edsl 0.1.33__py3-none-any.whl → 0.1.33.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (180) hide show
  1. edsl/Base.py +3 -9
  2. edsl/__init__.py +3 -8
  3. edsl/__version__.py +1 -1
  4. edsl/agents/Agent.py +8 -40
  5. edsl/agents/AgentList.py +0 -43
  6. edsl/agents/Invigilator.py +219 -135
  7. edsl/agents/InvigilatorBase.py +59 -148
  8. edsl/agents/{PromptConstructor.py → PromptConstructionMixin.py} +89 -138
  9. edsl/agents/__init__.py +0 -1
  10. edsl/config.py +56 -47
  11. edsl/coop/coop.py +7 -50
  12. edsl/data/Cache.py +1 -35
  13. edsl/data_transfer_models.py +38 -73
  14. edsl/enums.py +0 -4
  15. edsl/exceptions/language_models.py +1 -25
  16. edsl/exceptions/questions.py +5 -62
  17. edsl/exceptions/results.py +0 -4
  18. edsl/inference_services/AnthropicService.py +11 -13
  19. edsl/inference_services/AwsBedrock.py +17 -19
  20. edsl/inference_services/AzureAI.py +20 -37
  21. edsl/inference_services/GoogleService.py +12 -16
  22. edsl/inference_services/GroqService.py +0 -2
  23. edsl/inference_services/InferenceServiceABC.py +3 -58
  24. edsl/inference_services/OpenAIService.py +54 -48
  25. edsl/inference_services/models_available_cache.py +6 -0
  26. edsl/inference_services/registry.py +0 -6
  27. edsl/jobs/Answers.py +12 -10
  28. edsl/jobs/Jobs.py +21 -36
  29. edsl/jobs/buckets/BucketCollection.py +15 -24
  30. edsl/jobs/buckets/TokenBucket.py +14 -93
  31. edsl/jobs/interviews/Interview.py +78 -366
  32. edsl/jobs/interviews/InterviewExceptionEntry.py +19 -85
  33. edsl/jobs/interviews/InterviewTaskBuildingMixin.py +286 -0
  34. edsl/jobs/interviews/{InterviewExceptionCollection.py → interview_exception_tracking.py} +68 -14
  35. edsl/jobs/interviews/retry_management.py +37 -0
  36. edsl/jobs/runners/JobsRunnerAsyncio.py +175 -146
  37. edsl/jobs/runners/JobsRunnerStatusMixin.py +333 -0
  38. edsl/jobs/tasks/QuestionTaskCreator.py +23 -30
  39. edsl/jobs/tasks/TaskHistory.py +213 -148
  40. edsl/language_models/LanguageModel.py +156 -261
  41. edsl/language_models/ModelList.py +2 -2
  42. edsl/language_models/RegisterLanguageModelsMeta.py +29 -14
  43. edsl/language_models/registry.py +6 -23
  44. edsl/language_models/repair.py +19 -0
  45. edsl/prompts/Prompt.py +2 -52
  46. edsl/questions/AnswerValidatorMixin.py +26 -23
  47. edsl/questions/QuestionBase.py +249 -329
  48. edsl/questions/QuestionBudget.py +41 -99
  49. edsl/questions/QuestionCheckBox.py +35 -227
  50. edsl/questions/QuestionExtract.py +27 -98
  51. edsl/questions/QuestionFreeText.py +29 -52
  52. edsl/questions/QuestionFunctional.py +0 -7
  53. edsl/questions/QuestionList.py +22 -141
  54. edsl/questions/QuestionMultipleChoice.py +65 -159
  55. edsl/questions/QuestionNumerical.py +46 -88
  56. edsl/questions/QuestionRank.py +24 -182
  57. edsl/questions/RegisterQuestionsMeta.py +12 -31
  58. edsl/questions/__init__.py +4 -3
  59. edsl/questions/derived/QuestionLikertFive.py +5 -10
  60. edsl/questions/derived/QuestionLinearScale.py +2 -15
  61. edsl/questions/derived/QuestionTopK.py +1 -10
  62. edsl/questions/derived/QuestionYesNo.py +3 -24
  63. edsl/questions/descriptors.py +7 -43
  64. edsl/questions/question_registry.py +2 -6
  65. edsl/results/Dataset.py +0 -20
  66. edsl/results/DatasetExportMixin.py +48 -46
  67. edsl/results/Result.py +5 -32
  68. edsl/results/Results.py +46 -135
  69. edsl/results/ResultsDBMixin.py +3 -3
  70. edsl/scenarios/FileStore.py +10 -71
  71. edsl/scenarios/Scenario.py +25 -96
  72. edsl/scenarios/ScenarioImageMixin.py +2 -2
  73. edsl/scenarios/ScenarioList.py +39 -361
  74. edsl/scenarios/ScenarioListExportMixin.py +0 -9
  75. edsl/scenarios/ScenarioListPdfMixin.py +4 -150
  76. edsl/study/SnapShot.py +1 -8
  77. edsl/study/Study.py +0 -32
  78. edsl/surveys/Rule.py +1 -10
  79. edsl/surveys/RuleCollection.py +5 -21
  80. edsl/surveys/Survey.py +310 -636
  81. edsl/surveys/SurveyExportMixin.py +9 -71
  82. edsl/surveys/SurveyFlowVisualizationMixin.py +1 -2
  83. edsl/surveys/SurveyQualtricsImport.py +4 -75
  84. edsl/utilities/gcp_bucket/simple_example.py +9 -0
  85. edsl/utilities/utilities.py +1 -9
  86. {edsl-0.1.33.dist-info → edsl-0.1.33.dev1.dist-info}/METADATA +2 -5
  87. edsl-0.1.33.dev1.dist-info/RECORD +209 -0
  88. edsl/TemplateLoader.py +0 -24
  89. edsl/auto/AutoStudy.py +0 -117
  90. edsl/auto/StageBase.py +0 -230
  91. edsl/auto/StageGenerateSurvey.py +0 -178
  92. edsl/auto/StageLabelQuestions.py +0 -125
  93. edsl/auto/StagePersona.py +0 -61
  94. edsl/auto/StagePersonaDimensionValueRanges.py +0 -88
  95. edsl/auto/StagePersonaDimensionValues.py +0 -74
  96. edsl/auto/StagePersonaDimensions.py +0 -69
  97. edsl/auto/StageQuestions.py +0 -73
  98. edsl/auto/SurveyCreatorPipeline.py +0 -21
  99. edsl/auto/utilities.py +0 -224
  100. edsl/coop/PriceFetcher.py +0 -58
  101. edsl/inference_services/MistralAIService.py +0 -120
  102. edsl/inference_services/TestService.py +0 -80
  103. edsl/inference_services/TogetherAIService.py +0 -170
  104. edsl/jobs/FailedQuestion.py +0 -78
  105. edsl/jobs/runners/JobsRunnerStatus.py +0 -331
  106. edsl/language_models/fake_openai_call.py +0 -15
  107. edsl/language_models/fake_openai_service.py +0 -61
  108. edsl/language_models/utilities.py +0 -61
  109. edsl/questions/QuestionBaseGenMixin.py +0 -133
  110. edsl/questions/QuestionBasePromptsMixin.py +0 -266
  111. edsl/questions/Quick.py +0 -41
  112. edsl/questions/ResponseValidatorABC.py +0 -170
  113. edsl/questions/decorators.py +0 -21
  114. edsl/questions/prompt_templates/question_budget.jinja +0 -13
  115. edsl/questions/prompt_templates/question_checkbox.jinja +0 -32
  116. edsl/questions/prompt_templates/question_extract.jinja +0 -11
  117. edsl/questions/prompt_templates/question_free_text.jinja +0 -3
  118. edsl/questions/prompt_templates/question_linear_scale.jinja +0 -11
  119. edsl/questions/prompt_templates/question_list.jinja +0 -17
  120. edsl/questions/prompt_templates/question_multiple_choice.jinja +0 -33
  121. edsl/questions/prompt_templates/question_numerical.jinja +0 -37
  122. edsl/questions/templates/__init__.py +0 -0
  123. edsl/questions/templates/budget/__init__.py +0 -0
  124. edsl/questions/templates/budget/answering_instructions.jinja +0 -7
  125. edsl/questions/templates/budget/question_presentation.jinja +0 -7
  126. edsl/questions/templates/checkbox/__init__.py +0 -0
  127. edsl/questions/templates/checkbox/answering_instructions.jinja +0 -10
  128. edsl/questions/templates/checkbox/question_presentation.jinja +0 -22
  129. edsl/questions/templates/extract/__init__.py +0 -0
  130. edsl/questions/templates/extract/answering_instructions.jinja +0 -7
  131. edsl/questions/templates/extract/question_presentation.jinja +0 -1
  132. edsl/questions/templates/free_text/__init__.py +0 -0
  133. edsl/questions/templates/free_text/answering_instructions.jinja +0 -0
  134. edsl/questions/templates/free_text/question_presentation.jinja +0 -1
  135. edsl/questions/templates/likert_five/__init__.py +0 -0
  136. edsl/questions/templates/likert_five/answering_instructions.jinja +0 -10
  137. edsl/questions/templates/likert_five/question_presentation.jinja +0 -12
  138. edsl/questions/templates/linear_scale/__init__.py +0 -0
  139. edsl/questions/templates/linear_scale/answering_instructions.jinja +0 -5
  140. edsl/questions/templates/linear_scale/question_presentation.jinja +0 -5
  141. edsl/questions/templates/list/__init__.py +0 -0
  142. edsl/questions/templates/list/answering_instructions.jinja +0 -4
  143. edsl/questions/templates/list/question_presentation.jinja +0 -5
  144. edsl/questions/templates/multiple_choice/__init__.py +0 -0
  145. edsl/questions/templates/multiple_choice/answering_instructions.jinja +0 -9
  146. edsl/questions/templates/multiple_choice/html.jinja +0 -0
  147. edsl/questions/templates/multiple_choice/question_presentation.jinja +0 -12
  148. edsl/questions/templates/numerical/__init__.py +0 -0
  149. edsl/questions/templates/numerical/answering_instructions.jinja +0 -8
  150. edsl/questions/templates/numerical/question_presentation.jinja +0 -7
  151. edsl/questions/templates/rank/__init__.py +0 -0
  152. edsl/questions/templates/rank/answering_instructions.jinja +0 -11
  153. edsl/questions/templates/rank/question_presentation.jinja +0 -15
  154. edsl/questions/templates/top_k/__init__.py +0 -0
  155. edsl/questions/templates/top_k/answering_instructions.jinja +0 -8
  156. edsl/questions/templates/top_k/question_presentation.jinja +0 -22
  157. edsl/questions/templates/yes_no/__init__.py +0 -0
  158. edsl/questions/templates/yes_no/answering_instructions.jinja +0 -6
  159. edsl/questions/templates/yes_no/question_presentation.jinja +0 -12
  160. edsl/results/DatasetTree.py +0 -145
  161. edsl/results/Selector.py +0 -118
  162. edsl/results/tree_explore.py +0 -115
  163. edsl/surveys/instructions/ChangeInstruction.py +0 -47
  164. edsl/surveys/instructions/Instruction.py +0 -34
  165. edsl/surveys/instructions/InstructionCollection.py +0 -77
  166. edsl/surveys/instructions/__init__.py +0 -0
  167. edsl/templates/error_reporting/base.html +0 -24
  168. edsl/templates/error_reporting/exceptions_by_model.html +0 -35
  169. edsl/templates/error_reporting/exceptions_by_question_name.html +0 -17
  170. edsl/templates/error_reporting/exceptions_by_type.html +0 -17
  171. edsl/templates/error_reporting/interview_details.html +0 -116
  172. edsl/templates/error_reporting/interviews.html +0 -10
  173. edsl/templates/error_reporting/overview.html +0 -5
  174. edsl/templates/error_reporting/performance_plot.html +0 -2
  175. edsl/templates/error_reporting/report.css +0 -74
  176. edsl/templates/error_reporting/report.html +0 -118
  177. edsl/templates/error_reporting/report.js +0 -25
  178. edsl-0.1.33.dist-info/RECORD +0 -295
  179. {edsl-0.1.33.dist-info → edsl-0.1.33.dev1.dist-info}/LICENSE +0 -0
  180. {edsl-0.1.33.dist-info → edsl-0.1.33.dev1.dist-info}/WHEEL +0 -0
@@ -1,74 +0,0 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List, Dict
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
- from edsl import Model
11
- from edsl.questions import QuestionList, QuestionExtract
12
- from edsl.scenarios import Scenario
13
-
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValues(StageBase):
18
- input = StagePersonaDimensions.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- attribute_results: List[str]
23
- dimension_values: Dict[str, str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- attribute_results = data.attribute_results
30
- persona = data.persona
31
- m = Model()
32
- q = QuestionExtract(
33
- question_text=dedent(
34
- """\
35
- This is a persona: "{{ persona }}"
36
- They vary on the following dimensions: "{{ attribute_results }}"
37
- For each dimenion, what are some values that this persona might have for that dimension?
38
- Please keep answers very short, ideally one word.
39
- """
40
- ),
41
- answer_template={k: None for k in attribute_results},
42
- question_name="dimension_values",
43
- )
44
- results = (
45
- q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
- .by(m)
47
- .run()
48
- )
49
- results.select("attribute_results", "dimension_values").print()
50
- return self.output(
51
- dimension_values=results.select("dimension_values").first(),
52
- attribute_results=attribute_results,
53
- persona=persona,
54
- )
55
-
56
-
57
- if __name__ == "__main__":
58
- from edsl.auto.StageQuestions import StageQuestions
59
- from edsl.auto.StagePersona import StagePersona
60
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
-
62
- pipeline = gen_pipeline(
63
- [
64
- StageQuestions,
65
- StagePersona,
66
- StagePersonaDimensions,
67
- StagePersonaDimensionValues,
68
- ]
69
- )
70
- pipeline.process(
71
- pipeline.input(
72
- overall_question="What are some factors that could determine whether someone likes ice cream?"
73
- )
74
- )
@@ -1,69 +0,0 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersona import StagePersona
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
-
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- class StagePersonaDimensions(StageBase):
19
- input = StagePersona.output
20
-
21
- @dataclass
22
- class Output(FlowDataBase):
23
- attribute_results: List[str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- q_attributes = QuestionList(
30
- question_text=dedent(
31
- """\
32
- Here is a persona: "{{ persona }}"
33
- It was construced to be someone who could answer these questions: "{{ questions }}"
34
-
35
- We want to identify the general dimensions that make up this persona.
36
- E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
- """
38
- ),
39
- question_name="find_attributes",
40
- )
41
- m = Model()
42
- results = (
43
- q_attributes.by(
44
- Scenario({"persona": data.persona, "questions": data.questions})
45
- )
46
- .by(m)
47
- .run()
48
- )
49
- (
50
- results.select("find_attributes").print(
51
- pretty_labels={
52
- "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
- },
54
- split_at_dot=False,
55
- )
56
- )
57
- attribute_results = results.select("find_attributes").first()
58
- return self.output(attribute_results=attribute_results, persona=data.persona)
59
-
60
-
61
- if __name__ == "__main__":
62
- from edsl.auto.StageQuestions import StageQuestions
63
-
64
- pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?"
68
- )
69
- )
@@ -1,73 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import List
3
- from textwrap import dedent
4
-
5
-
6
- from edsl import Scenario
7
- from edsl import Model
8
- from edsl.questions.QuestionList import QuestionList
9
-
10
- from edsl.auto.StageBase import StageBase
11
- from edsl.auto.StageBase import FlowDataBase
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StageQuestions(StageBase):
17
- "This stages takes as input an overall question and returns a list of questions"
18
-
19
- @dataclass
20
- class Input(FlowDataBase):
21
- overall_question: str
22
- population: str
23
-
24
- @dataclass
25
- class Output(FlowDataBase):
26
- questions: List[str]
27
- population: str
28
-
29
- input = Input
30
- output = Output
31
-
32
- def handle_data(self, data):
33
- m = Model()
34
- overall_question = data.overall_question
35
- population = data.population
36
- s = Scenario({"overall_question": overall_question, "population": population})
37
- q = QuestionList(
38
- question_text=dedent(
39
- """\
40
- Suppose I am interested in the question:
41
- "{{ overall_question }}"
42
- What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
- """
44
- ),
45
- question_name="questions",
46
- )
47
- results = q.by(s).by(m).run()
48
- (
49
- results.select("questions").print(
50
- pretty_labels={
51
- "answer.questions": f'Questions for overall question: "{overall_question }"'
52
- },
53
- split_at_dot=False,
54
- )
55
- )
56
-
57
- raw_questions = results.select("questions").first()
58
- questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
- return self.Output(questions=questions, population=population)
60
-
61
-
62
- if __name__ == "__main__":
63
- pipeline = gen_pipeline([StageQuestions])
64
-
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?",
68
- population="Consumers",
69
- )
70
- )
71
- StageQuestions.func(
72
- overall_question="Why aren't my students studying more?", population="Tech"
73
- )
@@ -1,21 +0,0 @@
1
- import random
2
- from typing import Dict, List, Any, TypeVar, Generator, Optional
3
-
4
- from textwrap import dedent
5
-
6
- # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
- from edsl import Model
8
- from edsl.agents.AgentList import AgentList
9
- from edsl.results.Results import Results
10
- from edsl import Agent
11
-
12
- from edsl import Scenario
13
- from edsl.surveys.Survey import Survey
14
-
15
- from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
- from edsl.questions.QuestionFreeText import QuestionFreeText
17
- from edsl.auto.utilities import gen_pipeline
18
- from edsl.conjure.naming_utilities import sanitize_string
19
-
20
-
21
- m = Model()
edsl/auto/utilities.py DELETED
@@ -1,224 +0,0 @@
1
- from textwrap import dedent
2
- import random
3
- from typing import List, TypeVar, Generator, Optional
4
- from edsl.auto.StageBase import StageBase
5
- from edsl.conjure.naming_utilities import sanitize_string
6
- from edsl import Agent, Survey, Model, Cache, AgentList
7
- from edsl import QuestionFreeText, Scenario
8
- from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
-
10
- StageClassType = TypeVar("StageClassType", bound=StageBase)
11
-
12
-
13
- def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
- """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
- A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
-
17
- """
18
- pipeline = stages_list[0]()
19
- last_stage = pipeline
20
- for stage in stages_list[1:]:
21
- while last_stage.next_stage is not None: # find the end of the pipeline
22
- last_stage = last_stage.next_stage
23
- stage_to_add = stage()
24
- last_stage.next_stage = stage_to_add
25
- return pipeline
26
-
27
-
28
- q_eligibility = QuestionMultipleChoice(
29
- question_text=dedent(
30
- """\
31
- Consider this set of question: '{{ questions }}'.
32
- Consider this persona: '{{ persona }}'.
33
- Would this persona be able to answer all of these questions?
34
- """
35
- ),
36
- question_options=["No", "Yes"],
37
- question_name="eligibility",
38
- )
39
-
40
-
41
- def agent_list_eligibility(
42
- agent_list: AgentList,
43
- survey: Optional[Survey] = None,
44
- model: Optional[Model] = None,
45
- cache: Optional[Cache] = None,
46
- ) -> List[bool]:
47
- """
48
- Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
-
50
- >>> from edsl.language_models import LanguageModel
51
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
- >>> agent_list_eligibility(AgentList.example())
53
- [True, True]
54
- >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
- [True, True]
56
- """
57
- if survey is None:
58
- return [True] * len(agent_list)
59
- if "persona" not in agent_list.all_traits:
60
- raise ValueError(
61
- f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
- )
63
- sl = agent_list.select("persona").to_scenario_list()
64
- sl.add_value("questions", [q.question_text for q in survey._questions])
65
- results = q_eligibility.by(sl).by(model).run(cache=cache)
66
- return [r == "Yes" for r in results.select("eligibility").to_list()]
67
-
68
-
69
- def agent_eligibility(
70
- agent: Agent,
71
- survey: Survey,
72
- model: Optional[Model] = None,
73
- cache: Optional[Cache] = None,
74
- ) -> bool:
75
- """NB: This could be parallelized.
76
-
77
- >>> from edsl.language_models import LanguageModel
78
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
- >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
- True
81
-
82
- """
83
- model = model or Model()
84
-
85
- questions = [q.question_text for q in survey._questions]
86
- persona = agent.traits["persona"]
87
- return (
88
- q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
- == "Yes"
90
- )
91
- # results = (
92
- # q.by(model)
93
- # .by(Scenario({"questions": questions, "persona": persona}))
94
- # .run(cache=cache)
95
- # )
96
- # return results.select("eligibility").first() == "Yes"
97
-
98
-
99
- def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
- """
101
- >>> dimension_dict = {'attitude':['positive', 'negative']}
102
- >>> ag = gen_agent_traits(dimension_dict)
103
- >>> a = next(ag)
104
- >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
- True
106
- >>> len([next(ag) for _ in range(100)])
107
- 100
108
- """
109
- if seed_value is None:
110
- seed_value = "edsl"
111
-
112
- random.seed(seed_value)
113
-
114
- while True:
115
- new_agent_traits = {}
116
- for key, list_of_values in dimension_dict.items():
117
- new_agent_traits[key] = random.choice(list_of_values)
118
- yield new_agent_traits
119
-
120
-
121
- def agent_generator(
122
- persona: str,
123
- dimension_dict: dict,
124
- model: Optional[Model] = None,
125
- cache: Optional["Cache"] = None,
126
- ) -> Generator["Results", None, None]:
127
- """
128
- >>> from edsl.language_models import LanguageModel
129
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
- >>> next(ag).select('new_agent_persona').first()
132
- 'This is a cool dude.'
133
- >>> next(ag).select('new_agent_persona').first()
134
- 'This is a cool dude.'
135
- """
136
-
137
- if model is None:
138
- model = Model()
139
-
140
- q = QuestionFreeText(
141
- question_text=dedent(
142
- """\
143
- Consider this persona: '{{ persona }}'.
144
- Now imagine writing a new persona with these traits:
145
- '{{ new_agent_traits }}'
146
- Please write this persona as a narrative.
147
- """
148
- ),
149
- question_name="new_agent_persona",
150
- )
151
- agent_trait_generator = gen_agent_traits(dimension_dict)
152
- codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
- while True:
154
- new_agent_traits = next(agent_trait_generator)
155
- yield q(
156
- persona=persona,
157
- new_agent_traits=new_agent_traits,
158
- codebook=codebook,
159
- just_answer=False,
160
- cache=cache,
161
- model=model,
162
- )
163
-
164
-
165
- def create_agents(
166
- agent_generator: Generator["Results", None, None],
167
- survey: Optional[Survey] = None,
168
- num_agents=11,
169
- ) -> AgentList:
170
- """
171
- >>> from edsl.language_models import LanguageModel
172
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
- >>> new_agent_list = create_agents(agent_generator = ag)
175
- >>> new_agent_list
176
-
177
- """
178
- agent_list = AgentList([])
179
-
180
- MAX_ITERATIONS_MULTIPLIER = 2
181
- iterations = 0
182
-
183
- while len(agent_list) < num_agents:
184
- iterations += 1
185
- candidate_agent = next(agent_generator)
186
- codebook = candidate_agent.select("codebook").to_list()[0]
187
-
188
- koobedoc = {v: k for k, v in codebook.items()}
189
- persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
- traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
- new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
- "persona": persona
193
- }
194
- agent = Agent(traits=new_traits, codebook=codebook)
195
- if survey is not None:
196
- if agent_eligibility(agent, survey):
197
- agent_list.append(agent)
198
- else:
199
- print("Agent not eligible")
200
- else:
201
- agent_list.append(agent)
202
-
203
- if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
- raise Exception("Too many failures")
205
-
206
- return agent_list
207
-
208
-
209
- if __name__ == "__main__":
210
- import doctest
211
-
212
- doctest.testmod()
213
- # from edsl.language_models import LanguageModel
214
-
215
- # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
- # ag = agent_generator(
217
- # persona="Base person",
218
- # dimension_dict={"attitude": ["Positive", "Negative"]},
219
- # model=m,
220
- # )
221
- # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
- # dimension_dict = {"attitude": ["positive", "negative"]}
223
- # ag = gen_agent_traits(dimension_dict)
224
- # example = [next(ag) for _ in range(100)]
edsl/coop/PriceFetcher.py DELETED
@@ -1,58 +0,0 @@
1
- import requests
2
- import csv
3
- from io import StringIO
4
-
5
-
6
- class PriceFetcher:
7
- _instance = None
8
-
9
- def __new__(cls):
10
- if cls._instance is None:
11
- cls._instance = super(PriceFetcher, cls).__new__(cls)
12
- cls._instance._cached_prices = None
13
- return cls._instance
14
-
15
- def fetch_prices(self):
16
- if self._cached_prices is not None:
17
- return self._cached_prices
18
-
19
- import requests
20
- import csv
21
- from io import StringIO
22
-
23
- sheet_id = "1SAO3Bhntefl0XQHJv27rMxpvu6uzKDWNXFHRa7jrUDs"
24
-
25
- # Construct the URL to fetch the CSV
26
- url = f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv"
27
-
28
- try:
29
- # Fetch the CSV data
30
- response = requests.get(url)
31
- response.raise_for_status() # Raise an exception for bad responses
32
-
33
- # Parse the CSV data
34
- csv_data = StringIO(response.text)
35
- reader = csv.reader(csv_data)
36
-
37
- # Convert to list of dictionaries
38
- headers = next(reader)
39
- data = [dict(zip(headers, row)) for row in reader]
40
-
41
- # self._cached_prices = data
42
- # return data
43
- price_lookup = {}
44
- for entry in data:
45
- service = entry.get("service", None)
46
- model = entry.get("model", None)
47
- if service and model:
48
- token_type = entry.get("token_type", None)
49
- if (service, model) in price_lookup:
50
- price_lookup[(service, model)].update({token_type: entry})
51
- else:
52
- price_lookup[(service, model)] = {token_type: entry}
53
- self._cached_prices = price_lookup
54
- return self._cached_prices
55
-
56
- except requests.RequestException as e:
57
- # print(f"An error occurred: {e}")
58
- return {}
@@ -1,120 +0,0 @@
1
- import os
2
- from typing import Any, List
3
- from edsl.inference_services.InferenceServiceABC import InferenceServiceABC
4
- from edsl.language_models.LanguageModel import LanguageModel
5
- import asyncio
6
- from mistralai import Mistral
7
-
8
- from edsl.exceptions.language_models import LanguageModelBadResponseError
9
-
10
-
11
- class MistralAIService(InferenceServiceABC):
12
- """Mistral AI service class."""
13
-
14
- key_sequence = ["choices", 0, "message", "content"]
15
- usage_sequence = ["usage"]
16
-
17
- _inference_service_ = "mistral"
18
- _env_key_name_ = "MISTRAL_API_KEY" # Environment variable for Mistral API key
19
- input_token_name = "prompt_tokens"
20
- output_token_name = "completion_tokens"
21
-
22
- _sync_client_instance = None
23
- _async_client_instance = None
24
-
25
- _sync_client = Mistral
26
- _async_client = Mistral
27
-
28
- _models_list_cache: List[str] = []
29
- model_exclude_list = []
30
-
31
- def __init_subclass__(cls, **kwargs):
32
- super().__init_subclass__(**kwargs)
33
- # so subclasses have to create their own instances of the clients
34
- cls._sync_client_instance = None
35
- cls._async_client_instance = None
36
-
37
- @classmethod
38
- def sync_client(cls):
39
- if cls._sync_client_instance is None:
40
- cls._sync_client_instance = cls._sync_client(
41
- api_key=os.getenv(cls._env_key_name_)
42
- )
43
- return cls._sync_client_instance
44
-
45
- @classmethod
46
- def async_client(cls):
47
- if cls._async_client_instance is None:
48
- cls._async_client_instance = cls._async_client(
49
- api_key=os.getenv(cls._env_key_name_)
50
- )
51
- return cls._async_client_instance
52
-
53
- @classmethod
54
- def available(cls) -> list[str]:
55
- if not cls._models_list_cache:
56
- cls._models_list_cache = [
57
- m.id for m in cls.sync_client().models.list().data
58
- ]
59
-
60
- return cls._models_list_cache
61
-
62
- @classmethod
63
- def create_model(
64
- cls, model_name: str = "mistral", model_class_name=None
65
- ) -> LanguageModel:
66
- if model_class_name is None:
67
- model_class_name = cls.to_class_name(model_name)
68
-
69
- class LLM(LanguageModel):
70
- """
71
- Child class of LanguageModel for interacting with Mistral models.
72
- """
73
-
74
- key_sequence = cls.key_sequence
75
- usage_sequence = cls.usage_sequence
76
-
77
- input_token_name = cls.input_token_name
78
- output_token_name = cls.output_token_name
79
-
80
- _inference_service_ = cls._inference_service_
81
- _model_ = model_name
82
- _parameters_ = {
83
- "temperature": 0.5,
84
- "max_tokens": 512,
85
- "top_p": 0.9,
86
- }
87
-
88
- _tpm = cls.get_tpm(cls)
89
- _rpm = cls.get_rpm(cls)
90
-
91
- def sync_client(self):
92
- return cls.sync_client()
93
-
94
- def async_client(self):
95
- return cls.async_client()
96
-
97
- async def async_execute_model_call(
98
- self, user_prompt: str, system_prompt: str = ""
99
- ) -> dict[str, Any]:
100
- """Calls the Mistral API and returns the API response."""
101
- s = self.async_client()
102
-
103
- try:
104
- res = await s.chat.complete_async(
105
- model=model_name,
106
- messages=[
107
- {
108
- "content": user_prompt,
109
- "role": "user",
110
- },
111
- ],
112
- )
113
- except Exception as e:
114
- raise LanguageModelBadResponseError(f"Error with Mistral API: {e}")
115
-
116
- return res.model_dump()
117
-
118
- LLM.__name__ = model_class_name
119
-
120
- return LLM