edsl 0.1.29.dev3__py3-none-any.whl → 0.1.29.dev6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,134 +1,376 @@
1
- from typing import Dict, Any
1
+ from typing import Dict, Any, Optional
2
+ from collections import UserList
2
3
 
4
+ # from functools import reduce
3
5
  from edsl.prompts.Prompt import Prompt
4
- from edsl.utilities.decorators import sync_wrapper, jupyter_nb_handler
6
+
7
+ # from edsl.utilities.decorators import sync_wrapper, jupyter_nb_handler
5
8
  from edsl.prompts.registry import get_classes as prompt_lookup
6
9
  from edsl.exceptions import QuestionScenarioRenderError
7
10
 
11
+ import enum
8
12
 
9
- class PromptConstructorMixin:
10
- def construct_system_prompt(self) -> Prompt:
11
- """Construct the system prompt for the LLM call."""
12
13
 
13
- agent_instructions = self._get_agent_instructions_prompt()
14
- persona_prompt = self._get_persona_prompt()
14
+ class PromptComponent(enum.Enum):
15
+ AGENT_INSTRUCTIONS = "agent_instructions"
16
+ AGENT_PERSONA = "agent_persona"
17
+ QUESTION_INSTRUCTIONS = "question_instructions"
18
+ PRIOR_QUESTION_MEMORY = "prior_question_memory"
15
19
 
16
- return (
17
- agent_instructions
18
- + " " * int(len(persona_prompt.text) > 0)
19
- + persona_prompt
20
- )
21
20
 
22
- def _get_persona_prompt(self) -> Prompt:
23
- """Get the persona prompt.
21
+ class PromptList(UserList):
22
+ separator = Prompt(" ")
23
+
24
+ def reduce(self):
25
+ """Reduce the list of prompts to a single prompt.
24
26
 
25
- The is the description of the agent to the LLM.
27
+ >>> p = PromptList([Prompt("You are a happy-go lucky agent."), Prompt("You are an agent with the following persona: {'age': 22, 'hair': 'brown', 'height': 5.5}")])
28
+ >>> p.reduce()
29
+ Prompt(text=\"""You are a happy-go lucky agent. You are an agent with the following persona: {'age': 22, 'hair': 'brown', 'height': 5.5}\""")
26
30
 
27
- The agent_persona is constructed when the Agent is created.
28
- If the agent is passed a template for "agent_trait_presentation_template" that is used to construct the persona.
29
- If it does not exist, the persona is looked up in the prompt registry
30
31
  """
31
- if not hasattr(self.agent, "agent_persona"):
32
- applicable_prompts = prompt_lookup(
33
- component_type="agent_persona",
34
- model=self.model.model,
32
+ p = self[0]
33
+ for prompt in self[1:]:
34
+ if len(prompt) > 0:
35
+ p = p + self.separator + prompt
36
+ return p
37
+
38
+
39
+ class PromptPlan:
40
+ """A plan for constructing prompts for the LLM call.
41
+ Every prompt plan has a user prompt order and a system prompt order.
42
+ It must contain each of the values in the PromptComponent enum.
43
+
44
+
45
+ >>> p = PromptPlan(user_prompt_order=(PromptComponent.AGENT_INSTRUCTIONS, PromptComponent.AGENT_PERSONA),system_prompt_order=(PromptComponent.QUESTION_INSTRUCTIONS, PromptComponent.PRIOR_QUESTION_MEMORY))
46
+ >>> p._is_valid_plan()
47
+ True
48
+
49
+ >>> p.arrange_components(agent_instructions=1, agent_persona=2, question_instructions=3, prior_question_memory=4)
50
+ {'user_prompt': ..., 'system_prompt': ...}
51
+
52
+ >>> p = PromptPlan(user_prompt_order=("agent_instructions", ), system_prompt_order=("question_instructions", "prior_question_memory"))
53
+ Traceback (most recent call last):
54
+ ...
55
+ ValueError: Invalid plan: must contain each value of PromptComponent exactly once.
56
+
57
+ """
58
+
59
+ def __init__(
60
+ self,
61
+ user_prompt_order: Optional[tuple] = None,
62
+ system_prompt_order: Optional[tuple] = None,
63
+ ):
64
+ """Initialize the PromptPlan."""
65
+
66
+ if user_prompt_order is None:
67
+ user_prompt_order = (
68
+ PromptComponent.QUESTION_INSTRUCTIONS,
69
+ PromptComponent.PRIOR_QUESTION_MEMORY,
70
+ )
71
+ if system_prompt_order is None:
72
+ system_prompt_order = (
73
+ PromptComponent.AGENT_INSTRUCTIONS,
74
+ PromptComponent.AGENT_PERSONA,
75
+ )
76
+
77
+ # very commmon way to screw this up given how python treats single strings as iterables
78
+ if isinstance(user_prompt_order, str):
79
+ user_prompt_order = (user_prompt_order,)
80
+
81
+ if isinstance(system_prompt_order, str):
82
+ system_prompt_order = (system_prompt_order,)
83
+
84
+ if not isinstance(user_prompt_order, tuple):
85
+ raise TypeError(
86
+ f"Expected a tuple, but got {type(user_prompt_order).__name__}"
87
+ )
88
+
89
+ if not isinstance(system_prompt_order, tuple):
90
+ raise TypeError(
91
+ f"Expected a tuple, but got {type(system_prompt_order).__name__}"
35
92
  )
36
- persona_prompt_template = applicable_prompts[0]()
37
- else:
38
- persona_prompt_template = self.agent.agent_persona
39
-
40
- # TODO: This multiple passing of agent traits - not sure if it is necessary. Not harmful.
41
- if undefined := persona_prompt_template.undefined_template_variables(
42
- self.agent.traits
43
- | {"traits": self.agent.traits}
44
- | {"codebook": self.agent.codebook}
45
- | {"traits": self.agent.traits}
46
- ):
47
- raise QuestionScenarioRenderError(
48
- f"Agent persona still has variables that were not rendered: {undefined}"
93
+
94
+ self.user_prompt_order = self._convert_to_enum(user_prompt_order)
95
+ self.system_prompt_order = self._convert_to_enum(system_prompt_order)
96
+ if not self._is_valid_plan():
97
+ raise ValueError(
98
+ "Invalid plan: must contain each value of PromptComponent exactly once."
49
99
  )
50
100
 
51
- persona_prompt = persona_prompt_template.render(
52
- self.agent.traits | {"traits": self.agent.traits},
53
- codebook=self.agent.codebook,
54
- traits=self.agent.traits,
101
+ def _convert_to_enum(self, prompt_order: tuple):
102
+ """Convert string names to PromptComponent enum values."""
103
+ return tuple(
104
+ PromptComponent(component) if isinstance(component, str) else component
105
+ for component in prompt_order
55
106
  )
56
107
 
57
- if persona_prompt.has_variables:
58
- raise QuestionScenarioRenderError(
59
- "Agent persona still has variables that were not rendered."
108
+ def _is_valid_plan(self):
109
+ """Check if the plan is valid."""
110
+ combined = self.user_prompt_order + self.system_prompt_order
111
+ return set(combined) == set(PromptComponent)
112
+
113
+ def arrange_components(self, **kwargs) -> Dict[PromptComponent, Prompt]:
114
+ """Arrange the components in the order specified by the plan."""
115
+ # check is valid components passed
116
+ component_strings = set([pc.value for pc in PromptComponent])
117
+ if not set(kwargs.keys()) == component_strings:
118
+ raise ValueError(
119
+ f"Invalid components passed: {set(kwargs.keys())} but expected {PromptComponent}"
60
120
  )
61
- return persona_prompt
62
121
 
63
- def _get_agent_instructions_prompt(self) -> Prompt:
64
- """Get the agent instructions prompt."""
65
- applicable_prompts = prompt_lookup(
66
- component_type="agent_instructions",
67
- model=self.model.model,
122
+ user_prompt = PromptList(
123
+ [kwargs[component.value] for component in self.user_prompt_order]
68
124
  )
69
- if len(applicable_prompts) == 0:
70
- raise Exception("No applicable prompts found")
71
- return applicable_prompts[0](text=self.agent.instruction)
72
-
73
- def _get_question_instructions(self) -> Prompt:
74
- """Get the instructions for the question."""
75
- # applicable_prompts = prompt_lookup(
76
- # component_type="question_instructions",
77
- # question_type=self.question.question_type,
78
- # model=self.model.model,
79
- # )
80
- ## Get the question instructions and renders with the scenario & question.data
81
- # question_prompt = applicable_prompts[0]()
82
- question_prompt = self.question.get_instructions(model=self.model.model)
83
-
84
- undefined_template_variables = question_prompt.undefined_template_variables(
85
- self.question.data | self.scenario
125
+ system_prompt = PromptList(
126
+ [kwargs[component.value] for component in self.system_prompt_order]
86
127
  )
87
- if undefined_template_variables:
88
- print(undefined_template_variables)
89
- raise QuestionScenarioRenderError(
90
- "Question instructions still has variables."
128
+ return {"user_prompt": user_prompt, "system_prompt": system_prompt}
129
+
130
+ def get_prompts(self, **kwargs) -> Dict[str, Prompt]:
131
+ """Get both prompts for the LLM call."""
132
+ prompts = self.arrange_components(**kwargs)
133
+ return {
134
+ "user_prompt": prompts["user_prompt"].reduce(),
135
+ "system_prompt": prompts["system_prompt"].reduce(),
136
+ }
137
+
138
+
139
+ class PromptConstructorMixin:
140
+ """Mixin for constructing prompts for the LLM call.
141
+
142
+ The pieces of a prompt are:
143
+ - The agent instructions - "You are answering questions as if you were a human. Do not break character."
144
+ - The persona prompt - "You are an agent with the following persona: {'age': 22, 'hair': 'brown', 'height': 5.5}"
145
+ - The question instructions - "You are being asked the following question: Do you like school? The options are 0: yes 1: no Return a valid JSON formatted like this, selecting only the number of the option: {"answer": <put answer code here>, "comment": "<put explanation here>"} Only 1 option may be selected."
146
+ - The memory prompt - "Before the question you are now answering, you already answered the following question(s): Question: Do you like school? Answer: Prior answer"
147
+
148
+ This is mixed into the Invigilator class.
149
+ """
150
+
151
+ prompt_plan = PromptPlan()
152
+
153
+ @property
154
+ def agent_instructions_prompt(self) -> Prompt:
155
+ """
156
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
157
+ >>> i = InvigilatorBase.example()
158
+ >>> i.agent_instructions_prompt
159
+ Prompt(text=\"""You are answering questions as if you were a human. Do not break character.\""")
160
+ """
161
+ if not hasattr(self, "_agent_instructions_prompt"):
162
+ applicable_prompts = prompt_lookup(
163
+ component_type="agent_instructions",
164
+ model=self.model.model,
91
165
  )
166
+ if len(applicable_prompts) == 0:
167
+ raise Exception("No applicable prompts found")
168
+ self._agent_instructions_prompt = applicable_prompts[0](
169
+ text=self.agent.instruction
170
+ )
171
+ return self._agent_instructions_prompt
92
172
 
93
- return question_prompt.render(self.question.data | self.scenario)
173
+ @property
174
+ def agent_persona_prompt(self) -> Prompt:
175
+ """
176
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
177
+ >>> i = InvigilatorBase.example()
178
+ >>> i.agent_persona_prompt
179
+ Prompt(text=\"""You are an agent with the following persona:
180
+ {'age': 22, 'hair': 'brown', 'height': 5.5}\""")
181
+
182
+ """
183
+ if not hasattr(self, "_agent_persona_prompt"):
184
+ if not hasattr(self.agent, "agent_persona"):
185
+ applicable_prompts = prompt_lookup(
186
+ component_type="agent_persona",
187
+ model=self.model.model,
188
+ )
189
+ persona_prompt_template = applicable_prompts[0]()
190
+ else:
191
+ persona_prompt_template = self.agent.agent_persona
192
+
193
+ # TODO: This multiple passing of agent traits - not sure if it is necessary. Not harmful.
194
+ if undefined := persona_prompt_template.undefined_template_variables(
195
+ self.agent.traits
196
+ | {"traits": self.agent.traits}
197
+ | {"codebook": self.agent.codebook}
198
+ | {"traits": self.agent.traits}
199
+ ):
200
+ raise QuestionScenarioRenderError(
201
+ f"Agent persona still has variables that were not rendered: {undefined}"
202
+ )
203
+
204
+ persona_prompt = persona_prompt_template.render(
205
+ self.agent.traits | {"traits": self.agent.traits},
206
+ codebook=self.agent.codebook,
207
+ traits=self.agent.traits,
208
+ )
209
+ if persona_prompt.has_variables:
210
+ raise QuestionScenarioRenderError(
211
+ "Agent persona still has variables that were not rendered."
212
+ )
213
+ self._agent_persona_prompt = persona_prompt
214
+
215
+ return self._agent_persona_prompt
216
+
217
+ @property
218
+ def question_instructions_prompt(self) -> Prompt:
219
+ """
220
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
221
+ >>> i = InvigilatorBase.example()
222
+ >>> i.question_instructions_prompt
223
+ Prompt(text=\"""You are being asked the following question: Do you like school?
224
+ The options are
225
+ <BLANKLINE>
226
+ 0: yes
227
+ <BLANKLINE>
228
+ 1: no
229
+ <BLANKLINE>
230
+ Return a valid JSON formatted like this, selecting only the number of the option:
231
+ {"answer": <put answer code here>, "comment": "<put explanation here>"}
232
+ Only 1 option may be selected.\""")
233
+
234
+ >>> from edsl import QuestionFreeText
235
+ >>> q = QuestionFreeText(question_text = "Consider {{ X }}. What is your favorite color?", question_name = "q_color")
236
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
237
+ >>> i = InvigilatorBase.example(question = q)
238
+ >>> i.question_instructions_prompt
239
+ Traceback (most recent call last):
240
+ ...
241
+ edsl.exceptions.questions.QuestionScenarioRenderError: Question instructions still has variables: ['X'].
242
+
243
+
244
+ >>> from edsl import QuestionFreeText
245
+ >>> q = QuestionFreeText(question_text = "You were asked the question '{{ q0.question_text }}'. What is your favorite color?", question_name = "q_color")
246
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
247
+ >>> i = InvigilatorBase.example(question = q)
248
+ >>> i.question_instructions_prompt
249
+ Prompt(text=\"""You are being asked the following question: You were asked the question 'Do you like school?'. What is your favorite color?
250
+ Return a valid JSON formatted like this:
251
+ {"answer": "<put free text answer here>"}\""")
252
+
253
+ >>> from edsl import QuestionFreeText
254
+ >>> q = QuestionFreeText(question_text = "You stated '{{ q0.answer }}'. What is your favorite color?", question_name = "q_color")
255
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
256
+ >>> i = InvigilatorBase.example(question = q)
257
+ >>> i.current_answers = {"q0": "I like school"}
258
+ >>> i.question_instructions_prompt
259
+ Prompt(text=\"""You are being asked the following question: You stated 'I like school'. What is your favorite color?
260
+ Return a valid JSON formatted like this:
261
+ {"answer": "<put free text answer here>"}\""")
262
+
263
+
264
+ """
265
+ if not hasattr(self, "_question_instructions_prompt"):
266
+ question_prompt = self.question.get_instructions(model=self.model.model)
267
+
268
+ # TODO: Try to populate the answers in the question object if they are available
269
+ d = self.survey.question_names_to_questions()
270
+ for question, answer in self.current_answers.items():
271
+ if question in d:
272
+ d[question].answer = answer
273
+ else:
274
+ # adds a comment to the question
275
+ if (new_question := question.split("_comment")[0]) in d:
276
+ d[new_question].comment = answer
277
+
278
+ rendered_instructions = question_prompt.render(
279
+ self.question.data | self.scenario | d | {"agent": self.agent}
280
+ )
281
+
282
+ undefined_template_variables = (
283
+ rendered_instructions.undefined_template_variables({})
284
+ )
285
+
286
+ # Check if it's the name of a question in the survey
287
+ for question_name in self.survey.question_names:
288
+ if question_name in undefined_template_variables:
289
+ print(
290
+ "Question name found in undefined_template_variables: ",
291
+ question_name,
292
+ )
293
+
294
+ if undefined_template_variables:
295
+ print(undefined_template_variables)
296
+ raise QuestionScenarioRenderError(
297
+ f"Question instructions still has variables: {undefined_template_variables}."
298
+ )
299
+
300
+ self._question_instructions_prompt = rendered_instructions
301
+ return self._question_instructions_prompt
302
+
303
+ @property
304
+ def prior_question_memory_prompt(self) -> Prompt:
305
+ if not hasattr(self, "_prior_question_memory_prompt"):
306
+ from edsl.prompts.Prompt import Prompt
307
+
308
+ memory_prompt = Prompt(text="")
309
+ if self.memory_plan is not None:
310
+ memory_prompt += self.create_memory_prompt(
311
+ self.question.question_name
312
+ ).render(self.scenario)
313
+ self._prior_question_memory_prompt = memory_prompt
314
+ return self._prior_question_memory_prompt
315
+
316
+ def construct_system_prompt(self) -> Prompt:
317
+ """Construct the system prompt for the LLM call."""
318
+ import warnings
319
+
320
+ warnings.warn(
321
+ "This method is deprecated. Use get_prompts instead.", DeprecationWarning
322
+ )
323
+ return self.get_prompts()["system_prompt"]
94
324
 
95
325
  def construct_user_prompt(self) -> Prompt:
96
326
  """Construct the user prompt for the LLM call."""
97
- user_prompt = self._get_question_instructions()
98
- if self.memory_plan is not None:
99
- user_prompt += self.create_memory_prompt(
100
- self.question.question_name
101
- ).render(self.scenario)
102
- return user_prompt
327
+ import warnings
328
+
329
+ warnings.warn(
330
+ "This method is deprecated. Use get_prompts instead.", DeprecationWarning
331
+ )
332
+ return self.get_prompts()["user_prompt"]
103
333
 
104
334
  def get_prompts(self) -> Dict[str, Prompt]:
105
- """Get both prompts for the LLM call."""
106
- system_prompt = self.construct_system_prompt()
107
- user_prompt = self.construct_user_prompt()
108
- prompts = {
109
- "user_prompt": user_prompt,
110
- "system_prompt": system_prompt,
111
- }
335
+ """Get both prompts for the LLM call.
336
+
337
+ >>> from edsl import QuestionFreeText
338
+ >>> from edsl.agents.InvigilatorBase import InvigilatorBase
339
+ >>> q = QuestionFreeText(question_text="How are you today?", question_name="q0")
340
+ >>> i = InvigilatorBase.example(question = q)
341
+ >>> i.get_prompts()
342
+ {'user_prompt': ..., 'system_prompt': ...}
343
+ >>> scenario = i._get_scenario_with_image()
344
+ >>> scenario.has_image
345
+ True
346
+ >>> q = QuestionFreeText(question_text="How are you today?", question_name="q0")
347
+ >>> i = InvigilatorBase.example(question = q, scenario = scenario)
348
+ >>> i.get_prompts()
349
+ {'user_prompt': ..., 'system_prompt': ..., 'encoded_image': ...'}
350
+ """
351
+ prompts = self.prompt_plan.get_prompts(
352
+ agent_instructions=self.agent_instructions_prompt,
353
+ agent_persona=self.agent_persona_prompt,
354
+ question_instructions=self.question_instructions_prompt,
355
+ prior_question_memory=self.prior_question_memory_prompt,
356
+ )
357
+
112
358
  if hasattr(self.scenario, "has_image") and self.scenario.has_image:
113
359
  prompts["encoded_image"] = self.scenario["encoded_image"]
114
360
  return prompts
115
361
 
362
+ def _get_scenario_with_image(self) -> Dict[str, Any]:
363
+ """This is a helper function to get a scenario with an image, for testing purposes."""
364
+ from edsl import Scenario
365
+
366
+ try:
367
+ scenario = Scenario.from_image("../../static/logo.png")
368
+ except FileNotFoundError:
369
+ scenario = Scenario.from_image("static/logo.png")
370
+ return scenario
371
+
116
372
 
117
373
  if __name__ == "__main__":
118
- from edsl import Model
119
- from edsl import Agent
120
-
121
- a = Agent(
122
- instruction="You are a happy-go lucky agent.",
123
- traits={"feeling": "happy", "age": "Young at heart"},
124
- codebook={"feeling": "Feelings right now", "age": "Age in years"},
125
- trait_presentation_template="",
126
- )
127
- p = PromptConstructorMixin()
128
- p.model = Model(Model.available()[0])
129
- p.agent = a
130
- instructions = p._get_agent_instructions_prompt()
131
- repr(instructions)
132
-
133
- persona = p._get_persona_prompt()
134
- repr(persona)
374
+ import doctest
375
+
376
+ doctest.testmod(optionflags=doctest.ELLIPSIS)
edsl/conjure/InputData.py CHANGED
@@ -1,5 +1,4 @@
1
- import functools
2
-
1
+ import base64
3
2
  from abc import ABC, abstractmethod
4
3
  from typing import Dict, Callable, Optional, List, Generator, Tuple, Union
5
4
  from collections import namedtuple
@@ -52,6 +51,7 @@ class InputDataABC(
52
51
  config: Optional[dict] = None,
53
52
  naming_function: Optional[Callable] = sanitize_string,
54
53
  raw_data: Optional[List] = None,
54
+ binary: Optional[str] = None,
55
55
  question_names: Optional[List[str]] = None,
56
56
  question_texts: Optional[List[str]] = None,
57
57
  answer_codebook: Optional[Dict] = None,
@@ -83,6 +83,15 @@ class InputDataABC(
83
83
  self.config = config
84
84
  self.naming_function = naming_function
85
85
 
86
+ if binary is not None:
87
+ self.binary = binary
88
+ else:
89
+ try:
90
+ with open(self.datafile_name, "rb") as file:
91
+ self.binary = base64.b64encode(file.read()).decode()
92
+ except FileNotFoundError:
93
+ self.binary = None
94
+
86
95
  def default_repair_func(x):
87
96
  return (
88
97
  x.replace("#", "_num")
@@ -118,6 +127,14 @@ class InputDataABC(
118
127
  if order_options:
119
128
  self.order_options()
120
129
 
130
+ @property
131
+ def download_link(self):
132
+ from IPython.display import HTML
133
+
134
+ actual_file_name = self.datafile_name.split("/")[-1]
135
+ download_link = f'<a href="data:text/plain;base64,{self.binary}" download="{actual_file_name}">Download {self.datafile_name}</a>'
136
+ return HTML(download_link)
137
+
121
138
  @abstractmethod
122
139
  def get_question_texts(self) -> List[str]:
123
140
  """Get the text of the questions
@@ -151,7 +168,9 @@ class InputDataABC(
151
168
  """
152
169
  raise NotImplementedError
153
170
 
154
- def rename_questions(self, rename_dict: Dict[str, str]) -> "InputData":
171
+ def rename_questions(
172
+ self, rename_dict: Dict[str, str], ignore_missing=False
173
+ ) -> "InputData":
155
174
  """Rename a question.
156
175
 
157
176
  >>> id = InputDataABC.example()
@@ -160,10 +179,10 @@ class InputDataABC(
160
179
 
161
180
  """
162
181
  for old_name, new_name in rename_dict.items():
163
- self.rename(old_name, new_name)
182
+ self.rename(old_name, new_name, ignore_missing=ignore_missing)
164
183
  return self
165
184
 
166
- def rename(self, old_name, new_name) -> "InputData":
185
+ def rename(self, old_name, new_name, ignore_missing=False) -> "InputData":
167
186
  """Rename a question.
168
187
 
169
188
  >>> id = InputDataABC.example()
@@ -171,13 +190,19 @@ class InputDataABC(
171
190
  ['evening', 'feeling']
172
191
 
173
192
  """
193
+ if old_name not in self.question_names:
194
+ if ignore_missing:
195
+ return self
196
+ else:
197
+ raise ValueError(f"Question {old_name} not found.")
198
+
174
199
  idx = self.question_names.index(old_name)
175
200
  self.question_names[idx] = new_name
176
201
  self.answer_codebook[new_name] = self.answer_codebook.pop(old_name, {})
177
202
 
178
203
  return self
179
204
 
180
- def _drop_question(self, question_name):
205
+ def _drop_question(self, question_name, ignore_missing=False):
181
206
  """Drop a question
182
207
 
183
208
  >>> id = InputDataABC.example()
@@ -185,6 +210,11 @@ class InputDataABC(
185
210
  ['feeling']
186
211
 
187
212
  """
213
+ if question_name not in self.question_names:
214
+ if ignore_missing:
215
+ return self
216
+ else:
217
+ raise ValueError(f"Question {question_name} not found.")
188
218
  idx = self.question_names.index(question_name)
189
219
  self._question_names.pop(idx)
190
220
  self._question_texts.pop(idx)
@@ -206,7 +236,7 @@ class InputDataABC(
206
236
  self._drop_question(qn)
207
237
  return self
208
238
 
209
- def keep(self, *question_names_to_keep) -> "InputDataABC":
239
+ def keep(self, *question_names_to_keep, ignore_missing=False) -> "InputDataABC":
210
240
  """Keep a question.
211
241
 
212
242
  >>> id = InputDataABC.example()
@@ -217,7 +247,7 @@ class InputDataABC(
217
247
  all_question_names = self._question_names[:]
218
248
  for qn in all_question_names:
219
249
  if qn not in question_names_to_keep:
220
- self._drop_question(qn)
250
+ self._drop_question(qn, ignore_missing=ignore_missing)
221
251
  return self
222
252
 
223
253
  def modify_question_type(
@@ -284,6 +314,7 @@ class InputDataABC(
284
314
  "raw_data": self.raw_data,
285
315
  "question_names": self.question_names,
286
316
  "question_texts": self.question_texts,
317
+ "binary": self.binary,
287
318
  "answer_codebook": self.answer_codebook,
288
319
  "question_types": self.question_types,
289
320
  }