edsl 0.1.36.dev6__py3-none-any.whl → 0.1.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (261) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +48 -47
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +855 -804
  7. edsl/agents/AgentList.py +350 -337
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -294
  10. edsl/agents/PromptConstructor.py +353 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +160 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +290 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/chips.py +95 -0
  45. edsl/conversation/mug_negotiation.py +81 -81
  46. edsl/conversation/next_speaker_utilities.py +93 -93
  47. edsl/coop/PriceFetcher.py +54 -54
  48. edsl/coop/__init__.py +2 -2
  49. edsl/coop/coop.py +958 -849
  50. edsl/coop/utils.py +131 -131
  51. edsl/data/Cache.py +527 -527
  52. edsl/data/CacheEntry.py +228 -228
  53. edsl/data/CacheHandler.py +149 -149
  54. edsl/data/RemoteCacheSync.py +97 -84
  55. edsl/data/SQLiteDict.py +292 -292
  56. edsl/data/__init__.py +4 -4
  57. edsl/data/orm.py +10 -10
  58. edsl/data_transfer_models.py +73 -73
  59. edsl/enums.py +173 -173
  60. edsl/exceptions/BaseException.py +21 -0
  61. edsl/exceptions/__init__.py +54 -50
  62. edsl/exceptions/agents.py +38 -40
  63. edsl/exceptions/configuration.py +16 -16
  64. edsl/exceptions/coop.py +10 -10
  65. edsl/exceptions/data.py +14 -14
  66. edsl/exceptions/general.py +34 -34
  67. edsl/exceptions/jobs.py +33 -33
  68. edsl/exceptions/language_models.py +63 -63
  69. edsl/exceptions/prompts.py +15 -15
  70. edsl/exceptions/questions.py +91 -91
  71. edsl/exceptions/results.py +29 -26
  72. edsl/exceptions/scenarios.py +22 -0
  73. edsl/exceptions/surveys.py +37 -34
  74. edsl/inference_services/AnthropicService.py +87 -87
  75. edsl/inference_services/AwsBedrock.py +120 -115
  76. edsl/inference_services/AzureAI.py +217 -217
  77. edsl/inference_services/DeepInfraService.py +18 -18
  78. edsl/inference_services/GoogleService.py +156 -156
  79. edsl/inference_services/GroqService.py +20 -20
  80. edsl/inference_services/InferenceServiceABC.py +147 -147
  81. edsl/inference_services/InferenceServicesCollection.py +97 -72
  82. edsl/inference_services/MistralAIService.py +123 -123
  83. edsl/inference_services/OllamaService.py +18 -18
  84. edsl/inference_services/OpenAIService.py +224 -224
  85. edsl/inference_services/TestService.py +89 -89
  86. edsl/inference_services/TogetherAIService.py +170 -170
  87. edsl/inference_services/models_available_cache.py +118 -118
  88. edsl/inference_services/rate_limits_cache.py +25 -25
  89. edsl/inference_services/registry.py +39 -39
  90. edsl/inference_services/write_available.py +10 -10
  91. edsl/jobs/Answers.py +56 -56
  92. edsl/jobs/Jobs.py +1347 -1112
  93. edsl/jobs/__init__.py +1 -1
  94. edsl/jobs/buckets/BucketCollection.py +63 -63
  95. edsl/jobs/buckets/ModelBuckets.py +65 -65
  96. edsl/jobs/buckets/TokenBucket.py +248 -248
  97. edsl/jobs/interviews/Interview.py +661 -651
  98. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  99. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -182
  100. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  101. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  102. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  103. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  104. edsl/jobs/interviews/ReportErrors.py +66 -66
  105. edsl/jobs/interviews/interview_status_enum.py +9 -9
  106. edsl/jobs/runners/JobsRunnerAsyncio.py +338 -337
  107. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  108. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  109. edsl/jobs/tasks/TaskCreators.py +64 -64
  110. edsl/jobs/tasks/TaskHistory.py +442 -441
  111. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  112. edsl/jobs/tasks/task_status_enum.py +163 -163
  113. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  114. edsl/jobs/tokens/TokenUsage.py +34 -34
  115. edsl/language_models/KeyLookup.py +30 -0
  116. edsl/language_models/LanguageModel.py +706 -718
  117. edsl/language_models/ModelList.py +102 -102
  118. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  119. edsl/language_models/__init__.py +3 -2
  120. edsl/language_models/fake_openai_call.py +15 -15
  121. edsl/language_models/fake_openai_service.py +61 -61
  122. edsl/language_models/registry.py +137 -137
  123. edsl/language_models/repair.py +156 -156
  124. edsl/language_models/unused/ReplicateBase.py +83 -83
  125. edsl/language_models/utilities.py +64 -64
  126. edsl/notebooks/Notebook.py +259 -259
  127. edsl/notebooks/__init__.py +1 -1
  128. edsl/prompts/Prompt.py +357 -358
  129. edsl/prompts/__init__.py +2 -2
  130. edsl/questions/AnswerValidatorMixin.py +289 -289
  131. edsl/questions/QuestionBase.py +656 -616
  132. edsl/questions/QuestionBaseGenMixin.py +161 -161
  133. edsl/questions/QuestionBasePromptsMixin.py +234 -266
  134. edsl/questions/QuestionBudget.py +227 -227
  135. edsl/questions/QuestionCheckBox.py +359 -359
  136. edsl/questions/QuestionExtract.py +183 -183
  137. edsl/questions/QuestionFreeText.py +114 -113
  138. edsl/questions/QuestionFunctional.py +159 -159
  139. edsl/questions/QuestionList.py +231 -231
  140. edsl/questions/QuestionMultipleChoice.py +286 -286
  141. edsl/questions/QuestionNumerical.py +153 -153
  142. edsl/questions/QuestionRank.py +324 -324
  143. edsl/questions/Quick.py +41 -41
  144. edsl/questions/RegisterQuestionsMeta.py +71 -71
  145. edsl/questions/ResponseValidatorABC.py +174 -174
  146. edsl/questions/SimpleAskMixin.py +73 -73
  147. edsl/questions/__init__.py +26 -26
  148. edsl/questions/compose_questions.py +98 -98
  149. edsl/questions/decorators.py +21 -21
  150. edsl/questions/derived/QuestionLikertFive.py +76 -76
  151. edsl/questions/derived/QuestionLinearScale.py +87 -87
  152. edsl/questions/derived/QuestionTopK.py +91 -91
  153. edsl/questions/derived/QuestionYesNo.py +82 -82
  154. edsl/questions/descriptors.py +413 -418
  155. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  156. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  157. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  158. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  159. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  160. edsl/questions/prompt_templates/question_list.jinja +17 -17
  161. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  162. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  163. edsl/questions/question_registry.py +147 -147
  164. edsl/questions/settings.py +12 -12
  165. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  167. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  168. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  169. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  170. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  171. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  172. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  173. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  174. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  175. edsl/questions/templates/list/question_presentation.jinja +5 -5
  176. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  177. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  178. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  179. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  180. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  181. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  182. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  183. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  184. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  185. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  186. edsl/results/Dataset.py +293 -293
  187. edsl/results/DatasetExportMixin.py +717 -693
  188. edsl/results/DatasetTree.py +145 -145
  189. edsl/results/Result.py +450 -433
  190. edsl/results/Results.py +1071 -1158
  191. edsl/results/ResultsDBMixin.py +238 -238
  192. edsl/results/ResultsExportMixin.py +43 -43
  193. edsl/results/ResultsFetchMixin.py +33 -33
  194. edsl/results/ResultsGGMixin.py +121 -121
  195. edsl/results/ResultsToolsMixin.py +98 -98
  196. edsl/results/Selector.py +135 -118
  197. edsl/results/__init__.py +2 -2
  198. edsl/results/tree_explore.py +115 -115
  199. edsl/scenarios/FileStore.py +458 -443
  200. edsl/scenarios/Scenario.py +546 -507
  201. edsl/scenarios/ScenarioHtmlMixin.py +64 -59
  202. edsl/scenarios/ScenarioList.py +1112 -1101
  203. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  204. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  205. edsl/scenarios/__init__.py +4 -2
  206. edsl/shared.py +1 -1
  207. edsl/study/ObjectEntry.py +173 -173
  208. edsl/study/ProofOfWork.py +113 -113
  209. edsl/study/SnapShot.py +80 -80
  210. edsl/study/Study.py +528 -528
  211. edsl/study/__init__.py +4 -4
  212. edsl/surveys/DAG.py +148 -148
  213. edsl/surveys/Memory.py +31 -31
  214. edsl/surveys/MemoryPlan.py +244 -244
  215. edsl/surveys/Rule.py +330 -324
  216. edsl/surveys/RuleCollection.py +387 -387
  217. edsl/surveys/Survey.py +1795 -1772
  218. edsl/surveys/SurveyCSS.py +261 -261
  219. edsl/surveys/SurveyExportMixin.py +259 -259
  220. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  221. edsl/surveys/SurveyQualtricsImport.py +284 -284
  222. edsl/surveys/__init__.py +3 -3
  223. edsl/surveys/base.py +53 -53
  224. edsl/surveys/descriptors.py +56 -56
  225. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  226. edsl/surveys/instructions/Instruction.py +51 -51
  227. edsl/surveys/instructions/InstructionCollection.py +77 -77
  228. edsl/templates/error_reporting/base.html +23 -23
  229. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  230. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  231. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  232. edsl/templates/error_reporting/interview_details.html +115 -115
  233. edsl/templates/error_reporting/interviews.html +9 -9
  234. edsl/templates/error_reporting/overview.html +4 -4
  235. edsl/templates/error_reporting/performance_plot.html +1 -1
  236. edsl/templates/error_reporting/report.css +73 -73
  237. edsl/templates/error_reporting/report.html +117 -117
  238. edsl/templates/error_reporting/report.js +25 -25
  239. edsl/tools/__init__.py +1 -1
  240. edsl/tools/clusters.py +192 -192
  241. edsl/tools/embeddings.py +27 -27
  242. edsl/tools/embeddings_plotting.py +118 -118
  243. edsl/tools/plotting.py +112 -112
  244. edsl/tools/summarize.py +18 -18
  245. edsl/utilities/SystemInfo.py +28 -28
  246. edsl/utilities/__init__.py +22 -22
  247. edsl/utilities/ast_utilities.py +25 -25
  248. edsl/utilities/data/Registry.py +6 -6
  249. edsl/utilities/data/__init__.py +1 -1
  250. edsl/utilities/data/scooter_results.json +1 -1
  251. edsl/utilities/decorators.py +77 -77
  252. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  253. edsl/utilities/interface.py +627 -627
  254. edsl/utilities/repair_functions.py +28 -28
  255. edsl/utilities/restricted_python.py +70 -70
  256. edsl/utilities/utilities.py +409 -391
  257. {edsl-0.1.36.dev6.dist-info → edsl-0.1.37.dist-info}/LICENSE +21 -21
  258. {edsl-0.1.36.dev6.dist-info → edsl-0.1.37.dist-info}/METADATA +1 -1
  259. edsl-0.1.37.dist-info/RECORD +283 -0
  260. edsl-0.1.36.dev6.dist-info/RECORD +0 -279
  261. {edsl-0.1.36.dev6.dist-info → edsl-0.1.37.dist-info}/WHEEL +0 -0
edsl/auto/StagePersona.py CHANGED
@@ -1,61 +1,61 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from typing import List
4
-
5
- from edsl.auto.StageBase import StageBase
6
- from edsl.auto.StageBase import FlowDataBase
7
- from edsl import Model
8
- from edsl.auto.StageQuestions import StageQuestions
9
-
10
- from edsl.questions import QuestionFreeText
11
- from edsl.scenarios import Scenario
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StagePersona(StageBase):
17
- input = StageQuestions.output
18
-
19
- @dataclass
20
- class Output(FlowDataBase):
21
- persona: str
22
- questions: List[str]
23
-
24
- output = Output
25
-
26
- def handle_data(self, data):
27
- m = Model()
28
- q_persona = QuestionFreeText(
29
- question_text=dedent(
30
- """\
31
- Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
- Make up a 1 paragraph persona for this person who would have answers for these questions.
33
- """
34
- ),
35
- question_name="persona",
36
- )
37
- results = (
38
- q_persona.by(m)
39
- .by(Scenario({"questions": data.questions, "population": data.population}))
40
- .run()
41
- )
42
- print("Constructing a persona that could answer the following questions:")
43
- print(data.questions)
44
- results.select("persona").print(
45
- pretty_labels={
46
- "answer.persona": f"Persona that can answer: {data.questions}"
47
- },
48
- split_at_dot=False,
49
- )
50
- persona = results.select("persona").first()
51
- return self.output(persona=persona, questions=data.questions)
52
-
53
-
54
- if __name__ == "__main__":
55
- pipeline = gen_pipeline([StageQuestions, StagePersona])
56
- pipeline.process(
57
- pipeline.input(
58
- overall_question="What are some factors that could determine whether someone likes ice cream?",
59
- persona="People",
60
- )
61
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from typing import List
4
+
5
+ from edsl.auto.StageBase import StageBase
6
+ from edsl.auto.StageBase import FlowDataBase
7
+ from edsl import Model
8
+ from edsl.auto.StageQuestions import StageQuestions
9
+
10
+ from edsl.questions import QuestionFreeText
11
+ from edsl.scenarios import Scenario
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StagePersona(StageBase):
17
+ input = StageQuestions.output
18
+
19
+ @dataclass
20
+ class Output(FlowDataBase):
21
+ persona: str
22
+ questions: List[str]
23
+
24
+ output = Output
25
+
26
+ def handle_data(self, data):
27
+ m = Model()
28
+ q_persona = QuestionFreeText(
29
+ question_text=dedent(
30
+ """\
31
+ Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
+ Make up a 1 paragraph persona for this person who would have answers for these questions.
33
+ """
34
+ ),
35
+ question_name="persona",
36
+ )
37
+ results = (
38
+ q_persona.by(m)
39
+ .by(Scenario({"questions": data.questions, "population": data.population}))
40
+ .run()
41
+ )
42
+ print("Constructing a persona that could answer the following questions:")
43
+ print(data.questions)
44
+ results.select("persona").print(
45
+ pretty_labels={
46
+ "answer.persona": f"Persona that can answer: {data.questions}"
47
+ },
48
+ split_at_dot=False,
49
+ )
50
+ persona = results.select("persona").first()
51
+ return self.output(persona=persona, questions=data.questions)
52
+
53
+
54
+ if __name__ == "__main__":
55
+ pipeline = gen_pipeline([StageQuestions, StagePersona])
56
+ pipeline.process(
57
+ pipeline.input(
58
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
59
+ persona="People",
60
+ )
61
+ )
@@ -1,88 +1,88 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValueRanges(StageBase):
18
- input = StagePersonaDimensionValues.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- focal_dimension_values: List[dict]
23
- mapping: dict
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- # breakpoint()
30
- """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
- dimension_values = data["dimension_values"]
32
- attribute_results = data["attribute_results"]
33
- persona = data["persona"]
34
- m = Model()
35
- d = dict(zip(attribute_results, dimension_values))
36
- q = QuestionList(
37
- question_text=dedent(
38
- """\
39
- Consider the following persona: {{ persona }}.
40
- They were categorized as having the following attributes: {{ d }}.
41
- For this dimension: {{ focal_dimension }},
42
- What are values that other people might have on this attribute?
43
- """
44
- ),
45
- question_name="focal_dimension_values",
46
- )
47
- s = [
48
- Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
- for k in d.keys()
50
- ]
51
- results = q.by(s).by(m).run()
52
- # breakpoint()
53
- results.select("focal_dimension", "answer.*").print(
54
- pretty_labels={
55
- "scenario.focal_dimension": f"Dimensions of a persona",
56
- "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
- },
58
- split_at_dot=False,
59
- )
60
-
61
- focal_dimension_values = results.select("focal_dimension_values").to_list()
62
- mapping = dict(zip(attribute_results, focal_dimension_values))
63
- return self.output(
64
- focal_dimension_values=focal_dimension_values,
65
- mapping=mapping,
66
- persona=persona,
67
- )
68
-
69
-
70
- if __name__ == "__main__":
71
- from edsl.auto.StageQuestions import StageQuestions
72
- from edsl.auto.StagePersona import StagePersona
73
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
-
75
- pipeline = gen_pipeline(
76
- [
77
- StageQuestions,
78
- StagePersona,
79
- StagePersonaDimensions,
80
- StagePersonaDimensionValues,
81
- StagePersonaDimensionValueRanges,
82
- ]
83
- )
84
- pipeline.process(
85
- pipeline.input(
86
- overall_question="What are some factors that could determine whether someone likes ice cream?"
87
- )
88
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValueRanges(StageBase):
18
+ input = StagePersonaDimensionValues.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ focal_dimension_values: List[dict]
23
+ mapping: dict
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ # breakpoint()
30
+ """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
+ dimension_values = data["dimension_values"]
32
+ attribute_results = data["attribute_results"]
33
+ persona = data["persona"]
34
+ m = Model()
35
+ d = dict(zip(attribute_results, dimension_values))
36
+ q = QuestionList(
37
+ question_text=dedent(
38
+ """\
39
+ Consider the following persona: {{ persona }}.
40
+ They were categorized as having the following attributes: {{ d }}.
41
+ For this dimension: {{ focal_dimension }},
42
+ What are values that other people might have on this attribute?
43
+ """
44
+ ),
45
+ question_name="focal_dimension_values",
46
+ )
47
+ s = [
48
+ Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
+ for k in d.keys()
50
+ ]
51
+ results = q.by(s).by(m).run()
52
+ # breakpoint()
53
+ results.select("focal_dimension", "answer.*").print(
54
+ pretty_labels={
55
+ "scenario.focal_dimension": f"Dimensions of a persona",
56
+ "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
+ },
58
+ split_at_dot=False,
59
+ )
60
+
61
+ focal_dimension_values = results.select("focal_dimension_values").to_list()
62
+ mapping = dict(zip(attribute_results, focal_dimension_values))
63
+ return self.output(
64
+ focal_dimension_values=focal_dimension_values,
65
+ mapping=mapping,
66
+ persona=persona,
67
+ )
68
+
69
+
70
+ if __name__ == "__main__":
71
+ from edsl.auto.StageQuestions import StageQuestions
72
+ from edsl.auto.StagePersona import StagePersona
73
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
+
75
+ pipeline = gen_pipeline(
76
+ [
77
+ StageQuestions,
78
+ StagePersona,
79
+ StagePersonaDimensions,
80
+ StagePersonaDimensionValues,
81
+ StagePersonaDimensionValueRanges,
82
+ ]
83
+ )
84
+ pipeline.process(
85
+ pipeline.input(
86
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
87
+ )
88
+ )
@@ -1,74 +1,74 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List, Dict
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
- from edsl import Model
11
- from edsl.questions import QuestionList, QuestionExtract
12
- from edsl.scenarios import Scenario
13
-
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValues(StageBase):
18
- input = StagePersonaDimensions.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- attribute_results: List[str]
23
- dimension_values: Dict[str, str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- attribute_results = data.attribute_results
30
- persona = data.persona
31
- m = Model()
32
- q = QuestionExtract(
33
- question_text=dedent(
34
- """\
35
- This is a persona: "{{ persona }}"
36
- They vary on the following dimensions: "{{ attribute_results }}"
37
- For each dimenion, what are some values that this persona might have for that dimension?
38
- Please keep answers very short, ideally one word.
39
- """
40
- ),
41
- answer_template={k: None for k in attribute_results},
42
- question_name="dimension_values",
43
- )
44
- results = (
45
- q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
- .by(m)
47
- .run()
48
- )
49
- results.select("attribute_results", "dimension_values").print()
50
- return self.output(
51
- dimension_values=results.select("dimension_values").first(),
52
- attribute_results=attribute_results,
53
- persona=persona,
54
- )
55
-
56
-
57
- if __name__ == "__main__":
58
- from edsl.auto.StageQuestions import StageQuestions
59
- from edsl.auto.StagePersona import StagePersona
60
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
-
62
- pipeline = gen_pipeline(
63
- [
64
- StageQuestions,
65
- StagePersona,
66
- StagePersonaDimensions,
67
- StagePersonaDimensionValues,
68
- ]
69
- )
70
- pipeline.process(
71
- pipeline.input(
72
- overall_question="What are some factors that could determine whether someone likes ice cream?"
73
- )
74
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List, Dict
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
+ from edsl import Model
11
+ from edsl.questions import QuestionList, QuestionExtract
12
+ from edsl.scenarios import Scenario
13
+
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValues(StageBase):
18
+ input = StagePersonaDimensions.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ attribute_results: List[str]
23
+ dimension_values: Dict[str, str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ attribute_results = data.attribute_results
30
+ persona = data.persona
31
+ m = Model()
32
+ q = QuestionExtract(
33
+ question_text=dedent(
34
+ """\
35
+ This is a persona: "{{ persona }}"
36
+ They vary on the following dimensions: "{{ attribute_results }}"
37
+ For each dimenion, what are some values that this persona might have for that dimension?
38
+ Please keep answers very short, ideally one word.
39
+ """
40
+ ),
41
+ answer_template={k: None for k in attribute_results},
42
+ question_name="dimension_values",
43
+ )
44
+ results = (
45
+ q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
+ .by(m)
47
+ .run()
48
+ )
49
+ results.select("attribute_results", "dimension_values").print()
50
+ return self.output(
51
+ dimension_values=results.select("dimension_values").first(),
52
+ attribute_results=attribute_results,
53
+ persona=persona,
54
+ )
55
+
56
+
57
+ if __name__ == "__main__":
58
+ from edsl.auto.StageQuestions import StageQuestions
59
+ from edsl.auto.StagePersona import StagePersona
60
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
+
62
+ pipeline = gen_pipeline(
63
+ [
64
+ StageQuestions,
65
+ StagePersona,
66
+ StagePersonaDimensions,
67
+ StagePersonaDimensionValues,
68
+ ]
69
+ )
70
+ pipeline.process(
71
+ pipeline.input(
72
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
73
+ )
74
+ )
@@ -1,69 +1,69 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersona import StagePersona
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
-
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- class StagePersonaDimensions(StageBase):
19
- input = StagePersona.output
20
-
21
- @dataclass
22
- class Output(FlowDataBase):
23
- attribute_results: List[str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- q_attributes = QuestionList(
30
- question_text=dedent(
31
- """\
32
- Here is a persona: "{{ persona }}"
33
- It was construced to be someone who could answer these questions: "{{ questions }}"
34
-
35
- We want to identify the general dimensions that make up this persona.
36
- E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
- """
38
- ),
39
- question_name="find_attributes",
40
- )
41
- m = Model()
42
- results = (
43
- q_attributes.by(
44
- Scenario({"persona": data.persona, "questions": data.questions})
45
- )
46
- .by(m)
47
- .run()
48
- )
49
- (
50
- results.select("find_attributes").print(
51
- pretty_labels={
52
- "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
- },
54
- split_at_dot=False,
55
- )
56
- )
57
- attribute_results = results.select("find_attributes").first()
58
- return self.output(attribute_results=attribute_results, persona=data.persona)
59
-
60
-
61
- if __name__ == "__main__":
62
- from edsl.auto.StageQuestions import StageQuestions
63
-
64
- pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?"
68
- )
69
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersona import StagePersona
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ class StagePersonaDimensions(StageBase):
19
+ input = StagePersona.output
20
+
21
+ @dataclass
22
+ class Output(FlowDataBase):
23
+ attribute_results: List[str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ q_attributes = QuestionList(
30
+ question_text=dedent(
31
+ """\
32
+ Here is a persona: "{{ persona }}"
33
+ It was construced to be someone who could answer these questions: "{{ questions }}"
34
+
35
+ We want to identify the general dimensions that make up this persona.
36
+ E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
+ """
38
+ ),
39
+ question_name="find_attributes",
40
+ )
41
+ m = Model()
42
+ results = (
43
+ q_attributes.by(
44
+ Scenario({"persona": data.persona, "questions": data.questions})
45
+ )
46
+ .by(m)
47
+ .run()
48
+ )
49
+ (
50
+ results.select("find_attributes").print(
51
+ pretty_labels={
52
+ "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
+ },
54
+ split_at_dot=False,
55
+ )
56
+ )
57
+ attribute_results = results.select("find_attributes").first()
58
+ return self.output(attribute_results=attribute_results, persona=data.persona)
59
+
60
+
61
+ if __name__ == "__main__":
62
+ from edsl.auto.StageQuestions import StageQuestions
63
+
64
+ pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
68
+ )
69
+ )