edsl 0.1.37.dev2__py3-none-any.whl → 0.1.37.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (257) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +48 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +804 -804
  7. edsl/agents/AgentList.py +345 -345
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +305 -305
  10. edsl/agents/PromptConstructor.py +312 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +86 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +152 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +238 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/mug_negotiation.py +81 -81
  45. edsl/conversation/next_speaker_utilities.py +93 -93
  46. edsl/coop/PriceFetcher.py +54 -54
  47. edsl/coop/__init__.py +2 -2
  48. edsl/coop/coop.py +824 -824
  49. edsl/coop/utils.py +131 -131
  50. edsl/data/Cache.py +527 -527
  51. edsl/data/CacheEntry.py +228 -228
  52. edsl/data/CacheHandler.py +149 -149
  53. edsl/data/RemoteCacheSync.py +97 -97
  54. edsl/data/SQLiteDict.py +292 -292
  55. edsl/data/__init__.py +4 -4
  56. edsl/data/orm.py +10 -10
  57. edsl/data_transfer_models.py +73 -73
  58. edsl/enums.py +173 -173
  59. edsl/exceptions/__init__.py +50 -50
  60. edsl/exceptions/agents.py +40 -40
  61. edsl/exceptions/configuration.py +16 -16
  62. edsl/exceptions/coop.py +10 -10
  63. edsl/exceptions/data.py +14 -14
  64. edsl/exceptions/general.py +34 -34
  65. edsl/exceptions/jobs.py +33 -33
  66. edsl/exceptions/language_models.py +63 -63
  67. edsl/exceptions/prompts.py +15 -15
  68. edsl/exceptions/questions.py +91 -91
  69. edsl/exceptions/results.py +26 -26
  70. edsl/exceptions/surveys.py +34 -34
  71. edsl/inference_services/AnthropicService.py +87 -87
  72. edsl/inference_services/AwsBedrock.py +115 -115
  73. edsl/inference_services/AzureAI.py +217 -217
  74. edsl/inference_services/DeepInfraService.py +18 -18
  75. edsl/inference_services/GoogleService.py +156 -156
  76. edsl/inference_services/GroqService.py +20 -20
  77. edsl/inference_services/InferenceServiceABC.py +147 -147
  78. edsl/inference_services/InferenceServicesCollection.py +74 -74
  79. edsl/inference_services/MistralAIService.py +123 -123
  80. edsl/inference_services/OllamaService.py +18 -18
  81. edsl/inference_services/OpenAIService.py +224 -224
  82. edsl/inference_services/TestService.py +89 -89
  83. edsl/inference_services/TogetherAIService.py +170 -170
  84. edsl/inference_services/models_available_cache.py +118 -118
  85. edsl/inference_services/rate_limits_cache.py +25 -25
  86. edsl/inference_services/registry.py +39 -39
  87. edsl/inference_services/write_available.py +10 -10
  88. edsl/jobs/Answers.py +56 -56
  89. edsl/jobs/Jobs.py +1121 -1112
  90. edsl/jobs/__init__.py +1 -1
  91. edsl/jobs/buckets/BucketCollection.py +63 -63
  92. edsl/jobs/buckets/ModelBuckets.py +65 -65
  93. edsl/jobs/buckets/TokenBucket.py +248 -248
  94. edsl/jobs/interviews/Interview.py +661 -661
  95. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  96. edsl/jobs/interviews/InterviewExceptionEntry.py +182 -182
  97. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  98. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  99. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  100. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  101. edsl/jobs/interviews/ReportErrors.py +66 -66
  102. edsl/jobs/interviews/interview_status_enum.py +9 -9
  103. edsl/jobs/runners/JobsRunnerAsyncio.py +338 -338
  104. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  105. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  106. edsl/jobs/tasks/TaskCreators.py +64 -64
  107. edsl/jobs/tasks/TaskHistory.py +441 -441
  108. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  109. edsl/jobs/tasks/task_status_enum.py +163 -163
  110. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  111. edsl/jobs/tokens/TokenUsage.py +34 -34
  112. edsl/language_models/LanguageModel.py +718 -718
  113. edsl/language_models/ModelList.py +102 -102
  114. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  115. edsl/language_models/__init__.py +2 -2
  116. edsl/language_models/fake_openai_call.py +15 -15
  117. edsl/language_models/fake_openai_service.py +61 -61
  118. edsl/language_models/registry.py +137 -137
  119. edsl/language_models/repair.py +156 -156
  120. edsl/language_models/unused/ReplicateBase.py +83 -83
  121. edsl/language_models/utilities.py +64 -64
  122. edsl/notebooks/Notebook.py +259 -259
  123. edsl/notebooks/__init__.py +1 -1
  124. edsl/prompts/Prompt.py +353 -353
  125. edsl/prompts/__init__.py +2 -2
  126. edsl/questions/AnswerValidatorMixin.py +289 -289
  127. edsl/questions/QuestionBase.py +616 -616
  128. edsl/questions/QuestionBaseGenMixin.py +161 -161
  129. edsl/questions/QuestionBasePromptsMixin.py +266 -266
  130. edsl/questions/QuestionBudget.py +227 -227
  131. edsl/questions/QuestionCheckBox.py +359 -359
  132. edsl/questions/QuestionExtract.py +183 -183
  133. edsl/questions/QuestionFreeText.py +114 -114
  134. edsl/questions/QuestionFunctional.py +159 -159
  135. edsl/questions/QuestionList.py +231 -231
  136. edsl/questions/QuestionMultipleChoice.py +286 -286
  137. edsl/questions/QuestionNumerical.py +153 -153
  138. edsl/questions/QuestionRank.py +324 -324
  139. edsl/questions/Quick.py +41 -41
  140. edsl/questions/RegisterQuestionsMeta.py +71 -71
  141. edsl/questions/ResponseValidatorABC.py +174 -174
  142. edsl/questions/SimpleAskMixin.py +73 -73
  143. edsl/questions/__init__.py +26 -26
  144. edsl/questions/compose_questions.py +98 -98
  145. edsl/questions/decorators.py +21 -21
  146. edsl/questions/derived/QuestionLikertFive.py +76 -76
  147. edsl/questions/derived/QuestionLinearScale.py +87 -87
  148. edsl/questions/derived/QuestionTopK.py +91 -91
  149. edsl/questions/derived/QuestionYesNo.py +82 -82
  150. edsl/questions/descriptors.py +418 -418
  151. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  152. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  153. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  154. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  155. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  156. edsl/questions/prompt_templates/question_list.jinja +17 -17
  157. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  158. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  159. edsl/questions/question_registry.py +147 -147
  160. edsl/questions/settings.py +12 -12
  161. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  162. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  163. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  164. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  165. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  167. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  168. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  169. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  170. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  171. edsl/questions/templates/list/question_presentation.jinja +5 -5
  172. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  173. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  174. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  176. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  177. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  178. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  179. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  180. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  181. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  182. edsl/results/Dataset.py +293 -293
  183. edsl/results/DatasetExportMixin.py +693 -693
  184. edsl/results/DatasetTree.py +145 -145
  185. edsl/results/Result.py +435 -435
  186. edsl/results/Results.py +1160 -1160
  187. edsl/results/ResultsDBMixin.py +238 -238
  188. edsl/results/ResultsExportMixin.py +43 -43
  189. edsl/results/ResultsFetchMixin.py +33 -33
  190. edsl/results/ResultsGGMixin.py +121 -121
  191. edsl/results/ResultsToolsMixin.py +98 -98
  192. edsl/results/Selector.py +118 -118
  193. edsl/results/__init__.py +2 -2
  194. edsl/results/tree_explore.py +115 -115
  195. edsl/scenarios/FileStore.py +458 -458
  196. edsl/scenarios/Scenario.py +510 -510
  197. edsl/scenarios/ScenarioHtmlMixin.py +59 -59
  198. edsl/scenarios/ScenarioList.py +1101 -1101
  199. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  200. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  201. edsl/scenarios/__init__.py +4 -4
  202. edsl/shared.py +1 -1
  203. edsl/study/ObjectEntry.py +173 -173
  204. edsl/study/ProofOfWork.py +113 -113
  205. edsl/study/SnapShot.py +80 -80
  206. edsl/study/Study.py +528 -528
  207. edsl/study/__init__.py +4 -4
  208. edsl/surveys/DAG.py +148 -148
  209. edsl/surveys/Memory.py +31 -31
  210. edsl/surveys/MemoryPlan.py +244 -244
  211. edsl/surveys/Rule.py +324 -324
  212. edsl/surveys/RuleCollection.py +387 -387
  213. edsl/surveys/Survey.py +1772 -1772
  214. edsl/surveys/SurveyCSS.py +261 -261
  215. edsl/surveys/SurveyExportMixin.py +259 -259
  216. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  217. edsl/surveys/SurveyQualtricsImport.py +284 -284
  218. edsl/surveys/__init__.py +3 -3
  219. edsl/surveys/base.py +53 -53
  220. edsl/surveys/descriptors.py +56 -56
  221. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  222. edsl/surveys/instructions/Instruction.py +51 -51
  223. edsl/surveys/instructions/InstructionCollection.py +77 -77
  224. edsl/templates/error_reporting/base.html +23 -23
  225. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  226. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  227. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  228. edsl/templates/error_reporting/interview_details.html +115 -115
  229. edsl/templates/error_reporting/interviews.html +9 -9
  230. edsl/templates/error_reporting/overview.html +4 -4
  231. edsl/templates/error_reporting/performance_plot.html +1 -1
  232. edsl/templates/error_reporting/report.css +73 -73
  233. edsl/templates/error_reporting/report.html +117 -117
  234. edsl/templates/error_reporting/report.js +25 -25
  235. edsl/tools/__init__.py +1 -1
  236. edsl/tools/clusters.py +192 -192
  237. edsl/tools/embeddings.py +27 -27
  238. edsl/tools/embeddings_plotting.py +118 -118
  239. edsl/tools/plotting.py +112 -112
  240. edsl/tools/summarize.py +18 -18
  241. edsl/utilities/SystemInfo.py +28 -28
  242. edsl/utilities/__init__.py +22 -22
  243. edsl/utilities/ast_utilities.py +25 -25
  244. edsl/utilities/data/Registry.py +6 -6
  245. edsl/utilities/data/__init__.py +1 -1
  246. edsl/utilities/data/scooter_results.json +1 -1
  247. edsl/utilities/decorators.py +77 -77
  248. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  249. edsl/utilities/interface.py +627 -627
  250. edsl/utilities/repair_functions.py +28 -28
  251. edsl/utilities/restricted_python.py +70 -70
  252. edsl/utilities/utilities.py +391 -391
  253. {edsl-0.1.37.dev2.dist-info → edsl-0.1.37.dev3.dist-info}/LICENSE +21 -21
  254. {edsl-0.1.37.dev2.dist-info → edsl-0.1.37.dev3.dist-info}/METADATA +1 -1
  255. edsl-0.1.37.dev3.dist-info/RECORD +279 -0
  256. edsl-0.1.37.dev2.dist-info/RECORD +0 -279
  257. {edsl-0.1.37.dev2.dist-info → edsl-0.1.37.dev3.dist-info}/WHEEL +0 -0
@@ -1,73 +1,73 @@
1
- from dataclasses import dataclass
2
- from typing import List
3
- from textwrap import dedent
4
-
5
-
6
- from edsl import Scenario
7
- from edsl import Model
8
- from edsl.questions.QuestionList import QuestionList
9
-
10
- from edsl.auto.StageBase import StageBase
11
- from edsl.auto.StageBase import FlowDataBase
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StageQuestions(StageBase):
17
- "This stages takes as input an overall question and returns a list of questions"
18
-
19
- @dataclass
20
- class Input(FlowDataBase):
21
- overall_question: str
22
- population: str
23
-
24
- @dataclass
25
- class Output(FlowDataBase):
26
- questions: List[str]
27
- population: str
28
-
29
- input = Input
30
- output = Output
31
-
32
- def handle_data(self, data):
33
- m = Model()
34
- overall_question = data.overall_question
35
- population = data.population
36
- s = Scenario({"overall_question": overall_question, "population": population})
37
- q = QuestionList(
38
- question_text=dedent(
39
- """\
40
- Suppose I am interested in the question:
41
- "{{ overall_question }}"
42
- What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
- """
44
- ),
45
- question_name="questions",
46
- )
47
- results = q.by(s).by(m).run()
48
- (
49
- results.select("questions").print(
50
- pretty_labels={
51
- "answer.questions": f'Questions for overall question: "{overall_question }"'
52
- },
53
- split_at_dot=False,
54
- )
55
- )
56
-
57
- raw_questions = results.select("questions").first()
58
- questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
- return self.Output(questions=questions, population=population)
60
-
61
-
62
- if __name__ == "__main__":
63
- pipeline = gen_pipeline([StageQuestions])
64
-
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?",
68
- population="Consumers",
69
- )
70
- )
71
- StageQuestions.func(
72
- overall_question="Why aren't my students studying more?", population="Tech"
73
- )
1
+ from dataclasses import dataclass
2
+ from typing import List
3
+ from textwrap import dedent
4
+
5
+
6
+ from edsl import Scenario
7
+ from edsl import Model
8
+ from edsl.questions.QuestionList import QuestionList
9
+
10
+ from edsl.auto.StageBase import StageBase
11
+ from edsl.auto.StageBase import FlowDataBase
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StageQuestions(StageBase):
17
+ "This stages takes as input an overall question and returns a list of questions"
18
+
19
+ @dataclass
20
+ class Input(FlowDataBase):
21
+ overall_question: str
22
+ population: str
23
+
24
+ @dataclass
25
+ class Output(FlowDataBase):
26
+ questions: List[str]
27
+ population: str
28
+
29
+ input = Input
30
+ output = Output
31
+
32
+ def handle_data(self, data):
33
+ m = Model()
34
+ overall_question = data.overall_question
35
+ population = data.population
36
+ s = Scenario({"overall_question": overall_question, "population": population})
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ """\
40
+ Suppose I am interested in the question:
41
+ "{{ overall_question }}"
42
+ What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
+ """
44
+ ),
45
+ question_name="questions",
46
+ )
47
+ results = q.by(s).by(m).run()
48
+ (
49
+ results.select("questions").print(
50
+ pretty_labels={
51
+ "answer.questions": f'Questions for overall question: "{overall_question }"'
52
+ },
53
+ split_at_dot=False,
54
+ )
55
+ )
56
+
57
+ raw_questions = results.select("questions").first()
58
+ questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
+ return self.Output(questions=questions, population=population)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ pipeline = gen_pipeline([StageQuestions])
64
+
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
68
+ population="Consumers",
69
+ )
70
+ )
71
+ StageQuestions.func(
72
+ overall_question="Why aren't my students studying more?", population="Tech"
73
+ )
@@ -1,21 +1,21 @@
1
- import random
2
- from typing import Dict, List, Any, TypeVar, Generator, Optional
3
-
4
- from textwrap import dedent
5
-
6
- # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
- from edsl import Model
8
- from edsl.agents.AgentList import AgentList
9
- from edsl.results.Results import Results
10
- from edsl import Agent
11
-
12
- from edsl import Scenario
13
- from edsl.surveys.Survey import Survey
14
-
15
- from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
- from edsl.questions.QuestionFreeText import QuestionFreeText
17
- from edsl.auto.utilities import gen_pipeline
18
- from edsl.conjure.naming_utilities import sanitize_string
19
-
20
-
21
- m = Model()
1
+ import random
2
+ from typing import Dict, List, Any, TypeVar, Generator, Optional
3
+
4
+ from textwrap import dedent
5
+
6
+ # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
+ from edsl import Model
8
+ from edsl.agents.AgentList import AgentList
9
+ from edsl.results.Results import Results
10
+ from edsl import Agent
11
+
12
+ from edsl import Scenario
13
+ from edsl.surveys.Survey import Survey
14
+
15
+ from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
+ from edsl.questions.QuestionFreeText import QuestionFreeText
17
+ from edsl.auto.utilities import gen_pipeline
18
+ from edsl.conjure.naming_utilities import sanitize_string
19
+
20
+
21
+ m = Model()
edsl/auto/utilities.py CHANGED
@@ -1,224 +1,224 @@
1
- from textwrap import dedent
2
- import random
3
- from typing import List, TypeVar, Generator, Optional
4
- from edsl.auto.StageBase import StageBase
5
- from edsl.conjure.naming_utilities import sanitize_string
6
- from edsl import Agent, Survey, Model, Cache, AgentList
7
- from edsl import QuestionFreeText, Scenario
8
- from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
-
10
- StageClassType = TypeVar("StageClassType", bound=StageBase)
11
-
12
-
13
- def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
- """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
- A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
-
17
- """
18
- pipeline = stages_list[0]()
19
- last_stage = pipeline
20
- for stage in stages_list[1:]:
21
- while last_stage.next_stage is not None: # find the end of the pipeline
22
- last_stage = last_stage.next_stage
23
- stage_to_add = stage()
24
- last_stage.next_stage = stage_to_add
25
- return pipeline
26
-
27
-
28
- q_eligibility = QuestionMultipleChoice(
29
- question_text=dedent(
30
- """\
31
- Consider this set of question: '{{ questions }}'.
32
- Consider this persona: '{{ persona }}'.
33
- Would this persona be able to answer all of these questions?
34
- """
35
- ),
36
- question_options=["No", "Yes"],
37
- question_name="eligibility",
38
- )
39
-
40
-
41
- def agent_list_eligibility(
42
- agent_list: AgentList,
43
- survey: Optional[Survey] = None,
44
- model: Optional[Model] = None,
45
- cache: Optional[Cache] = None,
46
- ) -> List[bool]:
47
- """
48
- Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
-
50
- >>> from edsl.language_models import LanguageModel
51
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
- >>> agent_list_eligibility(AgentList.example())
53
- [True, True]
54
- >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
- [True, True]
56
- """
57
- if survey is None:
58
- return [True] * len(agent_list)
59
- if "persona" not in agent_list.all_traits:
60
- raise ValueError(
61
- f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
- )
63
- sl = agent_list.select("persona").to_scenario_list()
64
- sl.add_value("questions", [q.question_text for q in survey._questions])
65
- results = q_eligibility.by(sl).by(model).run(cache=cache)
66
- return [r == "Yes" for r in results.select("eligibility").to_list()]
67
-
68
-
69
- def agent_eligibility(
70
- agent: Agent,
71
- survey: Survey,
72
- model: Optional[Model] = None,
73
- cache: Optional[Cache] = None,
74
- ) -> bool:
75
- """NB: This could be parallelized.
76
-
77
- >>> from edsl.language_models import LanguageModel
78
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
- >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
- True
81
-
82
- """
83
- model = model or Model()
84
-
85
- questions = [q.question_text for q in survey._questions]
86
- persona = agent.traits["persona"]
87
- return (
88
- q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
- == "Yes"
90
- )
91
- # results = (
92
- # q.by(model)
93
- # .by(Scenario({"questions": questions, "persona": persona}))
94
- # .run(cache=cache)
95
- # )
96
- # return results.select("eligibility").first() == "Yes"
97
-
98
-
99
- def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
- """
101
- >>> dimension_dict = {'attitude':['positive', 'negative']}
102
- >>> ag = gen_agent_traits(dimension_dict)
103
- >>> a = next(ag)
104
- >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
- True
106
- >>> len([next(ag) for _ in range(100)])
107
- 100
108
- """
109
- if seed_value is None:
110
- seed_value = "edsl"
111
-
112
- random.seed(seed_value)
113
-
114
- while True:
115
- new_agent_traits = {}
116
- for key, list_of_values in dimension_dict.items():
117
- new_agent_traits[key] = random.choice(list_of_values)
118
- yield new_agent_traits
119
-
120
-
121
- def agent_generator(
122
- persona: str,
123
- dimension_dict: dict,
124
- model: Optional[Model] = None,
125
- cache: Optional["Cache"] = None,
126
- ) -> Generator["Results", None, None]:
127
- """
128
- >>> from edsl.language_models import LanguageModel
129
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
- >>> next(ag).select('new_agent_persona').first()
132
- 'This is a cool dude.'
133
- >>> next(ag).select('new_agent_persona').first()
134
- 'This is a cool dude.'
135
- """
136
-
137
- if model is None:
138
- model = Model()
139
-
140
- q = QuestionFreeText(
141
- question_text=dedent(
142
- """\
143
- Consider this persona: '{{ persona }}'.
144
- Now imagine writing a new persona with these traits:
145
- '{{ new_agent_traits }}'
146
- Please write this persona as a narrative.
147
- """
148
- ),
149
- question_name="new_agent_persona",
150
- )
151
- agent_trait_generator = gen_agent_traits(dimension_dict)
152
- codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
- while True:
154
- new_agent_traits = next(agent_trait_generator)
155
- yield q(
156
- persona=persona,
157
- new_agent_traits=new_agent_traits,
158
- codebook=codebook,
159
- just_answer=False,
160
- cache=cache,
161
- model=model,
162
- )
163
-
164
-
165
- def create_agents(
166
- agent_generator: Generator["Results", None, None],
167
- survey: Optional[Survey] = None,
168
- num_agents=11,
169
- ) -> AgentList:
170
- """
171
- >>> from edsl.language_models import LanguageModel
172
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
- >>> new_agent_list = create_agents(agent_generator = ag)
175
- >>> new_agent_list
176
-
177
- """
178
- agent_list = AgentList([])
179
-
180
- MAX_ITERATIONS_MULTIPLIER = 2
181
- iterations = 0
182
-
183
- while len(agent_list) < num_agents:
184
- iterations += 1
185
- candidate_agent = next(agent_generator)
186
- codebook = candidate_agent.select("codebook").to_list()[0]
187
-
188
- koobedoc = {v: k for k, v in codebook.items()}
189
- persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
- traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
- new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
- "persona": persona
193
- }
194
- agent = Agent(traits=new_traits, codebook=codebook)
195
- if survey is not None:
196
- if agent_eligibility(agent, survey):
197
- agent_list.append(agent)
198
- else:
199
- print("Agent not eligible")
200
- else:
201
- agent_list.append(agent)
202
-
203
- if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
- raise Exception("Too many failures")
205
-
206
- return agent_list
207
-
208
-
209
- if __name__ == "__main__":
210
- import doctest
211
-
212
- doctest.testmod()
213
- # from edsl.language_models import LanguageModel
214
-
215
- # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
- # ag = agent_generator(
217
- # persona="Base person",
218
- # dimension_dict={"attitude": ["Positive", "Negative"]},
219
- # model=m,
220
- # )
221
- # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
- # dimension_dict = {"attitude": ["positive", "negative"]}
223
- # ag = gen_agent_traits(dimension_dict)
224
- # example = [next(ag) for _ in range(100)]
1
+ from textwrap import dedent
2
+ import random
3
+ from typing import List, TypeVar, Generator, Optional
4
+ from edsl.auto.StageBase import StageBase
5
+ from edsl.conjure.naming_utilities import sanitize_string
6
+ from edsl import Agent, Survey, Model, Cache, AgentList
7
+ from edsl import QuestionFreeText, Scenario
8
+ from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
+
10
+ StageClassType = TypeVar("StageClassType", bound=StageBase)
11
+
12
+
13
+ def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
+ """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
+ A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
+
17
+ """
18
+ pipeline = stages_list[0]()
19
+ last_stage = pipeline
20
+ for stage in stages_list[1:]:
21
+ while last_stage.next_stage is not None: # find the end of the pipeline
22
+ last_stage = last_stage.next_stage
23
+ stage_to_add = stage()
24
+ last_stage.next_stage = stage_to_add
25
+ return pipeline
26
+
27
+
28
+ q_eligibility = QuestionMultipleChoice(
29
+ question_text=dedent(
30
+ """\
31
+ Consider this set of question: '{{ questions }}'.
32
+ Consider this persona: '{{ persona }}'.
33
+ Would this persona be able to answer all of these questions?
34
+ """
35
+ ),
36
+ question_options=["No", "Yes"],
37
+ question_name="eligibility",
38
+ )
39
+
40
+
41
+ def agent_list_eligibility(
42
+ agent_list: AgentList,
43
+ survey: Optional[Survey] = None,
44
+ model: Optional[Model] = None,
45
+ cache: Optional[Cache] = None,
46
+ ) -> List[bool]:
47
+ """
48
+ Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
+
50
+ >>> from edsl.language_models import LanguageModel
51
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
+ >>> agent_list_eligibility(AgentList.example())
53
+ [True, True]
54
+ >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
+ [True, True]
56
+ """
57
+ if survey is None:
58
+ return [True] * len(agent_list)
59
+ if "persona" not in agent_list.all_traits:
60
+ raise ValueError(
61
+ f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
+ )
63
+ sl = agent_list.select("persona").to_scenario_list()
64
+ sl.add_value("questions", [q.question_text for q in survey._questions])
65
+ results = q_eligibility.by(sl).by(model).run(cache=cache)
66
+ return [r == "Yes" for r in results.select("eligibility").to_list()]
67
+
68
+
69
+ def agent_eligibility(
70
+ agent: Agent,
71
+ survey: Survey,
72
+ model: Optional[Model] = None,
73
+ cache: Optional[Cache] = None,
74
+ ) -> bool:
75
+ """NB: This could be parallelized.
76
+
77
+ >>> from edsl.language_models import LanguageModel
78
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
+ >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
+ True
81
+
82
+ """
83
+ model = model or Model()
84
+
85
+ questions = [q.question_text for q in survey._questions]
86
+ persona = agent.traits["persona"]
87
+ return (
88
+ q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
+ == "Yes"
90
+ )
91
+ # results = (
92
+ # q.by(model)
93
+ # .by(Scenario({"questions": questions, "persona": persona}))
94
+ # .run(cache=cache)
95
+ # )
96
+ # return results.select("eligibility").first() == "Yes"
97
+
98
+
99
+ def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
+ """
101
+ >>> dimension_dict = {'attitude':['positive', 'negative']}
102
+ >>> ag = gen_agent_traits(dimension_dict)
103
+ >>> a = next(ag)
104
+ >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
+ True
106
+ >>> len([next(ag) for _ in range(100)])
107
+ 100
108
+ """
109
+ if seed_value is None:
110
+ seed_value = "edsl"
111
+
112
+ random.seed(seed_value)
113
+
114
+ while True:
115
+ new_agent_traits = {}
116
+ for key, list_of_values in dimension_dict.items():
117
+ new_agent_traits[key] = random.choice(list_of_values)
118
+ yield new_agent_traits
119
+
120
+
121
+ def agent_generator(
122
+ persona: str,
123
+ dimension_dict: dict,
124
+ model: Optional[Model] = None,
125
+ cache: Optional["Cache"] = None,
126
+ ) -> Generator["Results", None, None]:
127
+ """
128
+ >>> from edsl.language_models import LanguageModel
129
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
+ >>> next(ag).select('new_agent_persona').first()
132
+ 'This is a cool dude.'
133
+ >>> next(ag).select('new_agent_persona').first()
134
+ 'This is a cool dude.'
135
+ """
136
+
137
+ if model is None:
138
+ model = Model()
139
+
140
+ q = QuestionFreeText(
141
+ question_text=dedent(
142
+ """\
143
+ Consider this persona: '{{ persona }}'.
144
+ Now imagine writing a new persona with these traits:
145
+ '{{ new_agent_traits }}'
146
+ Please write this persona as a narrative.
147
+ """
148
+ ),
149
+ question_name="new_agent_persona",
150
+ )
151
+ agent_trait_generator = gen_agent_traits(dimension_dict)
152
+ codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
+ while True:
154
+ new_agent_traits = next(agent_trait_generator)
155
+ yield q(
156
+ persona=persona,
157
+ new_agent_traits=new_agent_traits,
158
+ codebook=codebook,
159
+ just_answer=False,
160
+ cache=cache,
161
+ model=model,
162
+ )
163
+
164
+
165
+ def create_agents(
166
+ agent_generator: Generator["Results", None, None],
167
+ survey: Optional[Survey] = None,
168
+ num_agents=11,
169
+ ) -> AgentList:
170
+ """
171
+ >>> from edsl.language_models import LanguageModel
172
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
+ >>> new_agent_list = create_agents(agent_generator = ag)
175
+ >>> new_agent_list
176
+
177
+ """
178
+ agent_list = AgentList([])
179
+
180
+ MAX_ITERATIONS_MULTIPLIER = 2
181
+ iterations = 0
182
+
183
+ while len(agent_list) < num_agents:
184
+ iterations += 1
185
+ candidate_agent = next(agent_generator)
186
+ codebook = candidate_agent.select("codebook").to_list()[0]
187
+
188
+ koobedoc = {v: k for k, v in codebook.items()}
189
+ persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
+ traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
+ new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
+ "persona": persona
193
+ }
194
+ agent = Agent(traits=new_traits, codebook=codebook)
195
+ if survey is not None:
196
+ if agent_eligibility(agent, survey):
197
+ agent_list.append(agent)
198
+ else:
199
+ print("Agent not eligible")
200
+ else:
201
+ agent_list.append(agent)
202
+
203
+ if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
+ raise Exception("Too many failures")
205
+
206
+ return agent_list
207
+
208
+
209
+ if __name__ == "__main__":
210
+ import doctest
211
+
212
+ doctest.testmod()
213
+ # from edsl.language_models import LanguageModel
214
+
215
+ # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
+ # ag = agent_generator(
217
+ # persona="Base person",
218
+ # dimension_dict={"attitude": ["Positive", "Negative"]},
219
+ # model=m,
220
+ # )
221
+ # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
+ # dimension_dict = {"attitude": ["positive", "negative"]}
223
+ # ag = gen_agent_traits(dimension_dict)
224
+ # example = [next(ag) for _ in range(100)]