
+ f"The method {method} does not have a '{argument}' parameter."
361
+ )
362
+ bound_method = types.MethodType(method, self)
363
+ setattr(self, "answer_question_directly", bound_method)
364
+ self.answer_question_directly_function_name = bound_method.__name__
365
+
366
+ def create_invigilator(
367
+ self,
368
+ *,
369
+ question: "QuestionBase",
370
+ cache: "Cache",
371
+ survey: Optional["Survey"] = None,
372
+ scenario: Optional["Scenario"] = None,
373
+ model: Optional["LanguageModel"] = None,
374
+ debug: bool = False,
375
+ memory_plan: Optional["MemoryPlan"] = None,
376
+ current_answers: Optional[dict] = None,
377
+ iteration: int = 1,
378
+ sidecar_model=None,
379
+ raise_validation_errors: bool = True,
380
+ ) -> "InvigilatorBase":
381
+ """Create an Invigilator.
382
+
383
+ An invigilator is an object that is responsible for administering a question to an agent.
384
+ There are several different types of invigilators, depending on the type of question and the agent.
385
+ For example, there are invigilators for functional questions (i.e., question is of type :class:`edsl.questions.QuestionFunctional`:), for direct questions, and for LLM questions.
386
+
387
+ >>> a = Agent(traits = {})
388
+ >>> a.create_invigilator(question = None, cache = False)
389
+ InvigilatorAI(...)
390
+
391
+ An invigator is an object that is responsible for administering a question to an agent and
392
+ recording the responses.
393
+ """
394
+ from edsl import Model, Scenario
395
+
396
+ cache = cache
397
+ self.current_question = question
398
+ model = model or Model()
399
+ scenario = scenario or Scenario()
400
+ invigilator = self._create_invigilator(
401
+ question=question,
402
+ scenario=scenario,
403
+ survey=survey,
404
+ model=model,
405
+ debug=debug,
406
+ memory_plan=memory_plan,
407
+ current_answers=current_answers,
408
+ iteration=iteration,
409
+ cache=cache,
410
+ sidecar_model=sidecar_model,
411
+ raise_validation_errors=raise_validation_errors,
412
+ )
413
+ if hasattr(self, "validate_response"):
414
+ invigilator.validate_response = self.validate_response
415
+ if hasattr(self, "translate_response"):
416
+ invigilator.translate_response = self.translate_response
417
+ return invigilator
418
+
419
+ async def async_answer_question(
420
+ self,
421
+ *,
422
+ question: QuestionBase,
423
+ cache: Cache,
424
+ scenario: Optional[Scenario] = None,
425
+ survey: Optional[Survey] = None,
426
+ model: Optional[LanguageModel] = None,
427
+ debug: bool = False,
428
+ memory_plan: Optional[MemoryPlan] = None,
429
+ current_answers: Optional[dict] = None,
430
+ iteration: int = 0,
431
+ ) -> AgentResponseDict:
432
+ """
433
+ Answer a posed question.
434
+
435
+ :param question: The question to answer.
436
+ :param scenario: The scenario in which the question is asked.
437
+ :param model: The language model to use.
438
+ :param debug: Whether to run in debug mode.
439
+ :param memory_plan: The memory plan to use.
440
+ :param current_answers: The current answers.
441
+ :param iteration: The iteration number.
442
+
443
+ >>> a = Agent(traits = {})
444
+ >>> a.add_direct_question_answering_method(lambda self, question, scenario: "I am a direct answer.")
445
+ >>> from edsl import QuestionFreeText
446
+ >>> q = QuestionFreeText.example()
447
+ >>> a.answer_question(question = q, cache = False).answer
448
+ 'I am a direct answer.'
449
+
450
+ This is a function where an agent returns an answer to a particular question.
451
+ However, there are several different ways an agent can answer a question, so the
452
+ actual functionality is delegated to an :class:`edsl.agents.InvigilatorBase`: object.
453
+ """
454
+ invigilator = self.create_invigilator(
455
+ question=question,
456
+ cache=cache,
457
+ scenario=scenario,
458
+ survey=survey,
459
+ model=model,
460
+ debug=debug,
461
+ memory_plan=memory_plan,
462
+ current_answers=current_answers,
463
+ iteration=iteration,
464
+ )
465
+ response: AgentResponseDict = await invigilator.async_answer_question()
466
+ return response
467
+
468
+ answer_question = sync_wrapper(async_answer_question)
469
+
470
+ def _create_invigilator(
471
+ self,
472
+ question: QuestionBase,
473
+ cache: Optional[Cache] = None,
474
+ scenario: Optional[Scenario] = None,
475
+ model: Optional[LanguageModel] = None,
476
+ survey: Optional[Survey] = None,
477
+ debug: bool = False,
478
+ memory_plan: Optional[MemoryPlan] = None,
479
+ current_answers: Optional[dict] = None,
480
+ iteration: int = 0,
481
+ sidecar_model=None,
482
+ raise_validation_errors: bool = True,
483
+ ) -> "InvigilatorBase":
484
+ """Create an Invigilator."""
485
+ from edsl import Model
486
+ from edsl import Scenario
487
+
488
+ model = model or Model()
489
+ scenario = scenario or Scenario()
490
+
491
+ from edsl.agents.Invigilator import (
492
+ InvigilatorHuman,
493
+ InvigilatorFunctional,
494
+ InvigilatorAI,
495
+ InvigilatorBase,
496
+ )
497
+
498
+ if cache is None:
499
+ from edsl.data.Cache import Cache
500
+
501
+ cache = Cache()
502
+
503
+ if debug:
504
+ raise NotImplementedError("Debug mode is not yet implemented.")
505
+ # use the question's _simulate_answer method
506
+ # invigilator_class = InvigilatorDebug
507
+ elif hasattr(question, "answer_question_directly"):
508
+ # It's a functional question and the answer only depends on the agent's traits & the scenario
509
+ invigilator_class = InvigilatorFunctional
510
+ elif hasattr(self, "answer_question_directly"):
511
+ # this of the case where the agent has a method that can answer the question directly
512
+ # this occurrs when 'answer_question_directly' has been given to the
513
+ # which happens when the agent is created from an existing survey
514
+ invigilator_class = InvigilatorHuman
515
+ else:
516
+ # this means an LLM agent will be used. This is the standard case.
517
+ invigilator_class = InvigilatorAI
518
+
519
+ if sidecar_model is not None:
520
+ # this is the case when a 'simple' model is being used
521
+ from edsl.agents.Invigilator import InvigilatorSidecar
522
+
523
+ invigilator_class = InvigilatorSidecar
524
+
525
+ invigilator = invigilator_class(
526
+ self,
527
+ question=question,
528
+ scenario=scenario,
529
+ survey=survey,
530
+ model=model,
531
+ memory_plan=memory_plan,
532
+ current_answers=current_answers,
533
+ iteration=iteration,
534
+ cache=cache,
535
+ sidecar_model=sidecar_model,
536
+ raise_validation_errors=raise_validation_errors,
537
+ )
538
+ return invigilator
539
+
540
+ def select(self, *traits: str) -> Agent:
541
+ """Selects agents with only the references traits
542
+
543
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
544
+
545
+
546
+ >>> a.select("age", "height")
547
+ Agent(traits = {'age': 10, 'height': 5.5})
548
+
549
+ >>> a.select("age")
550
+ Agent(traits = {'age': 10})
551
+
552
+ """
553
+
554
+ if len(traits) == 1:
555
+ traits_to_select = [list(traits)[0]]
556
+ else:
557
+ traits_to_select = list(traits)
558
+
559
+ return Agent(traits={trait: self.traits[trait] for trait in traits_to_select})
560
+
561
+ def __add__(self, other_agent: Optional[Agent] = None) -> Agent:
562
+ """
563
+ Combine two agents by joining their traits.
564
+
565
+ The agents must not have overlapping traits.
566
+
567
+ Example usage:
568
+
569
+ >>> a1 = Agent(traits = {"age": 10})
570
+ >>> a2 = Agent(traits = {"height": 5.5})
571
+ >>> a1 + a2
572
+ Agent(traits = {'age': 10, 'height': 5.5})
573
+ >>> a1 + a1
574
+ Traceback (most recent call last):
575
+ ...
576
+ edsl.exceptions.agents.AgentCombinationError: The agents have overlapping traits: {'age'}.
577
+ ...
578
+ """
579
+ if other_agent is None:
580
+ return self
581
+ elif common_traits := set(self.traits.keys()) & set(other_agent.traits.keys()):
582
+ raise AgentCombinationError(
583
+ f"The agents have overlapping traits: {common_traits}."
584
+ )
585
+ else:
586
+ new_agent = Agent(traits=copy.deepcopy(self.traits))
587
+ new_agent.traits.update(other_agent.traits)
588
+ return new_agent
589
+
590
+ def __eq__(self, other: Agent) -> bool:
591
+ """Check if two agents are equal.
592
+
593
+ This only checks the traits.
594
+ >>> a1 = Agent(traits = {"age": 10})
595
+ >>> a2 = Agent(traits = {"age": 10})
596
+ >>> a1 == a2
597
+ True
598
+ >>> a3 = Agent(traits = {"age": 11})
599
+ >>> a1 == a3
600
+ False
601
+ """
602
+ return self.data == other.data
603
+
604
+ def __getattr__(self, name):
605
+ # This will be called only if 'name' is not found in the usual places
606
+ if name == "has_dynamic_traits_function":
607
+ return self.has_dynamic_traits_function
608
+
609
+ if name in self._traits:
610
+ return self._traits[name]
611
+
612
+ raise AttributeError(
613
+ f"'{type(self).__name__}' object has no attribute '{name}'"
614
+ )
615
+
616
+ def __getstate__(self):
617
+ state = self.__dict__.copy()
618
+ # Include any additional state that needs to be serialized
619
+ return state
620
+
621
+ def __setstate__(self, state):
622
+ self.__dict__.update(state)
623
+ # Ensure _traits is initialized if it's missing
624
+ if "_traits" not in self.__dict__:
625
+ self._traits = {}
626
+
627
+ def print(self) -> None:
628
+ from rich import print_json
629
+ import json
630
+
631
+ print_json(json.dumps(self.to_dict()))
632
+
633
+ def __repr__(self) -> str:
634
+ """Return representation of Agent."""
635
+ class_name = self.__class__.__name__
636
+ items = [
637
+ f'{k} = """{v}"""' if isinstance(v, str) else f"{k} = {v}"
638
+ for k, v in self.data.items()
639
+ if k != "question_type"
640
+ ]
641
+ return f"{class_name}({', '.join(items)})"
642
+
643
+ # def _repr_html_(self):
644
+ # from edsl.utilities.utilities import data_to_html
645
+
646
+ # return data_to_html(self.to_dict())
647
+
648
+ #######################
649
+ # SERIALIZATION METHODS
650
+ #######################
651
+ @property
652
+ def data(self) -> dict:
653
+ """Format the data for serialization.
654
+
655
+ TODO: Warn if has dynamic traits function or direct answer function that cannot be serialized.
656
+ TODO: Add ability to have coop-hosted functions that are serializable.
657
+ """
658
+
659
+ raw_data = {
660
+ k.replace("_", "", 1): v
661
+ for k, v in self.__dict__.items()
662
+ if k.startswith("_")
663
+ }
664
+
665
+ if hasattr(self, "set_instructions"):
666
+ if not self.set_instructions:
667
+ raw_data.pop("instruction")
668
+ if self.codebook == {}:
669
+ raw_data.pop("codebook")
670
+ if self.name == None:
671
+ raw_data.pop("name")
672
+
673
+ if hasattr(self, "dynamic_traits_function"):
674
+ raw_data.pop(
675
+ "dynamic_traits_function", None
676
+ ) # in case dynamic_traits_function will appear with _ in self.__dict__
677
+ dynamic_traits_func = self.dynamic_traits_function
678
+ if dynamic_traits_func:
679
+ func = inspect.getsource(dynamic_traits_func)
680
+ raw_data["dynamic_traits_function_source_code"] = func
681
+ raw_data[
682
+ "dynamic_traits_function_name"
683
+ ] = self.dynamic_traits_function_name
684
+ if hasattr(self, "answer_question_directly"):
685
+ raw_data.pop(
686
+ "answer_question_directly", None
687
+ ) # in case answer_question_directly will appear with _ in self.__dict__
688
+ answer_question_directly_func = self.answer_question_directly
689
+
690
+ if (
691
+ answer_question_directly_func
692
+ and raw_data.get("answer_question_directly_source_code", None) != None
693
+ ):
694
+ raw_data["answer_question_directly_source_code"] = inspect.getsource(
695
+ answer_question_directly_func
696
+ )
697
+ raw_data[
698
+ "answer_question_directly_function_name"
699
+ ] = self.answer_question_directly_function_name
700
+
701
+ return raw_data
702
+
703
+ def __hash__(self) -> int:
704
+ from edsl.utilities.utilities import dict_hash
705
+
706
+ return dict_hash(self.to_dict(add_edsl_version=False))
707
+
708
+ # @add_edsl_version
709
+ def to_dict(self, add_edsl_version=True) -> dict[str, Union[dict, bool]]:
710
+ """Serialize to a dictionary with EDSL info.
711
+
712
+ Example usage:
713
+
714
+ >>> a = Agent(name = "Steve", traits = {"age": 10, "hair": "brown", "height": 5.5})
715
+ >>> a.to_dict()
716
+ {'name': 'Steve', 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}, 'edsl_version': '...', 'edsl_class_name': 'Agent'}
717
+ """
718
+ d = copy.deepcopy(self.data)
719
+ if add_edsl_version:
720
+ from edsl import __version__
721
+
722
+ d["edsl_version"] = __version__
723
+ d["edsl_class_name"] = self.__class__.__name__
724
+
725
+ return d
726
+
727
+ @classmethod
728
+ @remove_edsl_version
729
+ def from_dict(cls, agent_dict: dict[str, Union[dict, bool]]) -> Agent:
730
+ """Deserialize from a dictionary.
731
+
732
+ Example usage:
733
+
734
+ >>> Agent.from_dict({'name': "Steve", 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}})
735
+ Agent(name = \"""Steve\""", traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
736
+
737
+ """
738
+ return cls(**agent_dict)
739
+
740
+ def _table(self) -> tuple[dict, list]:
741
+ """Prepare generic table data."""
742
+ table_data = []
743
+ for attr_name, attr_value in self.__dict__.items():
744
+ table_data.append({"Attribute": attr_name, "Value": repr(attr_value)})
745
+ column_names = ["Attribute", "Value"]
746
+ return table_data, column_names
747
+
748
+ def add_trait(self, trait_name_or_dict: str, value: Optional[Any] = None) -> Agent:
749
+ """Adds a trait to an agent and returns that agent"""
750
+ if isinstance(trait_name_or_dict, dict) and value is None:
751
+ self.traits.update(trait_name_or_dict)
752
+ return self
753
+
754
+ if isinstance(trait_name_or_dict, dict) and value:
755
+ raise AgentErrors(
756
+ f"You passed a dict: {trait_name_or_dict} and a value: {value}. You should pass only a dict."
757
+ )
758
+
759
+ if isinstance(trait_name_or_dict, str):
760
+ trait = trait_name_or_dict
761
+ self.traits[trait] = value
762
+ return self
763
+
764
+ raise AgentErrors("Something is not right with adding a trait to an Agent")
765
+
766
+ def remove_trait(self, trait: str) -> Agent:
767
+ """Remove a trait from the agent.
768
+
769
+ Example usage:
770
+
771
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
772
+ >>> a.remove_trait("age")
773
+ Agent(traits = {'hair': 'brown', 'height': 5.5})
774
+ """
775
+ _ = self.traits.pop(trait)
776
+ return self
777
+
778
+ def translate_traits(self, values_codebook: dict) -> Agent:
779
+ """Translate traits to a new codebook.
780
+
781
+ >>> a = Agent(traits = {"age": 10, "hair": 1, "height": 5.5})
782
+ >>> a.translate_traits({"hair": {1:"brown"}})
783
+ Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
784
+
785
+ :param values_codebook: The new codebook.
786
+ """
787
+ for key, value in self.traits.items():
788
+ if key in values_codebook:
789
+ self.traits[key] = values_codebook[key][value]
790
+ return self
791
+
792
+ def rich_print(self):
793
+ """Display an object as a rich table.
794
+
795
+ Example usage:
796
+
797
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
798
+ >>> a.rich_print()
799
+ <rich.table.Table object at ...>
800
+ """
801
+ from rich.table import Table
802
+
803
+ table_data, column_names = self._table()
804
+ table = Table(title=f"{self.__class__.__name__} Attributes")
805
+ for column in column_names:
806
+ table.add_column(column, style="bold")
807
+
808
+ for row in table_data:
809
+ row_data = [row[column] for column in column_names]
810
+ table.add_row(*row_data)
811
+
812
+ return table
813
+
814
+ @classmethod
815
+ def example(cls, randomize: bool = False) -> Agent:
816
+ """
817
+ Returns an example Agent instance.
818
+
819
+ :param randomize: If True, adds a random string to the value of an example key.
820
+ """
821
+ addition = "" if not randomize else str(uuid4())
822
+ return cls(traits={"age": 22, "hair": f"brown{addition}", "height": 5.5})
823
+
824
+ def code(self) -> str:
825
+ """Return the code for the agent.
826
+
827
+ Example usage:
828
+
829
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
830
+ >>> print(a.code())
831
+ from edsl import Agent
832
+ agent = Agent(traits={'age': 10, 'hair': 'brown', 'height': 5.5})
833
+ """
834
+ return f"from edsl import Agent\nagent = Agent(traits={self.traits})"
835
+
836
+
837
+ def main():
838
+ """
839
+ Give an example of usage.
840
+
841
+ WARNING: Consume API credits
842
+ """
843
+ from edsl.agents import Agent
844
+ from edsl.questions import QuestionMultipleChoice
845
+
846
+ # a simple agent
847
+ agent = Agent(traits={"age": 10, "hair": "brown", "height": 5.5})
848
+ agent.traits
849
+ agent.print()
850
+ # combining two agents
851
+ agent = Agent(traits={"age": 10}) + Agent(traits={"height": 5.5})
852
+ agent.traits
853
+ # Agent -> Job using the to() method
854
+ agent = Agent(traits={"allergies": "peanut"})
855
+ question = QuestionMultipleChoice(
856
+ question_text="Would you enjoy a PB&J?",
857
+ question_options=["Yes", "No"],
858
+ question_name="food_preference",
859
+ )
860
+ job = question.by(agent)
861
+ results = job.run()
862
+
863
+
864
+ if __name__ == "__main__":
865
+ import doctest
866
+
867
+ doctest.testmod(optionflags=doctest.ELLIPSIS)