edsl 0.1.33.dev1__py3-none-any.whl → 0.1.33.dev2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- edsl/TemplateLoader.py +24 -0
- edsl/__init__.py +8 -4
- edsl/agents/Agent.py +46 -14
- edsl/agents/AgentList.py +43 -0
- edsl/agents/Invigilator.py +125 -212
- edsl/agents/InvigilatorBase.py +140 -32
- edsl/agents/PromptConstructionMixin.py +43 -66
- edsl/agents/__init__.py +1 -0
- edsl/auto/AutoStudy.py +117 -0
- edsl/auto/StageBase.py +230 -0
- edsl/auto/StageGenerateSurvey.py +178 -0
- edsl/auto/StageLabelQuestions.py +125 -0
- edsl/auto/StagePersona.py +61 -0
- edsl/auto/StagePersonaDimensionValueRanges.py +88 -0
- edsl/auto/StagePersonaDimensionValues.py +74 -0
- edsl/auto/StagePersonaDimensions.py +69 -0
- edsl/auto/StageQuestions.py +73 -0
- edsl/auto/SurveyCreatorPipeline.py +21 -0
- edsl/auto/utilities.py +224 -0
- edsl/config.py +38 -39
- edsl/coop/PriceFetcher.py +58 -0
- edsl/coop/coop.py +39 -5
- edsl/data/Cache.py +35 -1
- edsl/data_transfer_models.py +120 -38
- edsl/enums.py +2 -0
- edsl/exceptions/language_models.py +25 -1
- edsl/exceptions/questions.py +62 -5
- edsl/exceptions/results.py +4 -0
- edsl/inference_services/AnthropicService.py +13 -11
- edsl/inference_services/AwsBedrock.py +19 -17
- edsl/inference_services/AzureAI.py +37 -20
- edsl/inference_services/GoogleService.py +16 -12
- edsl/inference_services/GroqService.py +2 -0
- edsl/inference_services/InferenceServiceABC.py +24 -0
- edsl/inference_services/MistralAIService.py +120 -0
- edsl/inference_services/OpenAIService.py +41 -50
- edsl/inference_services/TestService.py +71 -0
- edsl/inference_services/models_available_cache.py +0 -6
- edsl/inference_services/registry.py +4 -0
- edsl/jobs/Answers.py +10 -12
- edsl/jobs/FailedQuestion.py +78 -0
- edsl/jobs/Jobs.py +18 -13
- edsl/jobs/buckets/TokenBucket.py +39 -14
- edsl/jobs/interviews/Interview.py +297 -77
- edsl/jobs/interviews/InterviewExceptionEntry.py +83 -19
- edsl/jobs/interviews/interview_exception_tracking.py +0 -70
- edsl/jobs/interviews/retry_management.py +3 -1
- edsl/jobs/runners/JobsRunnerAsyncio.py +116 -70
- edsl/jobs/runners/JobsRunnerStatusMixin.py +1 -1
- edsl/jobs/tasks/QuestionTaskCreator.py +30 -23
- edsl/jobs/tasks/TaskHistory.py +131 -213
- edsl/language_models/LanguageModel.py +239 -129
- edsl/language_models/ModelList.py +2 -2
- edsl/language_models/RegisterLanguageModelsMeta.py +14 -29
- edsl/language_models/fake_openai_call.py +15 -0
- edsl/language_models/fake_openai_service.py +61 -0
- edsl/language_models/registry.py +15 -2
- edsl/language_models/repair.py +0 -19
- edsl/language_models/utilities.py +61 -0
- edsl/prompts/Prompt.py +52 -2
- edsl/questions/AnswerValidatorMixin.py +23 -26
- edsl/questions/QuestionBase.py +273 -242
- edsl/questions/QuestionBaseGenMixin.py +133 -0
- edsl/questions/QuestionBasePromptsMixin.py +266 -0
- edsl/questions/QuestionBudget.py +6 -0
- edsl/questions/QuestionCheckBox.py +227 -35
- edsl/questions/QuestionExtract.py +98 -27
- edsl/questions/QuestionFreeText.py +46 -29
- edsl/questions/QuestionFunctional.py +7 -0
- edsl/questions/QuestionList.py +141 -22
- edsl/questions/QuestionMultipleChoice.py +173 -64
- edsl/questions/QuestionNumerical.py +87 -46
- edsl/questions/QuestionRank.py +182 -24
- edsl/questions/RegisterQuestionsMeta.py +31 -12
- edsl/questions/ResponseValidatorABC.py +169 -0
- edsl/questions/__init__.py +3 -4
- edsl/questions/decorators.py +21 -0
- edsl/questions/derived/QuestionLikertFive.py +10 -5
- edsl/questions/derived/QuestionLinearScale.py +11 -1
- edsl/questions/derived/QuestionTopK.py +6 -0
- edsl/questions/derived/QuestionYesNo.py +16 -1
- edsl/questions/descriptors.py +43 -7
- edsl/questions/prompt_templates/question_budget.jinja +13 -0
- edsl/questions/prompt_templates/question_checkbox.jinja +32 -0
- edsl/questions/prompt_templates/question_extract.jinja +11 -0
- edsl/questions/prompt_templates/question_free_text.jinja +3 -0
- edsl/questions/prompt_templates/question_linear_scale.jinja +11 -0
- edsl/questions/prompt_templates/question_list.jinja +17 -0
- edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -0
- edsl/questions/prompt_templates/question_numerical.jinja +37 -0
- edsl/questions/question_registry.py +6 -2
- edsl/questions/templates/__init__.py +0 -0
- edsl/questions/templates/checkbox/__init__.py +0 -0
- edsl/questions/templates/checkbox/answering_instructions.jinja +10 -0
- edsl/questions/templates/checkbox/question_presentation.jinja +22 -0
- edsl/questions/templates/extract/answering_instructions.jinja +7 -0
- edsl/questions/templates/extract/question_presentation.jinja +1 -0
- edsl/questions/templates/free_text/__init__.py +0 -0
- edsl/questions/templates/free_text/answering_instructions.jinja +0 -0
- edsl/questions/templates/free_text/question_presentation.jinja +1 -0
- edsl/questions/templates/likert_five/__init__.py +0 -0
- edsl/questions/templates/likert_five/answering_instructions.jinja +10 -0
- edsl/questions/templates/likert_five/question_presentation.jinja +12 -0
- edsl/questions/templates/linear_scale/__init__.py +0 -0
- edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -0
- edsl/questions/templates/linear_scale/question_presentation.jinja +5 -0
- edsl/questions/templates/list/__init__.py +0 -0
- edsl/questions/templates/list/answering_instructions.jinja +4 -0
- edsl/questions/templates/list/question_presentation.jinja +5 -0
- edsl/questions/templates/multiple_choice/__init__.py +0 -0
- edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -0
- edsl/questions/templates/multiple_choice/html.jinja +0 -0
- edsl/questions/templates/multiple_choice/question_presentation.jinja +12 -0
- edsl/questions/templates/numerical/__init__.py +0 -0
- edsl/questions/templates/numerical/answering_instructions.jinja +8 -0
- edsl/questions/templates/numerical/question_presentation.jinja +7 -0
- edsl/questions/templates/rank/answering_instructions.jinja +11 -0
- edsl/questions/templates/rank/question_presentation.jinja +15 -0
- edsl/questions/templates/top_k/__init__.py +0 -0
- edsl/questions/templates/top_k/answering_instructions.jinja +8 -0
- edsl/questions/templates/top_k/question_presentation.jinja +22 -0
- edsl/questions/templates/yes_no/__init__.py +0 -0
- edsl/questions/templates/yes_no/answering_instructions.jinja +6 -0
- edsl/questions/templates/yes_no/question_presentation.jinja +12 -0
- edsl/results/Dataset.py +20 -0
- edsl/results/DatasetExportMixin.py +41 -47
- edsl/results/DatasetTree.py +145 -0
- edsl/results/Result.py +32 -5
- edsl/results/Results.py +131 -45
- edsl/results/ResultsDBMixin.py +3 -3
- edsl/results/Selector.py +118 -0
- edsl/results/tree_explore.py +115 -0
- edsl/scenarios/Scenario.py +10 -4
- edsl/scenarios/ScenarioList.py +348 -39
- edsl/scenarios/ScenarioListExportMixin.py +9 -0
- edsl/study/SnapShot.py +8 -1
- edsl/surveys/RuleCollection.py +2 -2
- edsl/surveys/Survey.py +634 -315
- edsl/surveys/SurveyExportMixin.py +71 -9
- edsl/surveys/SurveyFlowVisualizationMixin.py +2 -1
- edsl/surveys/SurveyQualtricsImport.py +75 -4
- edsl/surveys/instructions/ChangeInstruction.py +47 -0
- edsl/surveys/instructions/Instruction.py +34 -0
- edsl/surveys/instructions/InstructionCollection.py +77 -0
- edsl/surveys/instructions/__init__.py +0 -0
- edsl/templates/error_reporting/base.html +24 -0
- edsl/templates/error_reporting/exceptions_by_model.html +35 -0
- edsl/templates/error_reporting/exceptions_by_question_name.html +17 -0
- edsl/templates/error_reporting/exceptions_by_type.html +17 -0
- edsl/templates/error_reporting/interview_details.html +111 -0
- edsl/templates/error_reporting/interviews.html +10 -0
- edsl/templates/error_reporting/overview.html +5 -0
- edsl/templates/error_reporting/performance_plot.html +2 -0
- edsl/templates/error_reporting/report.css +74 -0
- edsl/templates/error_reporting/report.html +118 -0
- edsl/templates/error_reporting/report.js +25 -0
- {edsl-0.1.33.dev1.dist-info → edsl-0.1.33.dev2.dist-info}/METADATA +4 -2
- edsl-0.1.33.dev2.dist-info/RECORD +289 -0
- edsl/jobs/interviews/InterviewTaskBuildingMixin.py +0 -286
- edsl/utilities/gcp_bucket/simple_example.py +0 -9
- edsl-0.1.33.dev1.dist-info/RECORD +0 -209
- {edsl-0.1.33.dev1.dist-info → edsl-0.1.33.dev2.dist-info}/LICENSE +0 -0
- {edsl-0.1.33.dev1.dist-info → edsl-0.1.33.dev2.dist-info}/WHEEL +0 -0
@@ -1,4 +1,16 @@
|
|
1
|
-
"""This module contains the LanguageModel class, which is an abstract base class for all language models.
|
1
|
+
"""This module contains the LanguageModel class, which is an abstract base class for all language models.
|
2
|
+
|
3
|
+
Terminology:
|
4
|
+
|
5
|
+
raw_response: The JSON response from the model. This has all the model meta-data about the call.
|
6
|
+
|
7
|
+
edsl_augmented_response: The JSON response from model, but augmented with EDSL-specific information,
|
8
|
+
such as the cache key, token usage, etc.
|
9
|
+
|
10
|
+
generated_tokens: The actual tokens generated by the model. This is the output that is used by the user.
|
11
|
+
edsl_answer_dict: The parsed JSON response from the model either {'answer': ...} or {'answer': ..., 'comment': ...}
|
12
|
+
|
13
|
+
"""
|
2
14
|
|
3
15
|
from __future__ import annotations
|
4
16
|
import warnings
|
@@ -8,47 +20,103 @@ import json
|
|
8
20
|
import time
|
9
21
|
import os
|
10
22
|
import hashlib
|
11
|
-
from typing import
|
23
|
+
from typing import (
|
24
|
+
Coroutine,
|
25
|
+
Any,
|
26
|
+
Callable,
|
27
|
+
Type,
|
28
|
+
Union,
|
29
|
+
List,
|
30
|
+
get_type_hints,
|
31
|
+
TypedDict,
|
32
|
+
Optional,
|
33
|
+
)
|
12
34
|
from abc import ABC, abstractmethod
|
13
35
|
|
36
|
+
from json_repair import repair_json
|
14
37
|
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
self.cache_key = cache_key
|
22
|
-
|
23
|
-
def __iter__(self):
|
24
|
-
"""Iterate over the class attributes.
|
25
|
-
|
26
|
-
>>> a, b, c = IntendedModelCallOutcome({'answer': "yes"}, True, 'x1289')
|
27
|
-
>>> a
|
28
|
-
{'answer': 'yes'}
|
29
|
-
"""
|
30
|
-
yield self.response
|
31
|
-
yield self.cache_used
|
32
|
-
yield self.cache_key
|
33
|
-
|
34
|
-
def __len__(self):
|
35
|
-
return 3
|
36
|
-
|
37
|
-
def __repr__(self):
|
38
|
-
return f"IntendedModelCallOutcome(response = {self.response}, cache_used = {self.cache_used}, cache_key = '{self.cache_key}')"
|
38
|
+
from edsl.data_transfer_models import (
|
39
|
+
ModelResponse,
|
40
|
+
ModelInputs,
|
41
|
+
EDSLOutput,
|
42
|
+
AgentResponseDict,
|
43
|
+
)
|
39
44
|
|
40
45
|
|
41
46
|
from edsl.config import CONFIG
|
42
|
-
|
43
47
|
from edsl.utilities.decorators import sync_wrapper, jupyter_nb_handler
|
44
48
|
from edsl.utilities.decorators import add_edsl_version, remove_edsl_version
|
45
|
-
|
46
49
|
from edsl.language_models.repair import repair
|
47
50
|
from edsl.enums import InferenceServiceType
|
48
51
|
from edsl.Base import RichPrintingMixin, PersistenceMixin
|
49
52
|
from edsl.enums import service_to_api_keyname
|
50
53
|
from edsl.exceptions import MissingAPIKeyError
|
51
54
|
from edsl.language_models.RegisterLanguageModelsMeta import RegisterLanguageModelsMeta
|
55
|
+
from edsl.exceptions.language_models import LanguageModelBadResponseError
|
56
|
+
|
57
|
+
TIMEOUT = float(CONFIG.get("EDSL_API_TIMEOUT"))
|
58
|
+
|
59
|
+
|
60
|
+
def convert_answer(response_part):
|
61
|
+
import json
|
62
|
+
|
63
|
+
response_part = response_part.strip()
|
64
|
+
|
65
|
+
if response_part == "None":
|
66
|
+
return None
|
67
|
+
|
68
|
+
repaired = repair_json(response_part)
|
69
|
+
if repaired == '""':
|
70
|
+
# it was a literal string
|
71
|
+
return response_part
|
72
|
+
|
73
|
+
try:
|
74
|
+
return json.loads(repaired)
|
75
|
+
except json.JSONDecodeError as j:
|
76
|
+
# last resort
|
77
|
+
return response_part
|
78
|
+
|
79
|
+
|
80
|
+
def extract_item_from_raw_response(data, key_sequence):
|
81
|
+
if isinstance(data, str):
|
82
|
+
try:
|
83
|
+
data = json.loads(data)
|
84
|
+
except json.JSONDecodeError as e:
|
85
|
+
return data
|
86
|
+
current_data = data
|
87
|
+
for i, key in enumerate(key_sequence):
|
88
|
+
try:
|
89
|
+
if isinstance(current_data, (list, tuple)):
|
90
|
+
if not isinstance(key, int):
|
91
|
+
raise TypeError(
|
92
|
+
f"Expected integer index for sequence at position {i}, got {type(key).__name__}"
|
93
|
+
)
|
94
|
+
if key < 0 or key >= len(current_data):
|
95
|
+
raise IndexError(
|
96
|
+
f"Index {key} out of range for sequence of length {len(current_data)} at position {i}"
|
97
|
+
)
|
98
|
+
elif isinstance(current_data, dict):
|
99
|
+
if key not in current_data:
|
100
|
+
raise KeyError(
|
101
|
+
f"Key '{key}' not found in dictionary at position {i}"
|
102
|
+
)
|
103
|
+
else:
|
104
|
+
raise TypeError(
|
105
|
+
f"Cannot index into {type(current_data).__name__} at position {i}. Full response is: {data} of type {type(data)}. Key sequence is: {key_sequence}"
|
106
|
+
)
|
107
|
+
|
108
|
+
current_data = current_data[key]
|
109
|
+
except Exception as e:
|
110
|
+
path = " -> ".join(map(str, key_sequence[: i + 1]))
|
111
|
+
if "error" in data:
|
112
|
+
msg = data["error"]
|
113
|
+
else:
|
114
|
+
msg = f"Error accessing path: {path}. {str(e)}. Full response is: '{data}'"
|
115
|
+
raise LanguageModelBadResponseError(message=msg, response_json=data)
|
116
|
+
if isinstance(current_data, str):
|
117
|
+
return current_data.strip()
|
118
|
+
else:
|
119
|
+
return current_data
|
52
120
|
|
53
121
|
|
54
122
|
def handle_key_error(func):
|
@@ -92,7 +160,9 @@ class LanguageModel(
|
|
92
160
|
"""
|
93
161
|
|
94
162
|
_model_ = None
|
95
|
-
|
163
|
+
key_sequence = (
|
164
|
+
None # This should be something like ["choices", 0, "message", "content"]
|
165
|
+
)
|
96
166
|
__rate_limits = None
|
97
167
|
__default_rate_limits = {
|
98
168
|
"rpm": 10_000,
|
@@ -100,7 +170,7 @@ class LanguageModel(
|
|
100
170
|
} # TODO: Use the OpenAI Teir 1 rate limits
|
101
171
|
_safety_factor = 0.8
|
102
172
|
|
103
|
-
def __init__(self, **kwargs):
|
173
|
+
def __init__(self, tpm=None, rpm=None, **kwargs):
|
104
174
|
"""Initialize the LanguageModel."""
|
105
175
|
self.model = getattr(self, "_model_", None)
|
106
176
|
default_parameters = getattr(self, "_parameters_", None)
|
@@ -108,6 +178,12 @@ class LanguageModel(
|
|
108
178
|
self.parameters = parameters
|
109
179
|
self.remote = False
|
110
180
|
|
181
|
+
if rpm is not None:
|
182
|
+
self._rpm = rpm
|
183
|
+
|
184
|
+
if tpm is not None:
|
185
|
+
self._tpm = tpm
|
186
|
+
|
111
187
|
for key, value in parameters.items():
|
112
188
|
setattr(self, key, value)
|
113
189
|
|
@@ -133,7 +209,6 @@ class LanguageModel(
|
|
133
209
|
def api_token(self) -> str:
|
134
210
|
if not hasattr(self, "_api_token"):
|
135
211
|
key_name = service_to_api_keyname.get(self._inference_service_, "NOT FOUND")
|
136
|
-
|
137
212
|
if self._inference_service_ == "bedrock":
|
138
213
|
self._api_token = [os.getenv(key_name[0]), os.getenv(key_name[1])]
|
139
214
|
# Check if any of the tokens are None
|
@@ -142,13 +217,13 @@ class LanguageModel(
|
|
142
217
|
self._api_token = os.getenv(key_name)
|
143
218
|
missing_token = self._api_token is None
|
144
219
|
if missing_token and self._inference_service_ != "test" and not self.remote:
|
145
|
-
print("
|
220
|
+
print("raising error")
|
146
221
|
raise MissingAPIKeyError(
|
147
222
|
f"""The key for service: `{self._inference_service_}` is not set.
|
148
223
|
Need a key with name {key_name} in your .env file."""
|
149
224
|
)
|
150
225
|
|
151
|
-
|
226
|
+
return self._api_token
|
152
227
|
|
153
228
|
def __getitem__(self, key):
|
154
229
|
return getattr(self, key)
|
@@ -209,7 +284,7 @@ class LanguageModel(
|
|
209
284
|
>>> m = LanguageModel.example()
|
210
285
|
>>> m.set_rate_limits(rpm=100, tpm=1000)
|
211
286
|
>>> m.RPM
|
212
|
-
|
287
|
+
100
|
213
288
|
"""
|
214
289
|
self._set_rate_limits(rpm=rpm, tpm=tpm)
|
215
290
|
|
@@ -230,8 +305,32 @@ class LanguageModel(
|
|
230
305
|
@property
|
231
306
|
def RPM(self):
|
232
307
|
"""Model's requests-per-minute limit."""
|
233
|
-
self._set_rate_limits()
|
234
|
-
return self._safety_factor * self.__rate_limits["rpm"]
|
308
|
+
# self._set_rate_limits()
|
309
|
+
# return self._safety_factor * self.__rate_limits["rpm"]
|
310
|
+
return self.rpm
|
311
|
+
|
312
|
+
@property
|
313
|
+
def TPM(self):
|
314
|
+
"""Model's tokens-per-minute limit."""
|
315
|
+
# self._set_rate_limits()
|
316
|
+
# return self._safety_factor * self.__rate_limits["tpm"]
|
317
|
+
return self.tpm
|
318
|
+
|
319
|
+
@property
|
320
|
+
def rpm(self):
|
321
|
+
return self._rpm
|
322
|
+
|
323
|
+
@rpm.setter
|
324
|
+
def rpm(self, value):
|
325
|
+
self._rpm = value
|
326
|
+
|
327
|
+
@property
|
328
|
+
def tpm(self):
|
329
|
+
return self._tpm
|
330
|
+
|
331
|
+
@tpm.setter
|
332
|
+
def tpm(self, value):
|
333
|
+
self._tpm = value
|
235
334
|
|
236
335
|
@property
|
237
336
|
def TPM(self):
|
@@ -270,11 +369,10 @@ class LanguageModel(
|
|
270
369
|
>>> m = LanguageModel.example(test_model = True)
|
271
370
|
>>> async def test(): return await m.async_execute_model_call("Hello, model!", "You are a helpful agent.")
|
272
371
|
>>> asyncio.run(test())
|
273
|
-
{'message': '
|
372
|
+
{'message': [{'text': 'Hello world'}], ...}
|
274
373
|
|
275
374
|
>>> m.execute_model_call("Hello, model!", "You are a helpful agent.")
|
276
|
-
{'message': '
|
277
|
-
|
375
|
+
{'message': [{'text': 'Hello world'}], ...}
|
278
376
|
"""
|
279
377
|
pass
|
280
378
|
|
@@ -307,68 +405,40 @@ class LanguageModel(
|
|
307
405
|
|
308
406
|
return main()
|
309
407
|
|
310
|
-
@
|
311
|
-
def
|
312
|
-
"""
|
313
|
-
|
314
|
-
>>> m = LanguageModel.example(test_model = True)
|
315
|
-
>>> m
|
316
|
-
Model(model_name = 'test', temperature = 0.5)
|
317
|
-
|
318
|
-
What is returned by the API is model-specific and often includes meta-data that we do not need.
|
319
|
-
For example, here is the results from a call to GPT-4:
|
320
|
-
To actually track the response, we need to grab
|
321
|
-
data["choices[0]"]["message"]["content"].
|
322
|
-
"""
|
323
|
-
raise NotImplementedError
|
324
|
-
|
325
|
-
async def _async_prepare_response(
|
326
|
-
self, model_call_outcome: IntendedModelCallOutcome, cache: "Cache"
|
327
|
-
) -> dict:
|
328
|
-
"""Prepare the response for return."""
|
329
|
-
|
330
|
-
model_response = {
|
331
|
-
"cache_used": model_call_outcome.cache_used,
|
332
|
-
"cache_key": model_call_outcome.cache_key,
|
333
|
-
"usage": model_call_outcome.response.get("usage", {}),
|
334
|
-
"raw_model_response": model_call_outcome.response,
|
335
|
-
}
|
408
|
+
@classmethod
|
409
|
+
def get_generated_token_string(cls, raw_response: dict[str, Any]) -> str:
|
410
|
+
"""Return the generated token string from the raw response."""
|
411
|
+
return extract_item_from_raw_response(raw_response, cls.key_sequence)
|
336
412
|
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
bad_json=answer_portion, error_message=str(e), cache=cache
|
413
|
+
@classmethod
|
414
|
+
def get_usage_dict(cls, raw_response: dict[str, Any]) -> dict[str, Any]:
|
415
|
+
"""Return the usage dictionary from the raw response."""
|
416
|
+
if not hasattr(cls, "usage_sequence"):
|
417
|
+
raise NotImplementedError(
|
418
|
+
"This inference service does not have a usage_sequence."
|
344
419
|
)
|
345
|
-
|
346
|
-
raise Exception(
|
347
|
-
f"""Even the repair failed. The error was: {e}. The response was: {answer_portion}."""
|
348
|
-
)
|
349
|
-
|
350
|
-
return {**model_response, **answer_dict}
|
420
|
+
return extract_item_from_raw_response(raw_response, cls.usage_sequence)
|
351
421
|
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
)
|
422
|
+
@classmethod
|
423
|
+
def parse_response(cls, raw_response: dict[str, Any]) -> EDSLOutput:
|
424
|
+
"""Parses the API response and returns the response text."""
|
425
|
+
generated_token_string = cls.get_generated_token_string(raw_response)
|
426
|
+
last_newline = generated_token_string.rfind("\n")
|
427
|
+
|
428
|
+
if last_newline == -1:
|
429
|
+
# There is no comment
|
430
|
+
edsl_dict = {
|
431
|
+
"answer": convert_answer(generated_token_string),
|
432
|
+
"generated_tokens": generated_token_string,
|
433
|
+
"comment": None,
|
434
|
+
}
|
435
|
+
else:
|
436
|
+
edsl_dict = {
|
437
|
+
"answer": convert_answer(generated_token_string[:last_newline]),
|
438
|
+
"comment": generated_token_string[last_newline + 1 :].strip(),
|
439
|
+
"generated_tokens": generated_token_string,
|
440
|
+
}
|
441
|
+
return EDSLOutput(**edsl_dict)
|
372
442
|
|
373
443
|
async def _async_get_intended_model_call_outcome(
|
374
444
|
self,
|
@@ -377,7 +447,7 @@ class LanguageModel(
|
|
377
447
|
cache: "Cache",
|
378
448
|
iteration: int = 0,
|
379
449
|
encoded_image=None,
|
380
|
-
) ->
|
450
|
+
) -> ModelResponse:
|
381
451
|
"""Handle caching of responses.
|
382
452
|
|
383
453
|
:param user_prompt: The user's prompt.
|
@@ -396,8 +466,7 @@ class LanguageModel(
|
|
396
466
|
>>> from edsl import Cache
|
397
467
|
>>> m = LanguageModel.example(test_model = True)
|
398
468
|
>>> m._get_intended_model_call_outcome(user_prompt = "Hello", system_prompt = "hello", cache = Cache())
|
399
|
-
|
400
|
-
"""
|
469
|
+
ModelResponse(...)"""
|
401
470
|
|
402
471
|
if encoded_image:
|
403
472
|
# the image has is appended to the user_prompt for hash-lookup purposes
|
@@ -425,21 +494,28 @@ class LanguageModel(
|
|
425
494
|
"system_prompt": system_prompt,
|
426
495
|
**({"encoded_image": encoded_image} if encoded_image else {}),
|
427
496
|
}
|
428
|
-
response = await f(**params)
|
497
|
+
# response = await f(**params)
|
498
|
+
response = await asyncio.wait_for(f(**params), timeout=TIMEOUT)
|
429
499
|
new_cache_key = cache.store(
|
430
500
|
**cache_call_params, response=response
|
431
501
|
) # store the response in the cache
|
432
502
|
assert new_cache_key == cache_key # should be the same
|
433
503
|
|
434
|
-
|
435
|
-
|
504
|
+
cost = self.cost(response)
|
505
|
+
|
506
|
+
return ModelResponse(
|
507
|
+
response=response,
|
508
|
+
cache_used=cache_used,
|
509
|
+
cache_key=cache_key,
|
510
|
+
cached_response=cached_response,
|
511
|
+
cost=cost,
|
436
512
|
)
|
437
513
|
|
438
514
|
_get_intended_model_call_outcome = sync_wrapper(
|
439
515
|
_async_get_intended_model_call_outcome
|
440
516
|
)
|
441
517
|
|
442
|
-
get_raw_response = sync_wrapper(async_get_raw_response)
|
518
|
+
# get_raw_response = sync_wrapper(async_get_raw_response)
|
443
519
|
|
444
520
|
def simple_ask(
|
445
521
|
self,
|
@@ -478,14 +554,66 @@ class LanguageModel(
|
|
478
554
|
"cache": cache,
|
479
555
|
**({"encoded_image": encoded_image} if encoded_image else {}),
|
480
556
|
}
|
481
|
-
|
482
|
-
|
557
|
+
model_inputs = ModelInputs(user_prompt=user_prompt, system_prompt=system_prompt)
|
558
|
+
model_outputs = await self._async_get_intended_model_call_outcome(**params)
|
559
|
+
edsl_dict = self.parse_response(model_outputs.response)
|
560
|
+
agent_response_dict = AgentResponseDict(
|
561
|
+
model_inputs=model_inputs,
|
562
|
+
model_outputs=model_outputs,
|
563
|
+
edsl_dict=edsl_dict,
|
564
|
+
)
|
565
|
+
return agent_response_dict
|
566
|
+
|
567
|
+
# return await self._async_prepare_response(model_call_outcome, cache=cache)
|
483
568
|
|
484
569
|
get_response = sync_wrapper(async_get_response)
|
485
570
|
|
486
|
-
def cost(self, raw_response: dict[str, Any]) -> float:
|
571
|
+
def cost(self, raw_response: dict[str, Any]) -> Union[float, str]:
|
487
572
|
"""Return the dollar cost of a raw response."""
|
488
|
-
|
573
|
+
|
574
|
+
usage = self.get_usage_dict(raw_response)
|
575
|
+
from edsl.coop import Coop
|
576
|
+
|
577
|
+
c = Coop()
|
578
|
+
price_lookup = c.fetch_prices()
|
579
|
+
key = (self._inference_service_, self.model)
|
580
|
+
if key not in price_lookup:
|
581
|
+
return f"Could not find price for model {self.model} in the price lookup."
|
582
|
+
|
583
|
+
relevant_prices = price_lookup[key]
|
584
|
+
try:
|
585
|
+
input_tokens = int(usage[self.input_token_name])
|
586
|
+
output_tokens = int(usage[self.output_token_name])
|
587
|
+
except Exception as e:
|
588
|
+
return f"Could not fetch tokens from model response: {e}"
|
589
|
+
|
590
|
+
try:
|
591
|
+
inverse_output_price = relevant_prices["output"]["one_usd_buys"]
|
592
|
+
inverse_input_price = relevant_prices["input"]["one_usd_buys"]
|
593
|
+
except Exception as e:
|
594
|
+
if "output" not in relevant_prices:
|
595
|
+
return f"Could not fetch prices from {relevant_prices} - {e}; Missing 'output' key."
|
596
|
+
if "input" not in relevant_prices:
|
597
|
+
return f"Could not fetch prices from {relevant_prices} - {e}; Missing 'input' key."
|
598
|
+
return f"Could not fetch prices from {relevant_prices} - {e}"
|
599
|
+
|
600
|
+
if inverse_input_price == "infinity":
|
601
|
+
input_cost = 0
|
602
|
+
else:
|
603
|
+
try:
|
604
|
+
input_cost = input_tokens / float(inverse_input_price)
|
605
|
+
except Exception as e:
|
606
|
+
return f"Could not compute input price - {e}."
|
607
|
+
|
608
|
+
if inverse_output_price == "infinity":
|
609
|
+
output_cost = 0
|
610
|
+
else:
|
611
|
+
try:
|
612
|
+
output_cost = output_tokens / float(inverse_output_price)
|
613
|
+
except Exception as e:
|
614
|
+
return f"Could not compute output price - {e}"
|
615
|
+
|
616
|
+
return input_cost + output_cost
|
489
617
|
|
490
618
|
#######################
|
491
619
|
# SERIALIZATION METHODS
|
@@ -499,7 +627,7 @@ class LanguageModel(
|
|
499
627
|
|
500
628
|
>>> m = LanguageModel.example()
|
501
629
|
>>> m.to_dict()
|
502
|
-
{'model': '
|
630
|
+
{'model': '...', 'parameters': {'temperature': ..., 'max_tokens': ..., 'top_p': ..., 'frequency_penalty': ..., 'presence_penalty': ..., 'logprobs': False, 'top_logprobs': ...}, 'edsl_version': '...', 'edsl_class_name': 'LanguageModel'}
|
503
631
|
"""
|
504
632
|
return self._to_dict()
|
505
633
|
|
@@ -575,26 +703,8 @@ class LanguageModel(
|
|
575
703
|
"""
|
576
704
|
from edsl import Model
|
577
705
|
|
578
|
-
class TestLanguageModelGood(LanguageModel):
|
579
|
-
use_cache = False
|
580
|
-
_model_ = "test"
|
581
|
-
_parameters_ = {"temperature": 0.5}
|
582
|
-
_inference_service_ = InferenceServiceType.TEST.value
|
583
|
-
|
584
|
-
async def async_execute_model_call(
|
585
|
-
self, user_prompt: str, system_prompt: str
|
586
|
-
) -> dict[str, Any]:
|
587
|
-
await asyncio.sleep(0.1)
|
588
|
-
# return {"message": """{"answer": "Hello, world"}"""}
|
589
|
-
if throw_exception:
|
590
|
-
raise Exception("This is a test error")
|
591
|
-
return {"message": f'{{"answer": "{canned_response}"}}'}
|
592
|
-
|
593
|
-
def parse_response(self, raw_response: dict[str, Any]) -> str:
|
594
|
-
return raw_response["message"]
|
595
|
-
|
596
706
|
if test_model:
|
597
|
-
m =
|
707
|
+
m = Model("test", canned_response=canned_response)
|
598
708
|
return m
|
599
709
|
else:
|
600
710
|
return Model(skip_api_key_check=True)
|
@@ -40,8 +40,8 @@ class ModelList(Base, UserList):
|
|
40
40
|
def __hash__(self):
|
41
41
|
"""Return a hash of the ModelList. This is used for comparison of ModelLists.
|
42
42
|
|
43
|
-
>>> hash(
|
44
|
-
|
43
|
+
>>> isinstance(hash(Model()), int)
|
44
|
+
True
|
45
45
|
|
46
46
|
"""
|
47
47
|
from edsl.utilities.utilities import dict_hash
|
@@ -47,13 +47,6 @@ class RegisterLanguageModelsMeta(ABCMeta):
|
|
47
47
|
must_be_async=True,
|
48
48
|
)
|
49
49
|
# LanguageModel children have to implement the parse_response method
|
50
|
-
RegisterLanguageModelsMeta.verify_method(
|
51
|
-
candidate_class=cls,
|
52
|
-
method_name="parse_response",
|
53
|
-
expected_return_type=str,
|
54
|
-
required_parameters=[("raw_response", dict[str, Any])],
|
55
|
-
must_be_async=False,
|
56
|
-
)
|
57
50
|
RegisterLanguageModelsMeta._registry[model_name] = cls
|
58
51
|
|
59
52
|
@classmethod
|
@@ -98,7 +91,7 @@ class RegisterLanguageModelsMeta(ABCMeta):
|
|
98
91
|
|
99
92
|
required_parameters = required_parameters or []
|
100
93
|
method = getattr(candidate_class, method_name)
|
101
|
-
signature = inspect.signature(method)
|
94
|
+
# signature = inspect.signature(method)
|
102
95
|
|
103
96
|
RegisterLanguageModelsMeta._check_return_type(method, expected_return_type)
|
104
97
|
|
@@ -106,11 +99,11 @@ class RegisterLanguageModelsMeta(ABCMeta):
|
|
106
99
|
RegisterLanguageModelsMeta._check_is_coroutine(method)
|
107
100
|
|
108
101
|
# Check the parameters
|
109
|
-
params = signature.parameters
|
110
|
-
for param_name, param_type in required_parameters:
|
111
|
-
|
112
|
-
|
113
|
-
|
102
|
+
# params = signature.parameters
|
103
|
+
# for param_name, param_type in required_parameters:
|
104
|
+
# RegisterLanguageModelsMeta._verify_parameter(
|
105
|
+
# params, param_name, param_type, method_name
|
106
|
+
# )
|
114
107
|
|
115
108
|
@staticmethod
|
116
109
|
def _check_method_defined(cls, method_name):
|
@@ -167,23 +160,15 @@ class RegisterLanguageModelsMeta(ABCMeta):
|
|
167
160
|
Check if the return type of a method is as expected.
|
168
161
|
|
169
162
|
Example:
|
170
|
-
>>> class M:
|
171
|
-
... async def f(self) -> str: pass
|
172
|
-
>>> RegisterLanguageModelsMeta._check_return_type(M.f, str)
|
173
|
-
>>> class N:
|
174
|
-
... async def f(self) -> int: pass
|
175
|
-
>>> RegisterLanguageModelsMeta._check_return_type(N.f, str)
|
176
|
-
Traceback (most recent call last):
|
177
|
-
...
|
178
|
-
TypeError: Return type of f must be <class 'str'>. Got <class 'int'>.
|
179
163
|
"""
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
164
|
+
pass
|
165
|
+
# if inspect.isroutine(method):
|
166
|
+
# # return_type = inspect.signature(method).return_annotation
|
167
|
+
# return_type = get_type_hints(method)["return"]
|
168
|
+
# if return_type != expected_return_type:
|
169
|
+
# raise TypeError(
|
170
|
+
# f"Return type of {method.__name__} must be {expected_return_type}. Got {return_type}."
|
171
|
+
# )
|
187
172
|
|
188
173
|
@classmethod
|
189
174
|
def model_names_to_classes(cls):
|
@@ -0,0 +1,15 @@
|
|
1
|
+
from openai import AsyncOpenAI
|
2
|
+
import asyncio
|
3
|
+
|
4
|
+
client = AsyncOpenAI(base_url="http://127.0.0.1:8000/v1", api_key="fake_key")
|
5
|
+
|
6
|
+
|
7
|
+
async def main():
|
8
|
+
response = await client.chat.completions.create(
|
9
|
+
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Question XX42"}]
|
10
|
+
)
|
11
|
+
print(response)
|
12
|
+
|
13
|
+
|
14
|
+
if __name__ == "__main__":
|
15
|
+
asyncio.run(main())
|
@@ -0,0 +1,61 @@
|
|
1
|
+
import threading
|
2
|
+
import asyncio
|
3
|
+
from fastapi import FastAPI, Request
|
4
|
+
from fastapi.responses import JSONResponse
|
5
|
+
import uvicorn
|
6
|
+
import json
|
7
|
+
from typing import Any
|
8
|
+
|
9
|
+
app = FastAPI()
|
10
|
+
|
11
|
+
|
12
|
+
async def generate_response(question_number: int) -> dict:
|
13
|
+
# Simulate some asynchronous work
|
14
|
+
await asyncio.sleep(1)
|
15
|
+
return {
|
16
|
+
"id": "chatcmpl-123",
|
17
|
+
"object": "chat.completion",
|
18
|
+
"created": 1677652288,
|
19
|
+
"model": "gpt-3.5-turbo-0613",
|
20
|
+
"choices": [
|
21
|
+
{
|
22
|
+
"index": 0,
|
23
|
+
"message": {
|
24
|
+
"role": "assistant",
|
25
|
+
"content": json.dumps(
|
26
|
+
{"answer": f"SPAM for question {question_number}!"}
|
27
|
+
),
|
28
|
+
},
|
29
|
+
"finish_reason": "stop",
|
30
|
+
}
|
31
|
+
],
|
32
|
+
"usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21},
|
33
|
+
}
|
34
|
+
|
35
|
+
|
36
|
+
@app.post("/v1/chat/completions")
|
37
|
+
async def chat_completions(request: Request):
|
38
|
+
body = await request.json()
|
39
|
+
user_prompt = body["messages"][-1]["content"]
|
40
|
+
question_number = int(user_prompt.split("XX")[1])
|
41
|
+
|
42
|
+
response = await generate_response(question_number)
|
43
|
+
return JSONResponse(content=response)
|
44
|
+
|
45
|
+
|
46
|
+
def run_server():
|
47
|
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|
48
|
+
|
49
|
+
|
50
|
+
if __name__ == "__main__":
|
51
|
+
# Start the server in a separate thread
|
52
|
+
server_thread = threading.Thread(target=run_server)
|
53
|
+
server_thread.start()
|
54
|
+
|
55
|
+
# Your main code here
|
56
|
+
# ...
|
57
|
+
|
58
|
+
# To use this with the OpenAI SDK:
|
59
|
+
# from openai import AsyncOpenAI
|
60
|
+
# client = AsyncOpenAI(base_url="http://127.0.0.1:8000/v1", api_key="fake_key")
|
61
|
+
# response = await client.chat.completions.create(model="gpt-3.5-turbo", messages=[...])
|