edsl 0.1.36.dev5__py3-none-any.whl → 0.1.36.dev6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (257) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +47 -47
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +804 -804
  7. edsl/agents/AgentList.py +337 -337
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +294 -294
  10. edsl/agents/PromptConstructor.py +312 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +86 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +152 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +238 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/mug_negotiation.py +81 -81
  45. edsl/conversation/next_speaker_utilities.py +93 -93
  46. edsl/coop/PriceFetcher.py +54 -54
  47. edsl/coop/__init__.py +2 -2
  48. edsl/coop/coop.py +849 -849
  49. edsl/coop/utils.py +131 -131
  50. edsl/data/Cache.py +527 -527
  51. edsl/data/CacheEntry.py +228 -228
  52. edsl/data/CacheHandler.py +149 -149
  53. edsl/data/RemoteCacheSync.py +83 -83
  54. edsl/data/SQLiteDict.py +292 -292
  55. edsl/data/__init__.py +4 -4
  56. edsl/data/orm.py +10 -10
  57. edsl/data_transfer_models.py +73 -73
  58. edsl/enums.py +173 -173
  59. edsl/exceptions/__init__.py +50 -50
  60. edsl/exceptions/agents.py +40 -40
  61. edsl/exceptions/configuration.py +16 -16
  62. edsl/exceptions/coop.py +10 -10
  63. edsl/exceptions/data.py +14 -14
  64. edsl/exceptions/general.py +34 -34
  65. edsl/exceptions/jobs.py +33 -33
  66. edsl/exceptions/language_models.py +63 -63
  67. edsl/exceptions/prompts.py +15 -15
  68. edsl/exceptions/questions.py +91 -91
  69. edsl/exceptions/results.py +26 -26
  70. edsl/exceptions/surveys.py +34 -34
  71. edsl/inference_services/AnthropicService.py +87 -87
  72. edsl/inference_services/AwsBedrock.py +115 -115
  73. edsl/inference_services/AzureAI.py +217 -217
  74. edsl/inference_services/DeepInfraService.py +18 -18
  75. edsl/inference_services/GoogleService.py +156 -156
  76. edsl/inference_services/GroqService.py +20 -20
  77. edsl/inference_services/InferenceServiceABC.py +147 -147
  78. edsl/inference_services/InferenceServicesCollection.py +72 -68
  79. edsl/inference_services/MistralAIService.py +123 -123
  80. edsl/inference_services/OllamaService.py +18 -18
  81. edsl/inference_services/OpenAIService.py +224 -224
  82. edsl/inference_services/TestService.py +89 -89
  83. edsl/inference_services/TogetherAIService.py +170 -170
  84. edsl/inference_services/models_available_cache.py +118 -94
  85. edsl/inference_services/rate_limits_cache.py +25 -25
  86. edsl/inference_services/registry.py +39 -39
  87. edsl/inference_services/write_available.py +10 -10
  88. edsl/jobs/Answers.py +56 -56
  89. edsl/jobs/Jobs.py +1112 -1112
  90. edsl/jobs/__init__.py +1 -1
  91. edsl/jobs/buckets/BucketCollection.py +63 -63
  92. edsl/jobs/buckets/ModelBuckets.py +65 -65
  93. edsl/jobs/buckets/TokenBucket.py +248 -248
  94. edsl/jobs/interviews/Interview.py +651 -651
  95. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  96. edsl/jobs/interviews/InterviewExceptionEntry.py +182 -182
  97. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  98. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  99. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  100. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  101. edsl/jobs/interviews/ReportErrors.py +66 -66
  102. edsl/jobs/interviews/interview_status_enum.py +9 -9
  103. edsl/jobs/runners/JobsRunnerAsyncio.py +337 -337
  104. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  105. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  106. edsl/jobs/tasks/TaskCreators.py +64 -64
  107. edsl/jobs/tasks/TaskHistory.py +441 -441
  108. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  109. edsl/jobs/tasks/task_status_enum.py +163 -163
  110. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  111. edsl/jobs/tokens/TokenUsage.py +34 -34
  112. edsl/language_models/LanguageModel.py +718 -718
  113. edsl/language_models/ModelList.py +102 -102
  114. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  115. edsl/language_models/__init__.py +2 -2
  116. edsl/language_models/fake_openai_call.py +15 -15
  117. edsl/language_models/fake_openai_service.py +61 -61
  118. edsl/language_models/registry.py +137 -137
  119. edsl/language_models/repair.py +156 -156
  120. edsl/language_models/unused/ReplicateBase.py +83 -83
  121. edsl/language_models/utilities.py +64 -64
  122. edsl/notebooks/Notebook.py +259 -259
  123. edsl/notebooks/__init__.py +1 -1
  124. edsl/prompts/Prompt.py +358 -358
  125. edsl/prompts/__init__.py +2 -2
  126. edsl/questions/AnswerValidatorMixin.py +289 -289
  127. edsl/questions/QuestionBase.py +616 -616
  128. edsl/questions/QuestionBaseGenMixin.py +161 -161
  129. edsl/questions/QuestionBasePromptsMixin.py +266 -266
  130. edsl/questions/QuestionBudget.py +227 -227
  131. edsl/questions/QuestionCheckBox.py +359 -359
  132. edsl/questions/QuestionExtract.py +183 -183
  133. edsl/questions/QuestionFreeText.py +113 -113
  134. edsl/questions/QuestionFunctional.py +159 -159
  135. edsl/questions/QuestionList.py +231 -231
  136. edsl/questions/QuestionMultipleChoice.py +286 -286
  137. edsl/questions/QuestionNumerical.py +153 -153
  138. edsl/questions/QuestionRank.py +324 -324
  139. edsl/questions/Quick.py +41 -41
  140. edsl/questions/RegisterQuestionsMeta.py +71 -71
  141. edsl/questions/ResponseValidatorABC.py +174 -174
  142. edsl/questions/SimpleAskMixin.py +73 -73
  143. edsl/questions/__init__.py +26 -26
  144. edsl/questions/compose_questions.py +98 -98
  145. edsl/questions/decorators.py +21 -21
  146. edsl/questions/derived/QuestionLikertFive.py +76 -76
  147. edsl/questions/derived/QuestionLinearScale.py +87 -87
  148. edsl/questions/derived/QuestionTopK.py +91 -91
  149. edsl/questions/derived/QuestionYesNo.py +82 -82
  150. edsl/questions/descriptors.py +418 -418
  151. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  152. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  153. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  154. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  155. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  156. edsl/questions/prompt_templates/question_list.jinja +17 -17
  157. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  158. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  159. edsl/questions/question_registry.py +147 -147
  160. edsl/questions/settings.py +12 -12
  161. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  162. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  163. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  164. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  165. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  167. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  168. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  169. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  170. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  171. edsl/questions/templates/list/question_presentation.jinja +5 -5
  172. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  173. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  174. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  176. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  177. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  178. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  179. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  180. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  181. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  182. edsl/results/Dataset.py +293 -293
  183. edsl/results/DatasetExportMixin.py +693 -693
  184. edsl/results/DatasetTree.py +145 -145
  185. edsl/results/Result.py +433 -433
  186. edsl/results/Results.py +1158 -1158
  187. edsl/results/ResultsDBMixin.py +238 -238
  188. edsl/results/ResultsExportMixin.py +43 -43
  189. edsl/results/ResultsFetchMixin.py +33 -33
  190. edsl/results/ResultsGGMixin.py +121 -121
  191. edsl/results/ResultsToolsMixin.py +98 -98
  192. edsl/results/Selector.py +118 -118
  193. edsl/results/__init__.py +2 -2
  194. edsl/results/tree_explore.py +115 -115
  195. edsl/scenarios/FileStore.py +443 -443
  196. edsl/scenarios/Scenario.py +507 -507
  197. edsl/scenarios/ScenarioHtmlMixin.py +59 -59
  198. edsl/scenarios/ScenarioList.py +1101 -1101
  199. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  200. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  201. edsl/scenarios/__init__.py +2 -2
  202. edsl/shared.py +1 -1
  203. edsl/study/ObjectEntry.py +173 -173
  204. edsl/study/ProofOfWork.py +113 -113
  205. edsl/study/SnapShot.py +80 -80
  206. edsl/study/Study.py +528 -528
  207. edsl/study/__init__.py +4 -4
  208. edsl/surveys/DAG.py +148 -148
  209. edsl/surveys/Memory.py +31 -31
  210. edsl/surveys/MemoryPlan.py +244 -244
  211. edsl/surveys/Rule.py +324 -324
  212. edsl/surveys/RuleCollection.py +387 -387
  213. edsl/surveys/Survey.py +1772 -1772
  214. edsl/surveys/SurveyCSS.py +261 -261
  215. edsl/surveys/SurveyExportMixin.py +259 -259
  216. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  217. edsl/surveys/SurveyQualtricsImport.py +284 -284
  218. edsl/surveys/__init__.py +3 -3
  219. edsl/surveys/base.py +53 -53
  220. edsl/surveys/descriptors.py +56 -56
  221. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  222. edsl/surveys/instructions/Instruction.py +51 -51
  223. edsl/surveys/instructions/InstructionCollection.py +77 -77
  224. edsl/templates/error_reporting/base.html +23 -23
  225. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  226. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  227. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  228. edsl/templates/error_reporting/interview_details.html +115 -115
  229. edsl/templates/error_reporting/interviews.html +9 -9
  230. edsl/templates/error_reporting/overview.html +4 -4
  231. edsl/templates/error_reporting/performance_plot.html +1 -1
  232. edsl/templates/error_reporting/report.css +73 -73
  233. edsl/templates/error_reporting/report.html +117 -117
  234. edsl/templates/error_reporting/report.js +25 -25
  235. edsl/tools/__init__.py +1 -1
  236. edsl/tools/clusters.py +192 -192
  237. edsl/tools/embeddings.py +27 -27
  238. edsl/tools/embeddings_plotting.py +118 -118
  239. edsl/tools/plotting.py +112 -112
  240. edsl/tools/summarize.py +18 -18
  241. edsl/utilities/SystemInfo.py +28 -28
  242. edsl/utilities/__init__.py +22 -22
  243. edsl/utilities/ast_utilities.py +25 -25
  244. edsl/utilities/data/Registry.py +6 -6
  245. edsl/utilities/data/__init__.py +1 -1
  246. edsl/utilities/data/scooter_results.json +1 -1
  247. edsl/utilities/decorators.py +77 -77
  248. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  249. edsl/utilities/interface.py +627 -627
  250. edsl/utilities/repair_functions.py +28 -28
  251. edsl/utilities/restricted_python.py +70 -70
  252. edsl/utilities/utilities.py +391 -391
  253. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev6.dist-info}/LICENSE +21 -21
  254. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev6.dist-info}/METADATA +1 -1
  255. edsl-0.1.36.dev6.dist-info/RECORD +279 -0
  256. edsl-0.1.36.dev5.dist-info/RECORD +0 -279
  257. {edsl-0.1.36.dev5.dist-info → edsl-0.1.36.dev6.dist-info}/WHEEL +0 -0
edsl/auto/StagePersona.py CHANGED
@@ -1,61 +1,61 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from typing import List
4
-
5
- from edsl.auto.StageBase import StageBase
6
- from edsl.auto.StageBase import FlowDataBase
7
- from edsl import Model
8
- from edsl.auto.StageQuestions import StageQuestions
9
-
10
- from edsl.questions import QuestionFreeText
11
- from edsl.scenarios import Scenario
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StagePersona(StageBase):
17
- input = StageQuestions.output
18
-
19
- @dataclass
20
- class Output(FlowDataBase):
21
- persona: str
22
- questions: List[str]
23
-
24
- output = Output
25
-
26
- def handle_data(self, data):
27
- m = Model()
28
- q_persona = QuestionFreeText(
29
- question_text=dedent(
30
- """\
31
- Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
- Make up a 1 paragraph persona for this person who would have answers for these questions.
33
- """
34
- ),
35
- question_name="persona",
36
- )
37
- results = (
38
- q_persona.by(m)
39
- .by(Scenario({"questions": data.questions, "population": data.population}))
40
- .run()
41
- )
42
- print("Constructing a persona that could answer the following questions:")
43
- print(data.questions)
44
- results.select("persona").print(
45
- pretty_labels={
46
- "answer.persona": f"Persona that can answer: {data.questions}"
47
- },
48
- split_at_dot=False,
49
- )
50
- persona = results.select("persona").first()
51
- return self.output(persona=persona, questions=data.questions)
52
-
53
-
54
- if __name__ == "__main__":
55
- pipeline = gen_pipeline([StageQuestions, StagePersona])
56
- pipeline.process(
57
- pipeline.input(
58
- overall_question="What are some factors that could determine whether someone likes ice cream?",
59
- persona="People",
60
- )
61
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from typing import List
4
+
5
+ from edsl.auto.StageBase import StageBase
6
+ from edsl.auto.StageBase import FlowDataBase
7
+ from edsl import Model
8
+ from edsl.auto.StageQuestions import StageQuestions
9
+
10
+ from edsl.questions import QuestionFreeText
11
+ from edsl.scenarios import Scenario
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StagePersona(StageBase):
17
+ input = StageQuestions.output
18
+
19
+ @dataclass
20
+ class Output(FlowDataBase):
21
+ persona: str
22
+ questions: List[str]
23
+
24
+ output = Output
25
+
26
+ def handle_data(self, data):
27
+ m = Model()
28
+ q_persona = QuestionFreeText(
29
+ question_text=dedent(
30
+ """\
31
+ Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
+ Make up a 1 paragraph persona for this person who would have answers for these questions.
33
+ """
34
+ ),
35
+ question_name="persona",
36
+ )
37
+ results = (
38
+ q_persona.by(m)
39
+ .by(Scenario({"questions": data.questions, "population": data.population}))
40
+ .run()
41
+ )
42
+ print("Constructing a persona that could answer the following questions:")
43
+ print(data.questions)
44
+ results.select("persona").print(
45
+ pretty_labels={
46
+ "answer.persona": f"Persona that can answer: {data.questions}"
47
+ },
48
+ split_at_dot=False,
49
+ )
50
+ persona = results.select("persona").first()
51
+ return self.output(persona=persona, questions=data.questions)
52
+
53
+
54
+ if __name__ == "__main__":
55
+ pipeline = gen_pipeline([StageQuestions, StagePersona])
56
+ pipeline.process(
57
+ pipeline.input(
58
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
59
+ persona="People",
60
+ )
61
+ )
@@ -1,88 +1,88 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValueRanges(StageBase):
18
- input = StagePersonaDimensionValues.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- focal_dimension_values: List[dict]
23
- mapping: dict
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- # breakpoint()
30
- """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
- dimension_values = data["dimension_values"]
32
- attribute_results = data["attribute_results"]
33
- persona = data["persona"]
34
- m = Model()
35
- d = dict(zip(attribute_results, dimension_values))
36
- q = QuestionList(
37
- question_text=dedent(
38
- """\
39
- Consider the following persona: {{ persona }}.
40
- They were categorized as having the following attributes: {{ d }}.
41
- For this dimension: {{ focal_dimension }},
42
- What are values that other people might have on this attribute?
43
- """
44
- ),
45
- question_name="focal_dimension_values",
46
- )
47
- s = [
48
- Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
- for k in d.keys()
50
- ]
51
- results = q.by(s).by(m).run()
52
- # breakpoint()
53
- results.select("focal_dimension", "answer.*").print(
54
- pretty_labels={
55
- "scenario.focal_dimension": f"Dimensions of a persona",
56
- "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
- },
58
- split_at_dot=False,
59
- )
60
-
61
- focal_dimension_values = results.select("focal_dimension_values").to_list()
62
- mapping = dict(zip(attribute_results, focal_dimension_values))
63
- return self.output(
64
- focal_dimension_values=focal_dimension_values,
65
- mapping=mapping,
66
- persona=persona,
67
- )
68
-
69
-
70
- if __name__ == "__main__":
71
- from edsl.auto.StageQuestions import StageQuestions
72
- from edsl.auto.StagePersona import StagePersona
73
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
-
75
- pipeline = gen_pipeline(
76
- [
77
- StageQuestions,
78
- StagePersona,
79
- StagePersonaDimensions,
80
- StagePersonaDimensionValues,
81
- StagePersonaDimensionValueRanges,
82
- ]
83
- )
84
- pipeline.process(
85
- pipeline.input(
86
- overall_question="What are some factors that could determine whether someone likes ice cream?"
87
- )
88
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValueRanges(StageBase):
18
+ input = StagePersonaDimensionValues.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ focal_dimension_values: List[dict]
23
+ mapping: dict
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ # breakpoint()
30
+ """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
+ dimension_values = data["dimension_values"]
32
+ attribute_results = data["attribute_results"]
33
+ persona = data["persona"]
34
+ m = Model()
35
+ d = dict(zip(attribute_results, dimension_values))
36
+ q = QuestionList(
37
+ question_text=dedent(
38
+ """\
39
+ Consider the following persona: {{ persona }}.
40
+ They were categorized as having the following attributes: {{ d }}.
41
+ For this dimension: {{ focal_dimension }},
42
+ What are values that other people might have on this attribute?
43
+ """
44
+ ),
45
+ question_name="focal_dimension_values",
46
+ )
47
+ s = [
48
+ Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
+ for k in d.keys()
50
+ ]
51
+ results = q.by(s).by(m).run()
52
+ # breakpoint()
53
+ results.select("focal_dimension", "answer.*").print(
54
+ pretty_labels={
55
+ "scenario.focal_dimension": f"Dimensions of a persona",
56
+ "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
+ },
58
+ split_at_dot=False,
59
+ )
60
+
61
+ focal_dimension_values = results.select("focal_dimension_values").to_list()
62
+ mapping = dict(zip(attribute_results, focal_dimension_values))
63
+ return self.output(
64
+ focal_dimension_values=focal_dimension_values,
65
+ mapping=mapping,
66
+ persona=persona,
67
+ )
68
+
69
+
70
+ if __name__ == "__main__":
71
+ from edsl.auto.StageQuestions import StageQuestions
72
+ from edsl.auto.StagePersona import StagePersona
73
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
+
75
+ pipeline = gen_pipeline(
76
+ [
77
+ StageQuestions,
78
+ StagePersona,
79
+ StagePersonaDimensions,
80
+ StagePersonaDimensionValues,
81
+ StagePersonaDimensionValueRanges,
82
+ ]
83
+ )
84
+ pipeline.process(
85
+ pipeline.input(
86
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
87
+ )
88
+ )
@@ -1,74 +1,74 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List, Dict
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
- from edsl import Model
11
- from edsl.questions import QuestionList, QuestionExtract
12
- from edsl.scenarios import Scenario
13
-
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValues(StageBase):
18
- input = StagePersonaDimensions.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- attribute_results: List[str]
23
- dimension_values: Dict[str, str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- attribute_results = data.attribute_results
30
- persona = data.persona
31
- m = Model()
32
- q = QuestionExtract(
33
- question_text=dedent(
34
- """\
35
- This is a persona: "{{ persona }}"
36
- They vary on the following dimensions: "{{ attribute_results }}"
37
- For each dimenion, what are some values that this persona might have for that dimension?
38
- Please keep answers very short, ideally one word.
39
- """
40
- ),
41
- answer_template={k: None for k in attribute_results},
42
- question_name="dimension_values",
43
- )
44
- results = (
45
- q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
- .by(m)
47
- .run()
48
- )
49
- results.select("attribute_results", "dimension_values").print()
50
- return self.output(
51
- dimension_values=results.select("dimension_values").first(),
52
- attribute_results=attribute_results,
53
- persona=persona,
54
- )
55
-
56
-
57
- if __name__ == "__main__":
58
- from edsl.auto.StageQuestions import StageQuestions
59
- from edsl.auto.StagePersona import StagePersona
60
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
-
62
- pipeline = gen_pipeline(
63
- [
64
- StageQuestions,
65
- StagePersona,
66
- StagePersonaDimensions,
67
- StagePersonaDimensionValues,
68
- ]
69
- )
70
- pipeline.process(
71
- pipeline.input(
72
- overall_question="What are some factors that could determine whether someone likes ice cream?"
73
- )
74
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List, Dict
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
+ from edsl import Model
11
+ from edsl.questions import QuestionList, QuestionExtract
12
+ from edsl.scenarios import Scenario
13
+
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValues(StageBase):
18
+ input = StagePersonaDimensions.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ attribute_results: List[str]
23
+ dimension_values: Dict[str, str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ attribute_results = data.attribute_results
30
+ persona = data.persona
31
+ m = Model()
32
+ q = QuestionExtract(
33
+ question_text=dedent(
34
+ """\
35
+ This is a persona: "{{ persona }}"
36
+ They vary on the following dimensions: "{{ attribute_results }}"
37
+ For each dimenion, what are some values that this persona might have for that dimension?
38
+ Please keep answers very short, ideally one word.
39
+ """
40
+ ),
41
+ answer_template={k: None for k in attribute_results},
42
+ question_name="dimension_values",
43
+ )
44
+ results = (
45
+ q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
+ .by(m)
47
+ .run()
48
+ )
49
+ results.select("attribute_results", "dimension_values").print()
50
+ return self.output(
51
+ dimension_values=results.select("dimension_values").first(),
52
+ attribute_results=attribute_results,
53
+ persona=persona,
54
+ )
55
+
56
+
57
+ if __name__ == "__main__":
58
+ from edsl.auto.StageQuestions import StageQuestions
59
+ from edsl.auto.StagePersona import StagePersona
60
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
+
62
+ pipeline = gen_pipeline(
63
+ [
64
+ StageQuestions,
65
+ StagePersona,
66
+ StagePersonaDimensions,
67
+ StagePersonaDimensionValues,
68
+ ]
69
+ )
70
+ pipeline.process(
71
+ pipeline.input(
72
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
73
+ )
74
+ )
@@ -1,69 +1,69 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersona import StagePersona
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
-
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- class StagePersonaDimensions(StageBase):
19
- input = StagePersona.output
20
-
21
- @dataclass
22
- class Output(FlowDataBase):
23
- attribute_results: List[str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- q_attributes = QuestionList(
30
- question_text=dedent(
31
- """\
32
- Here is a persona: "{{ persona }}"
33
- It was construced to be someone who could answer these questions: "{{ questions }}"
34
-
35
- We want to identify the general dimensions that make up this persona.
36
- E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
- """
38
- ),
39
- question_name="find_attributes",
40
- )
41
- m = Model()
42
- results = (
43
- q_attributes.by(
44
- Scenario({"persona": data.persona, "questions": data.questions})
45
- )
46
- .by(m)
47
- .run()
48
- )
49
- (
50
- results.select("find_attributes").print(
51
- pretty_labels={
52
- "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
- },
54
- split_at_dot=False,
55
- )
56
- )
57
- attribute_results = results.select("find_attributes").first()
58
- return self.output(attribute_results=attribute_results, persona=data.persona)
59
-
60
-
61
- if __name__ == "__main__":
62
- from edsl.auto.StageQuestions import StageQuestions
63
-
64
- pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?"
68
- )
69
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersona import StagePersona
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ class StagePersonaDimensions(StageBase):
19
+ input = StagePersona.output
20
+
21
+ @dataclass
22
+ class Output(FlowDataBase):
23
+ attribute_results: List[str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ q_attributes = QuestionList(
30
+ question_text=dedent(
31
+ """\
32
+ Here is a persona: "{{ persona }}"
33
+ It was construced to be someone who could answer these questions: "{{ questions }}"
34
+
35
+ We want to identify the general dimensions that make up this persona.
36
+ E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
+ """
38
+ ),
39
+ question_name="find_attributes",
40
+ )
41
+ m = Model()
42
+ results = (
43
+ q_attributes.by(
44
+ Scenario({"persona": data.persona, "questions": data.questions})
45
+ )
46
+ .by(m)
47
+ .run()
48
+ )
49
+ (
50
+ results.select("find_attributes").print(
51
+ pretty_labels={
52
+ "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
+ },
54
+ split_at_dot=False,
55
+ )
56
+ )
57
+ attribute_results = results.select("find_attributes").first()
58
+ return self.output(attribute_results=attribute_results, persona=data.persona)
59
+
60
+
61
+ if __name__ == "__main__":
62
+ from edsl.auto.StageQuestions import StageQuestions
63
+
64
+ pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
68
+ )
69
+ )