edsl 0.1.36.dev5__py3-none-any.whl → 0.1.36.dev7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (257) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +48 -47
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +804 -804
  7. edsl/agents/AgentList.py +337 -337
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +298 -294
  10. edsl/agents/PromptConstructor.py +320 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +86 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +152 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +238 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/mug_negotiation.py +81 -81
  45. edsl/conversation/next_speaker_utilities.py +93 -93
  46. edsl/coop/PriceFetcher.py +54 -54
  47. edsl/coop/__init__.py +2 -2
  48. edsl/coop/coop.py +849 -849
  49. edsl/coop/utils.py +131 -131
  50. edsl/data/Cache.py +527 -527
  51. edsl/data/CacheEntry.py +228 -228
  52. edsl/data/CacheHandler.py +149 -149
  53. edsl/data/RemoteCacheSync.py +83 -83
  54. edsl/data/SQLiteDict.py +292 -292
  55. edsl/data/__init__.py +4 -4
  56. edsl/data/orm.py +10 -10
  57. edsl/data_transfer_models.py +73 -73
  58. edsl/enums.py +173 -173
  59. edsl/exceptions/__init__.py +50 -50
  60. edsl/exceptions/agents.py +40 -40
  61. edsl/exceptions/configuration.py +16 -16
  62. edsl/exceptions/coop.py +10 -10
  63. edsl/exceptions/data.py +14 -14
  64. edsl/exceptions/general.py +34 -34
  65. edsl/exceptions/jobs.py +33 -33
  66. edsl/exceptions/language_models.py +63 -63
  67. edsl/exceptions/prompts.py +15 -15
  68. edsl/exceptions/questions.py +91 -91
  69. edsl/exceptions/results.py +26 -26
  70. edsl/exceptions/surveys.py +34 -34
  71. edsl/inference_services/AnthropicService.py +87 -87
  72. edsl/inference_services/AwsBedrock.py +115 -115
  73. edsl/inference_services/AzureAI.py +217 -217
  74. edsl/inference_services/DeepInfraService.py +18 -18
  75. edsl/inference_services/GoogleService.py +156 -156
  76. edsl/inference_services/GroqService.py +20 -20
  77. edsl/inference_services/InferenceServiceABC.py +147 -147
  78. edsl/inference_services/InferenceServicesCollection.py +74 -68
  79. edsl/inference_services/MistralAIService.py +123 -123
  80. edsl/inference_services/OllamaService.py +18 -18
  81. edsl/inference_services/OpenAIService.py +224 -224
  82. edsl/inference_services/TestService.py +89 -89
  83. edsl/inference_services/TogetherAIService.py +170 -170
  84. edsl/inference_services/models_available_cache.py +118 -94
  85. edsl/inference_services/rate_limits_cache.py +25 -25
  86. edsl/inference_services/registry.py +39 -39
  87. edsl/inference_services/write_available.py +10 -10
  88. edsl/jobs/Answers.py +56 -56
  89. edsl/jobs/Jobs.py +1112 -1112
  90. edsl/jobs/__init__.py +1 -1
  91. edsl/jobs/buckets/BucketCollection.py +63 -63
  92. edsl/jobs/buckets/ModelBuckets.py +65 -65
  93. edsl/jobs/buckets/TokenBucket.py +248 -248
  94. edsl/jobs/interviews/Interview.py +661 -651
  95. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  96. edsl/jobs/interviews/InterviewExceptionEntry.py +189 -182
  97. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  98. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  99. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  100. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  101. edsl/jobs/interviews/ReportErrors.py +66 -66
  102. edsl/jobs/interviews/interview_status_enum.py +9 -9
  103. edsl/jobs/runners/JobsRunnerAsyncio.py +337 -337
  104. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  105. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  106. edsl/jobs/tasks/TaskCreators.py +64 -64
  107. edsl/jobs/tasks/TaskHistory.py +441 -441
  108. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  109. edsl/jobs/tasks/task_status_enum.py +163 -163
  110. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  111. edsl/jobs/tokens/TokenUsage.py +34 -34
  112. edsl/language_models/LanguageModel.py +718 -718
  113. edsl/language_models/ModelList.py +102 -102
  114. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  115. edsl/language_models/__init__.py +2 -2
  116. edsl/language_models/fake_openai_call.py +15 -15
  117. edsl/language_models/fake_openai_service.py +61 -61
  118. edsl/language_models/registry.py +137 -137
  119. edsl/language_models/repair.py +156 -156
  120. edsl/language_models/unused/ReplicateBase.py +83 -83
  121. edsl/language_models/utilities.py +64 -64
  122. edsl/notebooks/Notebook.py +259 -259
  123. edsl/notebooks/__init__.py +1 -1
  124. edsl/prompts/Prompt.py +358 -358
  125. edsl/prompts/__init__.py +2 -2
  126. edsl/questions/AnswerValidatorMixin.py +289 -289
  127. edsl/questions/QuestionBase.py +616 -616
  128. edsl/questions/QuestionBaseGenMixin.py +161 -161
  129. edsl/questions/QuestionBasePromptsMixin.py +266 -266
  130. edsl/questions/QuestionBudget.py +227 -227
  131. edsl/questions/QuestionCheckBox.py +359 -359
  132. edsl/questions/QuestionExtract.py +183 -183
  133. edsl/questions/QuestionFreeText.py +113 -113
  134. edsl/questions/QuestionFunctional.py +159 -159
  135. edsl/questions/QuestionList.py +231 -231
  136. edsl/questions/QuestionMultipleChoice.py +286 -286
  137. edsl/questions/QuestionNumerical.py +153 -153
  138. edsl/questions/QuestionRank.py +324 -324
  139. edsl/questions/Quick.py +41 -41
  140. edsl/questions/RegisterQuestionsMeta.py +71 -71
  141. edsl/questions/ResponseValidatorABC.py +174 -174
  142. edsl/questions/SimpleAskMixin.py +73 -73
  143. edsl/questions/__init__.py +26 -26
  144. edsl/questions/compose_questions.py +98 -98
  145. edsl/questions/decorators.py +21 -21
  146. edsl/questions/derived/QuestionLikertFive.py +76 -76
  147. edsl/questions/derived/QuestionLinearScale.py +87 -87
  148. edsl/questions/derived/QuestionTopK.py +91 -91
  149. edsl/questions/derived/QuestionYesNo.py +82 -82
  150. edsl/questions/descriptors.py +418 -418
  151. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  152. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  153. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  154. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  155. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  156. edsl/questions/prompt_templates/question_list.jinja +17 -17
  157. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  158. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  159. edsl/questions/question_registry.py +147 -147
  160. edsl/questions/settings.py +12 -12
  161. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  162. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  163. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  164. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  165. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  167. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  168. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  169. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  170. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  171. edsl/questions/templates/list/question_presentation.jinja +5 -5
  172. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  173. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  174. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  176. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  177. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  178. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  179. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  180. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  181. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  182. edsl/results/Dataset.py +293 -293
  183. edsl/results/DatasetExportMixin.py +693 -693
  184. edsl/results/DatasetTree.py +145 -145
  185. edsl/results/Result.py +433 -433
  186. edsl/results/Results.py +1158 -1158
  187. edsl/results/ResultsDBMixin.py +238 -238
  188. edsl/results/ResultsExportMixin.py +43 -43
  189. edsl/results/ResultsFetchMixin.py +33 -33
  190. edsl/results/ResultsGGMixin.py +121 -121
  191. edsl/results/ResultsToolsMixin.py +98 -98
  192. edsl/results/Selector.py +118 -118
  193. edsl/results/__init__.py +2 -2
  194. edsl/results/tree_explore.py +115 -115
  195. edsl/scenarios/FileStore.py +458 -443
  196. edsl/scenarios/Scenario.py +510 -507
  197. edsl/scenarios/ScenarioHtmlMixin.py +59 -59
  198. edsl/scenarios/ScenarioList.py +1101 -1101
  199. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  200. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  201. edsl/scenarios/__init__.py +4 -2
  202. edsl/shared.py +1 -1
  203. edsl/study/ObjectEntry.py +173 -173
  204. edsl/study/ProofOfWork.py +113 -113
  205. edsl/study/SnapShot.py +80 -80
  206. edsl/study/Study.py +528 -528
  207. edsl/study/__init__.py +4 -4
  208. edsl/surveys/DAG.py +148 -148
  209. edsl/surveys/Memory.py +31 -31
  210. edsl/surveys/MemoryPlan.py +244 -244
  211. edsl/surveys/Rule.py +324 -324
  212. edsl/surveys/RuleCollection.py +387 -387
  213. edsl/surveys/Survey.py +1772 -1772
  214. edsl/surveys/SurveyCSS.py +261 -261
  215. edsl/surveys/SurveyExportMixin.py +259 -259
  216. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  217. edsl/surveys/SurveyQualtricsImport.py +284 -284
  218. edsl/surveys/__init__.py +3 -3
  219. edsl/surveys/base.py +53 -53
  220. edsl/surveys/descriptors.py +56 -56
  221. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  222. edsl/surveys/instructions/Instruction.py +51 -51
  223. edsl/surveys/instructions/InstructionCollection.py +77 -77
  224. edsl/templates/error_reporting/base.html +23 -23
  225. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  226. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  227. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  228. edsl/templates/error_reporting/interview_details.html +115 -115
  229. edsl/templates/error_reporting/interviews.html +9 -9
  230. edsl/templates/error_reporting/overview.html +4 -4
  231. edsl/templates/error_reporting/performance_plot.html +1 -1
  232. edsl/templates/error_reporting/report.css +73 -73
  233. edsl/templates/error_reporting/report.html +117 -117
  234. edsl/templates/error_reporting/report.js +25 -25
  235. edsl/tools/__init__.py +1 -1
  236. edsl/tools/clusters.py +192 -192
  237. edsl/tools/embeddings.py +27 -27
  238. edsl/tools/embeddings_plotting.py +118 -118
  239. edsl/tools/plotting.py +112 -112
  240. edsl/tools/summarize.py +18 -18
  241. edsl/utilities/SystemInfo.py +28 -28
  242. edsl/utilities/__init__.py +22 -22
  243. edsl/utilities/ast_utilities.py +25 -25
  244. edsl/utilities/data/Registry.py +6 -6
  245. edsl/utilities/data/__init__.py +1 -1
  246. edsl/utilities/data/scooter_results.json +1 -1
  247. edsl/utilities/decorators.py +77 -77
  248. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  249. edsl/utilities/interface.py +627 -627
  250. edsl/utilities/repair_functions.py +28 -28
  251. edsl/utilities/restricted_python.py +70 -70
  252. edsl/utilities/utilities.py +391 -391
  253. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev7.dist-info}/LICENSE +21 -21
  254. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev7.dist-info}/METADATA +1 -1
  255. edsl-0.1.36.dev7.dist-info/RECORD +279 -0
  256. edsl-0.1.36.dev5.dist-info/RECORD +0 -279
  257. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev7.dist-info}/WHEEL +0 -0
@@ -1,178 +1,178 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.utilities import gen_pipeline
9
- from edsl.auto.StageBase import FlowDataBase
10
-
11
- from edsl.auto.StageQuestions import StageQuestions
12
- from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
-
14
- from edsl.questions import QuestionList
15
- from edsl.scenarios import Scenario
16
- from edsl import Model
17
- from edsl.surveys import Survey
18
- from edsl.questions import QuestionBase
19
-
20
- from edsl.utilities.utilities import is_valid_variable_name
21
- from edsl import Model
22
- from edsl.questions import QuestionExtract
23
-
24
-
25
- m = Model()
26
-
27
-
28
- def chunker(seq, size):
29
- return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
-
31
-
32
- def get_short_options(question_options, num_chars=20):
33
- """Gets short names for the options of a question
34
- >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
- {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
- """
37
- q = QuestionList(
38
- question_text=dedent(
39
- f"""\
40
- We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
- E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
- you could use "no_scooter" and "yes_scooter".
43
- They should be all lower case. Use snake case.
44
- The short names have to be unique.
45
- The options are: {question_options}
46
- The names are {question_options} of them."""
47
- ),
48
- # answer_template={k: None for k in question_options},
49
- question_name="short_options",
50
- )
51
- results = q.by(m).run()
52
- return results.select("short_options").first()
53
-
54
-
55
- def get_short_names_chunk(questions, num_chars=20):
56
- q = QuestionList(
57
- question_text=dedent(
58
- f"""\
59
- We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
- E.g., if the question was: "What is your first name?", you could use "first_name".
61
- The short names have to be unique and not starting with numbers. They should be all lower case.
62
- The questions are: {questions}
63
- """
64
- ),
65
- question_name="short_names",
66
- )
67
- results = q.by(m).run()
68
- short_names = results.select("short_names").first()
69
- return {k: v for k, v in zip(questions, short_names)}
70
-
71
-
72
- def get_short_names(questions, max_size=10, num_chars=20):
73
- "Gets short names for questions"
74
- if len(questions) <= max_size:
75
- short_names_dict = get_short_names_chunk(questions, num_chars)
76
- else:
77
- short_names_dict = {}
78
- for chunk in chunker(questions, max_size):
79
- results = get_short_names_chunk(chunk, num_chars)
80
- short_names_dict.update(results)
81
- return short_names_dict
82
-
83
-
84
- class StageGenerateSurvey(StageBase):
85
- input = StageLabelQuestions.output
86
-
87
- @dataclass
88
- class Output(FlowDataBase):
89
- survey: Survey
90
-
91
- output = Output
92
-
93
- def handle_data(self, data):
94
- """This tage uses the question types to generate a survey
95
- It constucts the edsl-specific dictionary needed to create a question
96
- """
97
- # survey = Survey(name = {data.overall_question, population = data.population, description)
98
- survey = Survey()
99
-
100
- short_names = get_short_names(data.questions)
101
-
102
- question_count = -1
103
- for question, question_type, options, option_labels in zip(
104
- data.questions, data.types, data.options, data.option_labels
105
- ):
106
- question_count += 1
107
- short_names_dict = {}
108
- if question in short_names:
109
- short_names_dict[question] = short_names[question]
110
- data = {
111
- "question_text": question,
112
- "question_type": question_type,
113
- "question_name": short_names.get(question, f"q{question_count}"),
114
- }
115
- if options is not None:
116
- data["question_options"] = options
117
- # make sure it's not a linear scale question, in which case we don't want to add short names
118
-
119
- if option_labels is not None:
120
- data["option_labels"] = dict(zip(options, option_labels))
121
- # print(data["option_labels"])
122
- # breakpoint()
123
-
124
- if question_type == "linear_scale":
125
- option_keys = option_labels
126
- else:
127
- option_keys = options
128
-
129
- if options is not None:
130
- short_options = get_short_options(option_keys)
131
- short_names_dict.update(
132
- {k: v for k, v in zip(option_keys, short_options)}
133
- )
134
-
135
- if question_type not in ["numerical", "free_text"]:
136
- data["short_names_dict"] = short_names_dict
137
- _ = data.pop("short_names_dict", None)
138
- q = QuestionBase.from_dict(data)
139
- survey.add_question(q)
140
-
141
- survey.print()
142
- return self.output(survey=survey)
143
-
144
-
145
- if __name__ == "__main__":
146
- # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
-
148
- # results = pipeline.process(
149
- # pipeline.input(
150
- # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
- # population="consumers",
152
- # )
153
- # )
154
- # # print(results)
155
- # short_options = get_short_options(
156
- # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
- # )
158
- # print(short_options)
159
-
160
- sample_questions = [
161
- "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
- "How does your company measure the ROI on sponsorships like this?",
163
- "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
- "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
- "What are the most important factors your company considers when deciding to sponsor a research center?",
166
- "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
- "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
- "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
- "How does your company evaluate the success of the research projects it sponsors?",
170
- "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
- "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
- "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
- "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
- "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
- "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
- ]
177
-
178
- short_names = get_short_names(sample_questions)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.utilities import gen_pipeline
9
+ from edsl.auto.StageBase import FlowDataBase
10
+
11
+ from edsl.auto.StageQuestions import StageQuestions
12
+ from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
+
14
+ from edsl.questions import QuestionList
15
+ from edsl.scenarios import Scenario
16
+ from edsl import Model
17
+ from edsl.surveys import Survey
18
+ from edsl.questions import QuestionBase
19
+
20
+ from edsl.utilities.utilities import is_valid_variable_name
21
+ from edsl import Model
22
+ from edsl.questions import QuestionExtract
23
+
24
+
25
+ m = Model()
26
+
27
+
28
+ def chunker(seq, size):
29
+ return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
+
31
+
32
+ def get_short_options(question_options, num_chars=20):
33
+ """Gets short names for the options of a question
34
+ >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
+ {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
+ """
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ f"""\
40
+ We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
+ E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
+ you could use "no_scooter" and "yes_scooter".
43
+ They should be all lower case. Use snake case.
44
+ The short names have to be unique.
45
+ The options are: {question_options}
46
+ The names are {question_options} of them."""
47
+ ),
48
+ # answer_template={k: None for k in question_options},
49
+ question_name="short_options",
50
+ )
51
+ results = q.by(m).run()
52
+ return results.select("short_options").first()
53
+
54
+
55
+ def get_short_names_chunk(questions, num_chars=20):
56
+ q = QuestionList(
57
+ question_text=dedent(
58
+ f"""\
59
+ We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
+ E.g., if the question was: "What is your first name?", you could use "first_name".
61
+ The short names have to be unique and not starting with numbers. They should be all lower case.
62
+ The questions are: {questions}
63
+ """
64
+ ),
65
+ question_name="short_names",
66
+ )
67
+ results = q.by(m).run()
68
+ short_names = results.select("short_names").first()
69
+ return {k: v for k, v in zip(questions, short_names)}
70
+
71
+
72
+ def get_short_names(questions, max_size=10, num_chars=20):
73
+ "Gets short names for questions"
74
+ if len(questions) <= max_size:
75
+ short_names_dict = get_short_names_chunk(questions, num_chars)
76
+ else:
77
+ short_names_dict = {}
78
+ for chunk in chunker(questions, max_size):
79
+ results = get_short_names_chunk(chunk, num_chars)
80
+ short_names_dict.update(results)
81
+ return short_names_dict
82
+
83
+
84
+ class StageGenerateSurvey(StageBase):
85
+ input = StageLabelQuestions.output
86
+
87
+ @dataclass
88
+ class Output(FlowDataBase):
89
+ survey: Survey
90
+
91
+ output = Output
92
+
93
+ def handle_data(self, data):
94
+ """This tage uses the question types to generate a survey
95
+ It constucts the edsl-specific dictionary needed to create a question
96
+ """
97
+ # survey = Survey(name = {data.overall_question, population = data.population, description)
98
+ survey = Survey()
99
+
100
+ short_names = get_short_names(data.questions)
101
+
102
+ question_count = -1
103
+ for question, question_type, options, option_labels in zip(
104
+ data.questions, data.types, data.options, data.option_labels
105
+ ):
106
+ question_count += 1
107
+ short_names_dict = {}
108
+ if question in short_names:
109
+ short_names_dict[question] = short_names[question]
110
+ data = {
111
+ "question_text": question,
112
+ "question_type": question_type,
113
+ "question_name": short_names.get(question, f"q{question_count}"),
114
+ }
115
+ if options is not None:
116
+ data["question_options"] = options
117
+ # make sure it's not a linear scale question, in which case we don't want to add short names
118
+
119
+ if option_labels is not None:
120
+ data["option_labels"] = dict(zip(options, option_labels))
121
+ # print(data["option_labels"])
122
+ # breakpoint()
123
+
124
+ if question_type == "linear_scale":
125
+ option_keys = option_labels
126
+ else:
127
+ option_keys = options
128
+
129
+ if options is not None:
130
+ short_options = get_short_options(option_keys)
131
+ short_names_dict.update(
132
+ {k: v for k, v in zip(option_keys, short_options)}
133
+ )
134
+
135
+ if question_type not in ["numerical", "free_text"]:
136
+ data["short_names_dict"] = short_names_dict
137
+ _ = data.pop("short_names_dict", None)
138
+ q = QuestionBase.from_dict(data)
139
+ survey.add_question(q)
140
+
141
+ survey.print()
142
+ return self.output(survey=survey)
143
+
144
+
145
+ if __name__ == "__main__":
146
+ # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
+
148
+ # results = pipeline.process(
149
+ # pipeline.input(
150
+ # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
+ # population="consumers",
152
+ # )
153
+ # )
154
+ # # print(results)
155
+ # short_options = get_short_options(
156
+ # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
+ # )
158
+ # print(short_options)
159
+
160
+ sample_questions = [
161
+ "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
+ "How does your company measure the ROI on sponsorships like this?",
163
+ "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
+ "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
+ "What are the most important factors your company considers when deciding to sponsor a research center?",
166
+ "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
+ "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
+ "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
+ "How does your company evaluate the success of the research projects it sponsors?",
170
+ "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
+ "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
+ "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
+ "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
+ "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
+ "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
+ ]
177
+
178
+ short_names = get_short_names(sample_questions)
@@ -1,125 +1,125 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict, Union
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.StageBase import FlowDataBase
9
-
10
- from edsl.auto.StageQuestions import StageQuestions
11
-
12
- from edsl.questions import QuestionMultipleChoice, QuestionList
13
- from edsl.scenarios import Scenario
14
- from edsl import Model
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- question_purpose = {
19
- "multiple_choice": "When options are known and limited",
20
- "free_text": "When we are asking an open-ended question",
21
- "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
- "numerical": "When the answer is a single numerical value e.g., a float",
23
- "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
- "yes_no": "When the question can be fully answered with either a yes or a no",
25
- }
26
-
27
-
28
- class StageLabelQuestions(StageBase):
29
- input = StageQuestions.output
30
-
31
- @dataclass
32
- class Output(FlowDataBase):
33
- questions: List[str]
34
- types: List[str]
35
- options: Dict[str, List[str]]
36
- option_labels: Dict[str, Union[List[str], None]]
37
-
38
- output = Output
39
-
40
- def handle_data(self, data):
41
- """
42
- Labels each edsl question type. This is then used later to instantiate the questions
43
- """
44
- m = Model()
45
- label_questions_scenarios = [
46
- Scenario({"question": q, "question_purpose": question_purpose})
47
- for q in data.questions
48
- ]
49
- q_type = QuestionMultipleChoice(
50
- question_text=dedent(
51
- """\
52
- Consider this question: "{{ question }}"
53
- The question options and purpose are: {{ question_purpose }}
54
- Please avoid free text questions much as possible.
55
- If it could be a multiple choice, use that type.
56
- What type of question should this be to make for an informative survey?"""
57
- ),
58
- question_options=list(question_purpose.keys()),
59
- question_name="question_type",
60
- )
61
- ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
- option_questions = [
63
- "multiple_choice",
64
- "linear_scale",
65
- "checkbox",
66
- ]
67
- q_options_mc = QuestionList(
68
- question_text=dedent(
69
- """\
70
- Consider this question: "{{ question }}"
71
- What options should this question have?"""
72
- ),
73
- question_name="mc_options",
74
- )
75
- survey = q_type.add_question(q_options_mc).add_stop_rule(
76
- "question_type", f"question_type not in {option_questions}"
77
- )
78
- type_results = survey.by(label_questions_scenarios).by(m).run()
79
- type_results.select("question", "question_type", "mc_options").print()
80
-
81
- # breakpoint()
82
-
83
- question_types = type_results.select("question_type").to_list()
84
- options = type_results.select("mc_options").to_list()
85
- # question_types, options = type_results.select(
86
- # "question_type", "mc_options"
87
- # ).to_list()
88
-
89
- type_results.select("question", "question_type", "mc_options").print()
90
-
91
- # if the question is a yes/no question, we need to set the options to be yes/no
92
- types_to_questions = defaultdict(list)
93
- for question_type, question in zip(question_types, data.questions):
94
- types_to_questions[question_type].append(question)
95
-
96
- questions_to_options = dict(zip(data.questions, options))
97
- question_to_option_labels = dict(
98
- zip(data.questions, len(data.questions) * [None])
99
- )
100
- for question in types_to_questions.get("yes_no", []):
101
- questions_to_options[question] = ["Yes", "No"]
102
-
103
- for question in types_to_questions.get("linear_scale", []):
104
- options = questions_to_options[question]
105
- questions_to_options[question] = list(range(len(options)))
106
- question_to_option_labels[question] = options
107
-
108
- return self.output(
109
- questions=data.questions,
110
- types=question_types,
111
- options=list(questions_to_options.values()),
112
- option_labels=list(question_to_option_labels.values()),
113
- )
114
-
115
-
116
- if __name__ == "__main__":
117
- pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
-
119
- results = pipeline.process(
120
- pipeline.input(
121
- overall_question="What are some factors that could determine whether someone likes ice cream?"
122
- )
123
- )
124
-
125
- print(results.options)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict, Union
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.StageBase import FlowDataBase
9
+
10
+ from edsl.auto.StageQuestions import StageQuestions
11
+
12
+ from edsl.questions import QuestionMultipleChoice, QuestionList
13
+ from edsl.scenarios import Scenario
14
+ from edsl import Model
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ question_purpose = {
19
+ "multiple_choice": "When options are known and limited",
20
+ "free_text": "When we are asking an open-ended question",
21
+ "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
+ "numerical": "When the answer is a single numerical value e.g., a float",
23
+ "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
+ "yes_no": "When the question can be fully answered with either a yes or a no",
25
+ }
26
+
27
+
28
+ class StageLabelQuestions(StageBase):
29
+ input = StageQuestions.output
30
+
31
+ @dataclass
32
+ class Output(FlowDataBase):
33
+ questions: List[str]
34
+ types: List[str]
35
+ options: Dict[str, List[str]]
36
+ option_labels: Dict[str, Union[List[str], None]]
37
+
38
+ output = Output
39
+
40
+ def handle_data(self, data):
41
+ """
42
+ Labels each edsl question type. This is then used later to instantiate the questions
43
+ """
44
+ m = Model()
45
+ label_questions_scenarios = [
46
+ Scenario({"question": q, "question_purpose": question_purpose})
47
+ for q in data.questions
48
+ ]
49
+ q_type = QuestionMultipleChoice(
50
+ question_text=dedent(
51
+ """\
52
+ Consider this question: "{{ question }}"
53
+ The question options and purpose are: {{ question_purpose }}
54
+ Please avoid free text questions much as possible.
55
+ If it could be a multiple choice, use that type.
56
+ What type of question should this be to make for an informative survey?"""
57
+ ),
58
+ question_options=list(question_purpose.keys()),
59
+ question_name="question_type",
60
+ )
61
+ ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
+ option_questions = [
63
+ "multiple_choice",
64
+ "linear_scale",
65
+ "checkbox",
66
+ ]
67
+ q_options_mc = QuestionList(
68
+ question_text=dedent(
69
+ """\
70
+ Consider this question: "{{ question }}"
71
+ What options should this question have?"""
72
+ ),
73
+ question_name="mc_options",
74
+ )
75
+ survey = q_type.add_question(q_options_mc).add_stop_rule(
76
+ "question_type", f"question_type not in {option_questions}"
77
+ )
78
+ type_results = survey.by(label_questions_scenarios).by(m).run()
79
+ type_results.select("question", "question_type", "mc_options").print()
80
+
81
+ # breakpoint()
82
+
83
+ question_types = type_results.select("question_type").to_list()
84
+ options = type_results.select("mc_options").to_list()
85
+ # question_types, options = type_results.select(
86
+ # "question_type", "mc_options"
87
+ # ).to_list()
88
+
89
+ type_results.select("question", "question_type", "mc_options").print()
90
+
91
+ # if the question is a yes/no question, we need to set the options to be yes/no
92
+ types_to_questions = defaultdict(list)
93
+ for question_type, question in zip(question_types, data.questions):
94
+ types_to_questions[question_type].append(question)
95
+
96
+ questions_to_options = dict(zip(data.questions, options))
97
+ question_to_option_labels = dict(
98
+ zip(data.questions, len(data.questions) * [None])
99
+ )
100
+ for question in types_to_questions.get("yes_no", []):
101
+ questions_to_options[question] = ["Yes", "No"]
102
+
103
+ for question in types_to_questions.get("linear_scale", []):
104
+ options = questions_to_options[question]
105
+ questions_to_options[question] = list(range(len(options)))
106
+ question_to_option_labels[question] = options
107
+
108
+ return self.output(
109
+ questions=data.questions,
110
+ types=question_types,
111
+ options=list(questions_to_options.values()),
112
+ option_labels=list(question_to_option_labels.values()),
113
+ )
114
+
115
+
116
+ if __name__ == "__main__":
117
+ pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
+
119
+ results = pipeline.process(
120
+ pipeline.input(
121
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
122
+ )
123
+ )
124
+
125
+ print(results.options)