edda-framework 0.10.0__py3-none-any.whl → 0.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- edda/integrations/mirascope/__init__.py +78 -0
- edda/integrations/mirascope/agent.py +467 -0
- edda/integrations/mirascope/call.py +166 -0
- edda/integrations/mirascope/decorator.py +163 -0
- edda/integrations/mirascope/types.py +268 -0
- {edda_framework-0.10.0.dist-info → edda_framework-0.11.0.dist-info}/METADATA +5 -1
- {edda_framework-0.10.0.dist-info → edda_framework-0.11.0.dist-info}/RECORD +10 -5
- {edda_framework-0.10.0.dist-info → edda_framework-0.11.0.dist-info}/WHEEL +0 -0
- {edda_framework-0.10.0.dist-info → edda_framework-0.11.0.dist-info}/entry_points.txt +0 -0
- {edda_framework-0.10.0.dist-info → edda_framework-0.11.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Edda + Mirascope V2 integration for durable LLM calls.
|
|
3
|
+
|
|
4
|
+
This module provides utilities to make LLM calls durable through
|
|
5
|
+
Edda's activity system, enabling automatic caching, retry, and
|
|
6
|
+
crash recovery for LLM operations.
|
|
7
|
+
|
|
8
|
+
Example:
|
|
9
|
+
Using the decorator::
|
|
10
|
+
|
|
11
|
+
from edda import workflow, WorkflowContext
|
|
12
|
+
from edda.integrations.mirascope import durable_call
|
|
13
|
+
|
|
14
|
+
@durable_call("anthropic/claude-sonnet-4-20250514")
|
|
15
|
+
async def summarize(text: str) -> str:
|
|
16
|
+
return f"Summarize: {text}"
|
|
17
|
+
|
|
18
|
+
@workflow
|
|
19
|
+
async def my_workflow(ctx: WorkflowContext, text: str) -> str:
|
|
20
|
+
response = await summarize(ctx, text)
|
|
21
|
+
return response["content"]
|
|
22
|
+
|
|
23
|
+
Using the call function::
|
|
24
|
+
|
|
25
|
+
from edda import workflow, WorkflowContext
|
|
26
|
+
from edda.integrations.mirascope import call
|
|
27
|
+
|
|
28
|
+
@workflow
|
|
29
|
+
async def my_workflow(ctx: WorkflowContext, question: str) -> str:
|
|
30
|
+
response = await call(
|
|
31
|
+
ctx,
|
|
32
|
+
model="anthropic/claude-sonnet-4-20250514",
|
|
33
|
+
prompt=question,
|
|
34
|
+
)
|
|
35
|
+
return response["content"]
|
|
36
|
+
|
|
37
|
+
Using DurableAgent for context-aware conversations::
|
|
38
|
+
|
|
39
|
+
from dataclasses import dataclass
|
|
40
|
+
from mirascope import llm
|
|
41
|
+
from edda import workflow, WorkflowContext
|
|
42
|
+
from edda.integrations.mirascope import DurableAgent, DurableDeps
|
|
43
|
+
|
|
44
|
+
@dataclass
|
|
45
|
+
class MyDeps:
|
|
46
|
+
documents: list[str]
|
|
47
|
+
|
|
48
|
+
class MyAgent(DurableAgent[MyDeps]):
|
|
49
|
+
model = "anthropic/claude-sonnet-4-20250514"
|
|
50
|
+
|
|
51
|
+
def build_prompt(self, ctx, message):
|
|
52
|
+
docs = "\\n".join(ctx.deps.documents)
|
|
53
|
+
return [
|
|
54
|
+
llm.messages.system(f"Documents:\\n{docs}"),
|
|
55
|
+
llm.messages.user(message),
|
|
56
|
+
]
|
|
57
|
+
|
|
58
|
+
@workflow
|
|
59
|
+
async def my_workflow(ctx: WorkflowContext, query: str) -> str:
|
|
60
|
+
deps = MyDeps(documents=["Doc 1", "Doc 2"])
|
|
61
|
+
agent = MyAgent(ctx)
|
|
62
|
+
response = await agent.chat(deps, query)
|
|
63
|
+
return response["content"]
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
from edda.integrations.mirascope.agent import DurableAgent, DurableDeps
|
|
67
|
+
from edda.integrations.mirascope.call import call, call_with_messages
|
|
68
|
+
from edda.integrations.mirascope.decorator import durable_call
|
|
69
|
+
from edda.integrations.mirascope.types import DurableResponse
|
|
70
|
+
|
|
71
|
+
__all__ = [
|
|
72
|
+
"durable_call",
|
|
73
|
+
"call",
|
|
74
|
+
"call_with_messages",
|
|
75
|
+
"DurableAgent",
|
|
76
|
+
"DurableDeps",
|
|
77
|
+
"DurableResponse",
|
|
78
|
+
]
|
|
@@ -0,0 +1,467 @@
|
|
|
1
|
+
"""
|
|
2
|
+
DurableAgent: llm.Context を活用した durable エージェント.
|
|
3
|
+
|
|
4
|
+
Mirascope V2 の llm.Context を durable execution と統合:
|
|
5
|
+
- llm.Context 経由の dependency injection
|
|
6
|
+
- 会話履歴の自動管理
|
|
7
|
+
- 各ターンは durable activity として実行
|
|
8
|
+
|
|
9
|
+
Example:
|
|
10
|
+
Using DurableAgent with context::
|
|
11
|
+
|
|
12
|
+
from dataclasses import dataclass
|
|
13
|
+
from mirascope import llm
|
|
14
|
+
from edda import workflow, WorkflowContext
|
|
15
|
+
from edda.integrations.mirascope import DurableAgent, DurableDeps
|
|
16
|
+
|
|
17
|
+
@dataclass
|
|
18
|
+
class ResearchDeps:
|
|
19
|
+
documents: list[str]
|
|
20
|
+
search_index: dict[str, str]
|
|
21
|
+
|
|
22
|
+
class ResearchAgent(DurableAgent[ResearchDeps]):
|
|
23
|
+
model = "anthropic/claude-sonnet-4-20250514"
|
|
24
|
+
|
|
25
|
+
@staticmethod
|
|
26
|
+
@llm.tool()
|
|
27
|
+
def search(ctx: llm.Context[ResearchDeps], query: str) -> str:
|
|
28
|
+
'''Search through documents.'''
|
|
29
|
+
return ctx.deps.search_index.get(query, "No results")
|
|
30
|
+
|
|
31
|
+
def get_tools(self) -> list:
|
|
32
|
+
return [self.search]
|
|
33
|
+
|
|
34
|
+
def build_prompt(self, ctx: llm.Context[ResearchDeps], message: str) -> list:
|
|
35
|
+
docs = "\\n".join(ctx.deps.documents)
|
|
36
|
+
return [
|
|
37
|
+
llm.messages.system(f"You are a research assistant.\\nDocs:\\n{docs}"),
|
|
38
|
+
llm.messages.user(message),
|
|
39
|
+
]
|
|
40
|
+
|
|
41
|
+
@workflow
|
|
42
|
+
async def research_workflow(ctx: WorkflowContext, topic: str) -> str:
|
|
43
|
+
deps = ResearchDeps(
|
|
44
|
+
documents=["Doc 1...", "Doc 2..."],
|
|
45
|
+
search_index={"key1": "value1"},
|
|
46
|
+
)
|
|
47
|
+
agent = ResearchAgent(ctx)
|
|
48
|
+
response = await agent.chat(deps, f"Research: {topic}")
|
|
49
|
+
return response["content"]
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
from __future__ import annotations
|
|
53
|
+
|
|
54
|
+
from dataclasses import dataclass, field
|
|
55
|
+
from typing import TYPE_CHECKING, Any, Generic, TypeVar
|
|
56
|
+
|
|
57
|
+
from edda.activity import activity
|
|
58
|
+
from edda.context import WorkflowContext
|
|
59
|
+
|
|
60
|
+
from .types import DurableResponse
|
|
61
|
+
|
|
62
|
+
if TYPE_CHECKING:
|
|
63
|
+
pass
|
|
64
|
+
|
|
65
|
+
# Type variable for dependency data
|
|
66
|
+
T = TypeVar("T")
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def _import_mirascope() -> Any:
|
|
70
|
+
"""Import mirascope with helpful error message."""
|
|
71
|
+
try:
|
|
72
|
+
from mirascope import llm
|
|
73
|
+
|
|
74
|
+
return llm
|
|
75
|
+
except ImportError as e:
|
|
76
|
+
msg = (
|
|
77
|
+
"Mirascope is not installed. Install with:\n"
|
|
78
|
+
" pip install 'mirascope[anthropic]'\n"
|
|
79
|
+
"or\n"
|
|
80
|
+
" pip install 'edda-framework[mirascope]'"
|
|
81
|
+
)
|
|
82
|
+
raise ImportError(msg) from e
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@dataclass
|
|
86
|
+
class DurableDeps(Generic[T]):
|
|
87
|
+
"""
|
|
88
|
+
Serializable dependency container for DurableAgent.
|
|
89
|
+
|
|
90
|
+
Bridges llm.Context and Edda's durable activity system.
|
|
91
|
+
Manages both user-defined dependencies and conversation history.
|
|
92
|
+
|
|
93
|
+
Attributes:
|
|
94
|
+
data: User-defined dependency data (will be injected into llm.Context)
|
|
95
|
+
history: Conversation history (automatically managed)
|
|
96
|
+
|
|
97
|
+
Example:
|
|
98
|
+
>>> @dataclass
|
|
99
|
+
... class MyDeps:
|
|
100
|
+
... api_key: str
|
|
101
|
+
... cache: dict[str, str]
|
|
102
|
+
...
|
|
103
|
+
>>> deps = DurableDeps(data=MyDeps(api_key="xxx", cache={}))
|
|
104
|
+
>>> agent = MyAgent(ctx)
|
|
105
|
+
>>> await agent.chat(deps, "Hello") # history auto-updated
|
|
106
|
+
"""
|
|
107
|
+
|
|
108
|
+
data: T
|
|
109
|
+
history: list[dict[str, str]] = field(default_factory=list)
|
|
110
|
+
|
|
111
|
+
def to_dict(self) -> dict[str, Any]:
|
|
112
|
+
"""Convert to JSON-serializable dictionary for activity caching."""
|
|
113
|
+
import dataclasses
|
|
114
|
+
|
|
115
|
+
# Handle dataclass or dict data
|
|
116
|
+
if dataclasses.is_dataclass(self.data) and not isinstance(self.data, type):
|
|
117
|
+
data_dict: dict[str, Any] = dataclasses.asdict(self.data)
|
|
118
|
+
elif hasattr(self.data, "model_dump"):
|
|
119
|
+
# Pydantic model
|
|
120
|
+
data_dict = self.data.model_dump()
|
|
121
|
+
elif isinstance(self.data, dict):
|
|
122
|
+
data_dict = self.data
|
|
123
|
+
else:
|
|
124
|
+
data_dict = {"value": self.data}
|
|
125
|
+
|
|
126
|
+
return {
|
|
127
|
+
"data": data_dict,
|
|
128
|
+
"history": self.history,
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
def add_user_message(self, content: str) -> None:
|
|
132
|
+
"""Add a user message to history."""
|
|
133
|
+
self.history.append({"role": "user", "content": content})
|
|
134
|
+
|
|
135
|
+
def add_assistant_message(self, content: str) -> None:
|
|
136
|
+
"""Add an assistant message to history."""
|
|
137
|
+
self.history.append({"role": "assistant", "content": content})
|
|
138
|
+
|
|
139
|
+
def add_system_message(self, content: str) -> None:
|
|
140
|
+
"""Add a system message to history."""
|
|
141
|
+
self.history.append({"role": "system", "content": content})
|
|
142
|
+
|
|
143
|
+
def clear_history(self) -> None:
|
|
144
|
+
"""Clear conversation history."""
|
|
145
|
+
self.history = []
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
@activity
|
|
149
|
+
async def _chat_activity(
|
|
150
|
+
ctx: WorkflowContext, # noqa: ARG001
|
|
151
|
+
*,
|
|
152
|
+
model: str,
|
|
153
|
+
messages: list[dict[str, str]],
|
|
154
|
+
tools: list[Any] | None = None,
|
|
155
|
+
response_model: type | None = None,
|
|
156
|
+
deps_dict: dict[str, Any], # noqa: ARG001 - for logging/debugging
|
|
157
|
+
turn: int, # noqa: ARG001 - used in activity ID
|
|
158
|
+
**call_params: Any,
|
|
159
|
+
) -> dict[str, Any]:
|
|
160
|
+
"""Internal: Execute LLM call as durable activity."""
|
|
161
|
+
llm = _import_mirascope()
|
|
162
|
+
provider = model.split("/")[0] if "/" in model else "unknown"
|
|
163
|
+
|
|
164
|
+
def convert_messages(msgs: list[dict[str, str]]) -> list[Any]:
|
|
165
|
+
result: list[Any] = []
|
|
166
|
+
for msg in msgs:
|
|
167
|
+
role = msg.get("role", "user")
|
|
168
|
+
content = msg.get("content", "")
|
|
169
|
+
if role == "system":
|
|
170
|
+
result.append(llm.messages.system(content))
|
|
171
|
+
elif role == "assistant":
|
|
172
|
+
# Mirascope V2: assistant messages require model_id and provider_id
|
|
173
|
+
result.append(llm.messages.assistant(content, model_id=model, provider_id=provider))
|
|
174
|
+
else:
|
|
175
|
+
result.append(llm.messages.user(content))
|
|
176
|
+
return result
|
|
177
|
+
|
|
178
|
+
@llm.call(model, tools=tools, response_model=response_model, **call_params) # type: ignore[misc]
|
|
179
|
+
async def _call() -> list[Any]:
|
|
180
|
+
return convert_messages(messages)
|
|
181
|
+
|
|
182
|
+
response = await _call()
|
|
183
|
+
|
|
184
|
+
# Handle structured output (response_model)
|
|
185
|
+
if response_model is not None and hasattr(response, "model_dump"):
|
|
186
|
+
return {
|
|
187
|
+
"content": "",
|
|
188
|
+
"model": model,
|
|
189
|
+
"provider": provider,
|
|
190
|
+
"structured_output": response.model_dump(),
|
|
191
|
+
}
|
|
192
|
+
|
|
193
|
+
return DurableResponse.from_mirascope(response, provider).to_dict()
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class DurableAgent(Generic[T]):
|
|
197
|
+
"""
|
|
198
|
+
Base class for durable agents with llm.Context support.
|
|
199
|
+
|
|
200
|
+
Integrates Mirascope V2's llm.Context with Edda's durable execution:
|
|
201
|
+
- Each chat turn is a separate durable activity (cached & replayable)
|
|
202
|
+
- llm.Context provides dependency injection to prompts and tools
|
|
203
|
+
- Conversation history is automatically managed via DurableDeps
|
|
204
|
+
|
|
205
|
+
Subclass and override:
|
|
206
|
+
- `model`: The LLM model string (e.g., "anthropic/claude-sonnet-4-20250514")
|
|
207
|
+
- `build_prompt()`: Construct the prompt with access to ctx.deps
|
|
208
|
+
- `get_tools()`: Return list of @llm.tool() decorated functions
|
|
209
|
+
|
|
210
|
+
Attributes:
|
|
211
|
+
model: The model string in "provider/model" format
|
|
212
|
+
response_model: Optional Pydantic model for structured output
|
|
213
|
+
|
|
214
|
+
Example:
|
|
215
|
+
>>> class MyAgent(DurableAgent[MyDeps]):
|
|
216
|
+
... model = "anthropic/claude-sonnet-4-20250514"
|
|
217
|
+
...
|
|
218
|
+
... def build_prompt(self, ctx, message):
|
|
219
|
+
... return [
|
|
220
|
+
... llm.messages.system(f"Context: {ctx.deps.some_data}"),
|
|
221
|
+
... llm.messages.user(message),
|
|
222
|
+
... ]
|
|
223
|
+
...
|
|
224
|
+
>>> @workflow
|
|
225
|
+
... async def my_workflow(ctx: WorkflowContext, query: str) -> str:
|
|
226
|
+
... deps = MyDeps(some_data="value")
|
|
227
|
+
... agent = MyAgent(ctx)
|
|
228
|
+
... response = await agent.chat(deps, query)
|
|
229
|
+
... return response["content"]
|
|
230
|
+
"""
|
|
231
|
+
|
|
232
|
+
model: str = "anthropic/claude-sonnet-4-20250514"
|
|
233
|
+
response_model: type | None = None
|
|
234
|
+
|
|
235
|
+
def __init__(self, workflow_ctx: WorkflowContext) -> None:
|
|
236
|
+
"""
|
|
237
|
+
Initialize the agent with a workflow context.
|
|
238
|
+
|
|
239
|
+
Args:
|
|
240
|
+
workflow_ctx: The Edda WorkflowContext for durable execution
|
|
241
|
+
"""
|
|
242
|
+
self._workflow_ctx = workflow_ctx
|
|
243
|
+
self._turn_count = 0
|
|
244
|
+
|
|
245
|
+
def get_tools(self) -> list[Any] | None:
|
|
246
|
+
"""
|
|
247
|
+
Override to provide tools for the agent.
|
|
248
|
+
|
|
249
|
+
Tools should be decorated with @llm.tool() and can access
|
|
250
|
+
ctx: llm.Context[T] as their first parameter.
|
|
251
|
+
|
|
252
|
+
Returns:
|
|
253
|
+
List of tool functions, or None if no tools
|
|
254
|
+
"""
|
|
255
|
+
return None
|
|
256
|
+
|
|
257
|
+
def build_prompt(self, ctx: Any, message: str) -> list[Any]:
|
|
258
|
+
"""
|
|
259
|
+
Override to build the prompt for each turn.
|
|
260
|
+
|
|
261
|
+
Access dependencies via ctx.deps. The returned messages
|
|
262
|
+
will be sent to the LLM.
|
|
263
|
+
|
|
264
|
+
Args:
|
|
265
|
+
ctx: llm.Context[T] with access to deps
|
|
266
|
+
message: The user message for this turn
|
|
267
|
+
|
|
268
|
+
Returns:
|
|
269
|
+
List of llm.messages (system, user, assistant)
|
|
270
|
+
|
|
271
|
+
Example:
|
|
272
|
+
>>> def build_prompt(self, ctx, message):
|
|
273
|
+
... llm = _import_mirascope()
|
|
274
|
+
... return [
|
|
275
|
+
... llm.messages.system(f"Data: {ctx.deps.my_data}"),
|
|
276
|
+
... llm.messages.user(message),
|
|
277
|
+
... ]
|
|
278
|
+
"""
|
|
279
|
+
llm = _import_mirascope()
|
|
280
|
+
messages: list[Any] = []
|
|
281
|
+
|
|
282
|
+
# Extract provider from model string for assistant messages
|
|
283
|
+
provider = self.model.split("/")[0] if "/" in self.model else "unknown"
|
|
284
|
+
|
|
285
|
+
# Include history from DurableDeps if available
|
|
286
|
+
history = getattr(ctx.deps, "history", [])
|
|
287
|
+
for msg in history:
|
|
288
|
+
role = msg.get("role", "user")
|
|
289
|
+
content = msg.get("content", "")
|
|
290
|
+
if role == "system":
|
|
291
|
+
messages.append(llm.messages.system(content))
|
|
292
|
+
elif role == "assistant":
|
|
293
|
+
# Mirascope V2: assistant messages require model_id and provider_id
|
|
294
|
+
messages.append(
|
|
295
|
+
llm.messages.assistant(content, model_id=self.model, provider_id=provider)
|
|
296
|
+
)
|
|
297
|
+
else:
|
|
298
|
+
messages.append(llm.messages.user(content))
|
|
299
|
+
|
|
300
|
+
# Add the new user message
|
|
301
|
+
messages.append(llm.messages.user(message))
|
|
302
|
+
return messages
|
|
303
|
+
|
|
304
|
+
async def chat(
|
|
305
|
+
self,
|
|
306
|
+
deps: T | DurableDeps[T],
|
|
307
|
+
message: str,
|
|
308
|
+
**call_params: Any,
|
|
309
|
+
) -> dict[str, Any]:
|
|
310
|
+
"""
|
|
311
|
+
Send a message and get a response.
|
|
312
|
+
|
|
313
|
+
Each call is a separate durable activity - results are cached
|
|
314
|
+
and replayed on workflow recovery.
|
|
315
|
+
|
|
316
|
+
Args:
|
|
317
|
+
deps: Dependency data (raw or wrapped in DurableDeps)
|
|
318
|
+
message: User message to send
|
|
319
|
+
**call_params: Additional LLM call parameters
|
|
320
|
+
|
|
321
|
+
Returns:
|
|
322
|
+
DurableResponse as dict with keys:
|
|
323
|
+
- content: Response text
|
|
324
|
+
- model: Model used
|
|
325
|
+
- provider: Provider name
|
|
326
|
+
- tool_calls: List of tool calls (if any)
|
|
327
|
+
- usage: Token usage stats
|
|
328
|
+
"""
|
|
329
|
+
self._turn_count += 1
|
|
330
|
+
llm = _import_mirascope()
|
|
331
|
+
|
|
332
|
+
# Wrap in DurableDeps if needed
|
|
333
|
+
durable_deps = deps if isinstance(deps, DurableDeps) else DurableDeps(data=deps)
|
|
334
|
+
|
|
335
|
+
# Add user message to history
|
|
336
|
+
durable_deps.add_user_message(message)
|
|
337
|
+
|
|
338
|
+
# Build llm.Context with the actual data
|
|
339
|
+
llm_ctx = llm.Context(deps=durable_deps.data)
|
|
340
|
+
|
|
341
|
+
# Build prompt using the context
|
|
342
|
+
prompt_messages = self.build_prompt(llm_ctx, message)
|
|
343
|
+
|
|
344
|
+
# Convert to serializable format for activity
|
|
345
|
+
serializable_messages = self._messages_to_dict(prompt_messages)
|
|
346
|
+
|
|
347
|
+
# Execute as durable activity
|
|
348
|
+
# The @activity decorator transforms the function signature, but mypy doesn't understand it
|
|
349
|
+
response: dict[str, Any] = await _chat_activity( # type: ignore[misc, call-arg]
|
|
350
|
+
self._workflow_ctx, # type: ignore[arg-type]
|
|
351
|
+
model=self.model,
|
|
352
|
+
messages=serializable_messages,
|
|
353
|
+
tools=self.get_tools(),
|
|
354
|
+
response_model=self.response_model,
|
|
355
|
+
deps_dict=durable_deps.to_dict(),
|
|
356
|
+
turn=self._turn_count,
|
|
357
|
+
**call_params,
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
# Add assistant response to history
|
|
361
|
+
assistant_content = response.get("content", "")
|
|
362
|
+
if assistant_content:
|
|
363
|
+
durable_deps.add_assistant_message(assistant_content)
|
|
364
|
+
|
|
365
|
+
return response
|
|
366
|
+
|
|
367
|
+
def _messages_to_dict(self, messages: list[Any]) -> list[dict[str, str]]:
|
|
368
|
+
"""Convert llm.messages to serializable dicts."""
|
|
369
|
+
result = []
|
|
370
|
+
for msg in messages:
|
|
371
|
+
if isinstance(msg, dict):
|
|
372
|
+
result.append(msg)
|
|
373
|
+
elif hasattr(msg, "role") and hasattr(msg, "content"):
|
|
374
|
+
content = self._extract_text_content(msg.content)
|
|
375
|
+
result.append({"role": msg.role, "content": content})
|
|
376
|
+
elif hasattr(msg, "content"):
|
|
377
|
+
content = self._extract_text_content(msg.content)
|
|
378
|
+
result.append({"role": "user", "content": content})
|
|
379
|
+
else:
|
|
380
|
+
result.append({"role": "user", "content": str(msg)})
|
|
381
|
+
return result
|
|
382
|
+
|
|
383
|
+
def _extract_text_content(self, content: Any) -> str:
|
|
384
|
+
"""
|
|
385
|
+
Extract text from Mirascope V2 content format.
|
|
386
|
+
|
|
387
|
+
Mirascope V2 content can be:
|
|
388
|
+
- A plain string
|
|
389
|
+
- A list of Text/ContentBlock objects with .text attribute
|
|
390
|
+
- None
|
|
391
|
+
|
|
392
|
+
Args:
|
|
393
|
+
content: The content to extract text from.
|
|
394
|
+
|
|
395
|
+
Returns:
|
|
396
|
+
Extracted text as a string.
|
|
397
|
+
"""
|
|
398
|
+
if content is None:
|
|
399
|
+
return ""
|
|
400
|
+
if isinstance(content, str):
|
|
401
|
+
return content
|
|
402
|
+
# Handle Mirascope V2's list of Text/ContentBlock objects
|
|
403
|
+
if isinstance(content, list):
|
|
404
|
+
text_parts = []
|
|
405
|
+
for item in content:
|
|
406
|
+
if hasattr(item, "text"):
|
|
407
|
+
text_parts.append(item.text)
|
|
408
|
+
elif isinstance(item, str):
|
|
409
|
+
text_parts.append(item)
|
|
410
|
+
else:
|
|
411
|
+
text_parts.append(str(item))
|
|
412
|
+
return "".join(text_parts)
|
|
413
|
+
return str(content)
|
|
414
|
+
|
|
415
|
+
async def chat_with_tool_loop(
|
|
416
|
+
self,
|
|
417
|
+
deps: T | DurableDeps[T],
|
|
418
|
+
message: str,
|
|
419
|
+
tool_executor: Any | None = None,
|
|
420
|
+
max_iterations: int = 10,
|
|
421
|
+
**call_params: Any,
|
|
422
|
+
) -> dict[str, Any]:
|
|
423
|
+
"""
|
|
424
|
+
Chat with automatic tool execution loop.
|
|
425
|
+
|
|
426
|
+
Continues calling tools until the model stops requesting them
|
|
427
|
+
or max_iterations is reached.
|
|
428
|
+
|
|
429
|
+
Args:
|
|
430
|
+
deps: Dependency data
|
|
431
|
+
message: Initial user message
|
|
432
|
+
tool_executor: Optional callable(tool_name, tool_args) -> result.
|
|
433
|
+
If None, tools are not executed.
|
|
434
|
+
max_iterations: Maximum tool call iterations
|
|
435
|
+
**call_params: Additional LLM call parameters
|
|
436
|
+
|
|
437
|
+
Returns:
|
|
438
|
+
Final response after tool loop completes
|
|
439
|
+
"""
|
|
440
|
+
response = await self.chat(deps, message, **call_params)
|
|
441
|
+
|
|
442
|
+
iteration = 0
|
|
443
|
+
while response.get("tool_calls") and iteration < max_iterations:
|
|
444
|
+
if tool_executor is None:
|
|
445
|
+
# No executor provided, return with tool_calls
|
|
446
|
+
break
|
|
447
|
+
|
|
448
|
+
# Execute tools
|
|
449
|
+
tool_outputs = []
|
|
450
|
+
for tc in response["tool_calls"]:
|
|
451
|
+
tool_name = tc.get("name")
|
|
452
|
+
tool_args = tc.get("args", {})
|
|
453
|
+
try:
|
|
454
|
+
result = await tool_executor(tool_name, tool_args)
|
|
455
|
+
tool_outputs.append({"tool": tool_name, "output": str(result)})
|
|
456
|
+
except Exception as e:
|
|
457
|
+
tool_outputs.append({"tool": tool_name, "error": str(e)})
|
|
458
|
+
|
|
459
|
+
# Format tool results and continue conversation
|
|
460
|
+
tool_results_str = "\n".join(
|
|
461
|
+
f"Tool {to['tool']}: {to.get('output', to.get('error', 'Unknown'))}"
|
|
462
|
+
for to in tool_outputs
|
|
463
|
+
)
|
|
464
|
+
response = await self.chat(deps, f"Tool results:\n{tool_results_str}", **call_params)
|
|
465
|
+
iteration += 1
|
|
466
|
+
|
|
467
|
+
return response
|
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Simple durable LLM call function for Edda + Mirascope V2 integration.
|
|
3
|
+
|
|
4
|
+
This module provides a straightforward way to make durable LLM calls
|
|
5
|
+
without needing to define a separate function with @durable_call.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
from typing import Any
|
|
11
|
+
|
|
12
|
+
from edda.activity import activity
|
|
13
|
+
from edda.context import WorkflowContext
|
|
14
|
+
|
|
15
|
+
from .types import DurableResponse
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def _import_mirascope() -> Any:
|
|
19
|
+
"""
|
|
20
|
+
Lazy import Mirascope components.
|
|
21
|
+
|
|
22
|
+
Raises:
|
|
23
|
+
ImportError: If mirascope is not installed.
|
|
24
|
+
"""
|
|
25
|
+
try:
|
|
26
|
+
from mirascope import llm
|
|
27
|
+
|
|
28
|
+
return llm
|
|
29
|
+
except ImportError as e:
|
|
30
|
+
raise ImportError(
|
|
31
|
+
"Mirascope not installed. Install with: pip install 'mirascope[anthropic]' "
|
|
32
|
+
"or pip install 'edda-framework[mirascope]'"
|
|
33
|
+
) from e
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@activity
|
|
37
|
+
async def call(
|
|
38
|
+
ctx: WorkflowContext, # noqa: ARG001 - Required by @activity decorator
|
|
39
|
+
*,
|
|
40
|
+
model: str,
|
|
41
|
+
prompt: str,
|
|
42
|
+
system: str | None = None,
|
|
43
|
+
tools: list[Any] | None = None,
|
|
44
|
+
response_model: type | None = None,
|
|
45
|
+
**call_params: Any,
|
|
46
|
+
) -> dict[str, Any]:
|
|
47
|
+
"""
|
|
48
|
+
Make a durable LLM call.
|
|
49
|
+
|
|
50
|
+
This is a simple, ad-hoc way to make LLM calls within workflows.
|
|
51
|
+
For more complex use cases, consider using the @durable_call decorator.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
ctx: Workflow context (automatically provided by Edda).
|
|
55
|
+
model: Model identifier in "provider/model" format
|
|
56
|
+
(e.g., "anthropic/claude-sonnet-4-20250514", "openai/gpt-4").
|
|
57
|
+
prompt: The user prompt/message.
|
|
58
|
+
system: Optional system prompt.
|
|
59
|
+
tools: Optional list of tool functions for function calling.
|
|
60
|
+
response_model: Optional Pydantic model for structured output.
|
|
61
|
+
**call_params: Additional parameters passed to the LLM provider.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
Dictionary representation of DurableResponse.
|
|
65
|
+
|
|
66
|
+
Example:
|
|
67
|
+
>>> @workflow
|
|
68
|
+
... async def my_workflow(ctx: WorkflowContext, question: str) -> str:
|
|
69
|
+
... response = await call(
|
|
70
|
+
... ctx,
|
|
71
|
+
... model="anthropic/claude-sonnet-4-20250514",
|
|
72
|
+
... prompt=question,
|
|
73
|
+
... system="You are a helpful assistant.",
|
|
74
|
+
... )
|
|
75
|
+
... return response["content"]
|
|
76
|
+
"""
|
|
77
|
+
llm = _import_mirascope()
|
|
78
|
+
|
|
79
|
+
# Extract provider from model string (e.g., "anthropic/claude-..." -> "anthropic")
|
|
80
|
+
provider = model.split("/")[0] if "/" in model else "unknown"
|
|
81
|
+
|
|
82
|
+
# Build the call function dynamically using V2 API
|
|
83
|
+
@llm.call(model, tools=tools, response_model=response_model, **call_params) # type: ignore[misc]
|
|
84
|
+
async def _call() -> list[Any]:
|
|
85
|
+
# V2: Use llm.messages.system/user and return list directly
|
|
86
|
+
messages = []
|
|
87
|
+
if system:
|
|
88
|
+
messages.append(llm.messages.system(system))
|
|
89
|
+
messages.append(llm.messages.user(prompt))
|
|
90
|
+
return messages
|
|
91
|
+
|
|
92
|
+
# Execute the call
|
|
93
|
+
response = await _call()
|
|
94
|
+
|
|
95
|
+
# Convert to serializable format
|
|
96
|
+
return DurableResponse.from_mirascope(response, provider).to_dict()
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@activity
|
|
100
|
+
async def call_with_messages(
|
|
101
|
+
ctx: WorkflowContext, # noqa: ARG001 - Required by @activity decorator
|
|
102
|
+
*,
|
|
103
|
+
model: str,
|
|
104
|
+
messages: list[dict[str, str]],
|
|
105
|
+
tools: list[Any] | None = None,
|
|
106
|
+
response_model: type | None = None,
|
|
107
|
+
**call_params: Any,
|
|
108
|
+
) -> dict[str, Any]:
|
|
109
|
+
"""
|
|
110
|
+
Make a durable LLM call with a full message history.
|
|
111
|
+
|
|
112
|
+
This is useful for multi-turn conversations where you need to pass
|
|
113
|
+
the full conversation history.
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
ctx: Workflow context (automatically provided by Edda).
|
|
117
|
+
model: Model identifier in "provider/model" format
|
|
118
|
+
(e.g., "anthropic/claude-sonnet-4-20250514", "openai/gpt-4").
|
|
119
|
+
messages: List of message dicts with "role" and "content" keys.
|
|
120
|
+
tools: Optional list of tool functions for function calling.
|
|
121
|
+
response_model: Optional Pydantic model for structured output.
|
|
122
|
+
**call_params: Additional parameters passed to the LLM provider.
|
|
123
|
+
|
|
124
|
+
Returns:
|
|
125
|
+
Dictionary representation of DurableResponse.
|
|
126
|
+
|
|
127
|
+
Example:
|
|
128
|
+
>>> @workflow
|
|
129
|
+
... async def chat_workflow(ctx: WorkflowContext, history: list[dict]) -> str:
|
|
130
|
+
... response = await call_with_messages(
|
|
131
|
+
... ctx,
|
|
132
|
+
... model="anthropic/claude-sonnet-4-20250514",
|
|
133
|
+
... messages=history,
|
|
134
|
+
... )
|
|
135
|
+
... return response["content"]
|
|
136
|
+
"""
|
|
137
|
+
llm = _import_mirascope()
|
|
138
|
+
|
|
139
|
+
# Extract provider and model_id from model string
|
|
140
|
+
# e.g., "anthropic/claude-sonnet-4-20250514" -> provider="anthropic", model_id="anthropic/claude-sonnet-4-20250514"
|
|
141
|
+
provider = model.split("/")[0] if "/" in model else "unknown"
|
|
142
|
+
|
|
143
|
+
# Convert message dicts to Mirascope V2 message objects
|
|
144
|
+
def convert_messages(msgs: list[dict[str, str]]) -> list[Any]:
|
|
145
|
+
result = []
|
|
146
|
+
for msg in msgs:
|
|
147
|
+
role = msg.get("role", "user")
|
|
148
|
+
content = msg.get("content", "")
|
|
149
|
+
if role == "system":
|
|
150
|
+
result.append(llm.messages.system(content))
|
|
151
|
+
elif role == "assistant":
|
|
152
|
+
# Mirascope V2: assistant messages require model_id and provider_id
|
|
153
|
+
result.append(llm.messages.assistant(content, model_id=model, provider_id=provider))
|
|
154
|
+
else:
|
|
155
|
+
result.append(llm.messages.user(content))
|
|
156
|
+
return result
|
|
157
|
+
|
|
158
|
+
@llm.call(model, tools=tools, response_model=response_model, **call_params) # type: ignore[misc]
|
|
159
|
+
async def _call() -> list[Any]:
|
|
160
|
+
return convert_messages(messages)
|
|
161
|
+
|
|
162
|
+
# Execute the call
|
|
163
|
+
response = await _call()
|
|
164
|
+
|
|
165
|
+
# Convert to serializable format
|
|
166
|
+
return DurableResponse.from_mirascope(response, provider).to_dict()
|
|
@@ -0,0 +1,163 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Durable LLM call decorator for Edda + Mirascope V2 integration.
|
|
3
|
+
|
|
4
|
+
This module provides the @durable_call decorator that combines
|
|
5
|
+
Mirascope's @llm.call with Edda's @activity for durable LLM calls.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
import functools
|
|
11
|
+
import inspect
|
|
12
|
+
from collections.abc import Callable
|
|
13
|
+
from typing import Any, TypeVar
|
|
14
|
+
|
|
15
|
+
from edda.activity import activity
|
|
16
|
+
from edda.context import WorkflowContext
|
|
17
|
+
|
|
18
|
+
from .types import DurableResponse
|
|
19
|
+
|
|
20
|
+
F = TypeVar("F", bound=Callable[..., Any])
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _import_mirascope() -> Any:
|
|
24
|
+
"""
|
|
25
|
+
Lazy import Mirascope components.
|
|
26
|
+
|
|
27
|
+
Raises:
|
|
28
|
+
ImportError: If mirascope is not installed.
|
|
29
|
+
"""
|
|
30
|
+
try:
|
|
31
|
+
from mirascope import llm
|
|
32
|
+
|
|
33
|
+
return llm
|
|
34
|
+
except ImportError as e:
|
|
35
|
+
raise ImportError(
|
|
36
|
+
"Mirascope not installed. Install with: pip install 'mirascope[anthropic]' "
|
|
37
|
+
"or pip install 'edda-framework[mirascope]'"
|
|
38
|
+
) from e
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def durable_call(
|
|
42
|
+
model: str,
|
|
43
|
+
*,
|
|
44
|
+
tools: list[Any] | None = None,
|
|
45
|
+
response_model: type | None = None,
|
|
46
|
+
json_mode: bool = False,
|
|
47
|
+
**call_params: Any,
|
|
48
|
+
) -> Callable[[F], F]:
|
|
49
|
+
"""
|
|
50
|
+
Decorator that makes an LLM call durable through Edda's activity system.
|
|
51
|
+
|
|
52
|
+
This decorator combines Mirascope V2's @llm.call with Edda's @activity,
|
|
53
|
+
providing automatic caching, retry, and crash recovery for LLM calls.
|
|
54
|
+
|
|
55
|
+
Args:
|
|
56
|
+
model: Model identifier in "provider/model" format
|
|
57
|
+
(e.g., "anthropic/claude-sonnet-4-20250514", "openai/gpt-4").
|
|
58
|
+
tools: Optional list of tool functions for function calling.
|
|
59
|
+
response_model: Optional Pydantic model for structured output.
|
|
60
|
+
json_mode: Whether to enable JSON mode.
|
|
61
|
+
**call_params: Additional parameters passed to the LLM provider.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
A decorator that transforms the function into a durable LLM call.
|
|
65
|
+
|
|
66
|
+
Example:
|
|
67
|
+
Basic usage::
|
|
68
|
+
|
|
69
|
+
@durable_call("anthropic/claude-sonnet-4-20250514")
|
|
70
|
+
async def summarize(text: str) -> str:
|
|
71
|
+
return f"Summarize this text: {text}"
|
|
72
|
+
|
|
73
|
+
@workflow
|
|
74
|
+
async def my_workflow(ctx: WorkflowContext, text: str) -> str:
|
|
75
|
+
response = await summarize(ctx, text)
|
|
76
|
+
return response["content"]
|
|
77
|
+
|
|
78
|
+
With tools::
|
|
79
|
+
|
|
80
|
+
def get_weather(city: str) -> str:
|
|
81
|
+
'''Get the weather for a city.'''
|
|
82
|
+
return f"Sunny in {city}"
|
|
83
|
+
|
|
84
|
+
@durable_call(
|
|
85
|
+
"anthropic/claude-sonnet-4-20250514",
|
|
86
|
+
tools=[get_weather],
|
|
87
|
+
)
|
|
88
|
+
async def weather_assistant(query: str) -> str:
|
|
89
|
+
return query
|
|
90
|
+
|
|
91
|
+
With structured output::
|
|
92
|
+
|
|
93
|
+
class BookInfo(BaseModel):
|
|
94
|
+
title: str
|
|
95
|
+
author: str
|
|
96
|
+
year: int
|
|
97
|
+
|
|
98
|
+
@durable_call(
|
|
99
|
+
"anthropic/claude-sonnet-4-20250514",
|
|
100
|
+
response_model=BookInfo,
|
|
101
|
+
)
|
|
102
|
+
async def extract_book_info(text: str) -> str:
|
|
103
|
+
return f"Extract book information from: {text}"
|
|
104
|
+
|
|
105
|
+
Note:
|
|
106
|
+
- The decorated function must return a string (the prompt).
|
|
107
|
+
- When called, the first argument must be the WorkflowContext.
|
|
108
|
+
- The response is returned as a dictionary (DurableResponse.to_dict()).
|
|
109
|
+
"""
|
|
110
|
+
llm = _import_mirascope()
|
|
111
|
+
|
|
112
|
+
# Extract provider from model string (e.g., "anthropic/claude-..." -> "anthropic")
|
|
113
|
+
provider = model.split("/")[0] if "/" in model else "unknown"
|
|
114
|
+
|
|
115
|
+
def decorator(func: F) -> F:
|
|
116
|
+
# Apply Mirascope V2's @llm.call decorator with unified model string
|
|
117
|
+
mirascope_decorated = llm.call(
|
|
118
|
+
model,
|
|
119
|
+
tools=tools,
|
|
120
|
+
response_model=response_model,
|
|
121
|
+
json_mode=json_mode,
|
|
122
|
+
**call_params,
|
|
123
|
+
)(func)
|
|
124
|
+
|
|
125
|
+
# Determine if the original function is async
|
|
126
|
+
is_async = inspect.iscoroutinefunction(func)
|
|
127
|
+
|
|
128
|
+
@activity
|
|
129
|
+
@functools.wraps(func)
|
|
130
|
+
async def async_wrapper(
|
|
131
|
+
ctx: WorkflowContext, # noqa: ARG001 - Required by @activity decorator
|
|
132
|
+
*args: Any,
|
|
133
|
+
**kwargs: Any,
|
|
134
|
+
) -> dict[str, Any]:
|
|
135
|
+
# Call the Mirascope-decorated function
|
|
136
|
+
if is_async or inspect.iscoroutinefunction(mirascope_decorated):
|
|
137
|
+
response = await mirascope_decorated(*args, **kwargs)
|
|
138
|
+
else:
|
|
139
|
+
response = mirascope_decorated(*args, **kwargs)
|
|
140
|
+
|
|
141
|
+
# Handle structured output (response_model)
|
|
142
|
+
# For structured output, the response is the Pydantic model itself
|
|
143
|
+
if response_model is not None and hasattr(response, "model_dump"):
|
|
144
|
+
return {
|
|
145
|
+
"content": "",
|
|
146
|
+
"model": model,
|
|
147
|
+
"provider": provider,
|
|
148
|
+
"structured_output": response.model_dump(),
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
# Convert to serializable format
|
|
152
|
+
return DurableResponse.from_mirascope(response, provider).to_dict()
|
|
153
|
+
|
|
154
|
+
# Store metadata for introspection
|
|
155
|
+
async_wrapper._mirascope_func = mirascope_decorated # type: ignore[union-attr]
|
|
156
|
+
async_wrapper._provider = provider # type: ignore[union-attr]
|
|
157
|
+
async_wrapper._model = model # type: ignore[union-attr]
|
|
158
|
+
async_wrapper._tools = tools # type: ignore[union-attr]
|
|
159
|
+
async_wrapper._response_model = response_model # type: ignore[union-attr]
|
|
160
|
+
|
|
161
|
+
return async_wrapper # type: ignore[return-value]
|
|
162
|
+
|
|
163
|
+
return decorator
|
|
@@ -0,0 +1,268 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Type definitions for Edda + Mirascope integration.
|
|
3
|
+
|
|
4
|
+
This module provides serializable response types that bridge
|
|
5
|
+
Mirascope's response objects with Edda's activity system.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
from dataclasses import dataclass, field
|
|
11
|
+
from typing import Any
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class DurableResponse:
|
|
16
|
+
"""
|
|
17
|
+
Serializable representation of a Mirascope LLM response.
|
|
18
|
+
|
|
19
|
+
This class captures the essential parts of an LLM response
|
|
20
|
+
in a JSON-serializable format for Edda's activity caching.
|
|
21
|
+
|
|
22
|
+
Attributes:
|
|
23
|
+
content: The text content of the response.
|
|
24
|
+
model: The model identifier used for the call.
|
|
25
|
+
provider: The provider name (e.g., "anthropic", "openai").
|
|
26
|
+
usage: Token usage statistics (input, output, total).
|
|
27
|
+
tool_calls: List of tool calls requested by the model.
|
|
28
|
+
stop_reason: The reason the model stopped generating.
|
|
29
|
+
raw: Raw response data for debugging/advanced use.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
content: str
|
|
33
|
+
model: str
|
|
34
|
+
provider: str
|
|
35
|
+
usage: dict[str, int] | None = None
|
|
36
|
+
tool_calls: list[dict[str, Any]] | None = None
|
|
37
|
+
stop_reason: str | None = None
|
|
38
|
+
raw: dict[str, Any] = field(default_factory=dict)
|
|
39
|
+
|
|
40
|
+
def to_dict(self) -> dict[str, Any]:
|
|
41
|
+
"""Convert to JSON-serializable dictionary."""
|
|
42
|
+
return {
|
|
43
|
+
"content": self.content,
|
|
44
|
+
"model": self.model,
|
|
45
|
+
"provider": self.provider,
|
|
46
|
+
"usage": self.usage,
|
|
47
|
+
"tool_calls": self.tool_calls,
|
|
48
|
+
"stop_reason": self.stop_reason,
|
|
49
|
+
"raw": self.raw,
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
@classmethod
|
|
53
|
+
def from_dict(cls, data: dict[str, Any]) -> DurableResponse:
|
|
54
|
+
"""Create from dictionary (for replay)."""
|
|
55
|
+
return cls(
|
|
56
|
+
content=data.get("content", ""),
|
|
57
|
+
model=data.get("model", ""),
|
|
58
|
+
provider=data.get("provider", ""),
|
|
59
|
+
usage=data.get("usage"),
|
|
60
|
+
tool_calls=data.get("tool_calls"),
|
|
61
|
+
stop_reason=data.get("stop_reason"),
|
|
62
|
+
raw=data.get("raw", {}),
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
@classmethod
|
|
66
|
+
def _extract_content(cls, response: Any) -> str:
|
|
67
|
+
"""
|
|
68
|
+
Extract text content from a Mirascope response.
|
|
69
|
+
|
|
70
|
+
Handles Mirascope V2's response format where content can be:
|
|
71
|
+
- A plain string
|
|
72
|
+
- A list of Text/ContentBlock objects with .text attribute
|
|
73
|
+
- None
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
response: The Mirascope CallResponse object.
|
|
77
|
+
|
|
78
|
+
Returns:
|
|
79
|
+
The extracted text content as a string.
|
|
80
|
+
"""
|
|
81
|
+
if not hasattr(response, "content"):
|
|
82
|
+
return str(response)
|
|
83
|
+
|
|
84
|
+
content = response.content
|
|
85
|
+
if content is None:
|
|
86
|
+
return ""
|
|
87
|
+
if isinstance(content, str):
|
|
88
|
+
return content
|
|
89
|
+
|
|
90
|
+
# Handle Mirascope V2's list of Text/ContentBlock objects
|
|
91
|
+
# e.g., [Text(type='text', text='Hello!')]
|
|
92
|
+
if isinstance(content, list):
|
|
93
|
+
text_parts = []
|
|
94
|
+
for item in content:
|
|
95
|
+
if hasattr(item, "text"):
|
|
96
|
+
text_parts.append(item.text)
|
|
97
|
+
elif isinstance(item, str):
|
|
98
|
+
text_parts.append(item)
|
|
99
|
+
else:
|
|
100
|
+
text_parts.append(str(item))
|
|
101
|
+
return "".join(text_parts)
|
|
102
|
+
|
|
103
|
+
return str(content)
|
|
104
|
+
|
|
105
|
+
@classmethod
|
|
106
|
+
def _extract_model(cls, response: Any) -> str:
|
|
107
|
+
"""
|
|
108
|
+
Extract model string from a Mirascope response.
|
|
109
|
+
|
|
110
|
+
Handles Mirascope V2 where response.model is a Model object,
|
|
111
|
+
not a string. Use model_id for the string version.
|
|
112
|
+
|
|
113
|
+
Args:
|
|
114
|
+
response: The Mirascope CallResponse object.
|
|
115
|
+
|
|
116
|
+
Returns:
|
|
117
|
+
The model identifier as a string.
|
|
118
|
+
"""
|
|
119
|
+
# Mirascope V2: use model_id (string) instead of model (Model object)
|
|
120
|
+
if hasattr(response, "model_id"):
|
|
121
|
+
return str(response.model_id)
|
|
122
|
+
|
|
123
|
+
# Fallback: try model attribute
|
|
124
|
+
model = getattr(response, "model", "")
|
|
125
|
+
if isinstance(model, str):
|
|
126
|
+
return model
|
|
127
|
+
|
|
128
|
+
# If model is an object, try to get a string representation
|
|
129
|
+
return str(model) if model else ""
|
|
130
|
+
|
|
131
|
+
@classmethod
|
|
132
|
+
def _extract_usage(cls, response: Any) -> dict[str, Any] | None:
|
|
133
|
+
"""
|
|
134
|
+
Extract usage statistics from a Mirascope response.
|
|
135
|
+
|
|
136
|
+
Handles Mirascope V2 where usage may be in response.raw.usage
|
|
137
|
+
instead of response.usage.
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
response: The Mirascope CallResponse object.
|
|
141
|
+
|
|
142
|
+
Returns:
|
|
143
|
+
Usage statistics as a dict, or None if not available.
|
|
144
|
+
"""
|
|
145
|
+
usage = None
|
|
146
|
+
|
|
147
|
+
# Try direct usage attribute first
|
|
148
|
+
if hasattr(response, "usage") and response.usage is not None:
|
|
149
|
+
if hasattr(response.usage, "model_dump"):
|
|
150
|
+
usage = response.usage.model_dump()
|
|
151
|
+
elif isinstance(response.usage, dict):
|
|
152
|
+
usage = response.usage
|
|
153
|
+
|
|
154
|
+
# Mirascope V2: try response.raw.usage
|
|
155
|
+
if usage is None and hasattr(response, "raw") and response.raw is not None:
|
|
156
|
+
raw = response.raw
|
|
157
|
+
if hasattr(raw, "usage") and raw.usage is not None:
|
|
158
|
+
if hasattr(raw.usage, "model_dump"):
|
|
159
|
+
usage = raw.usage.model_dump()
|
|
160
|
+
elif isinstance(raw.usage, dict):
|
|
161
|
+
usage = raw.usage
|
|
162
|
+
|
|
163
|
+
return usage
|
|
164
|
+
|
|
165
|
+
@classmethod
|
|
166
|
+
def _extract_stop_reason(cls, response: Any) -> str | None:
|
|
167
|
+
"""
|
|
168
|
+
Extract stop reason from a Mirascope response.
|
|
169
|
+
|
|
170
|
+
Handles various attribute names across different providers
|
|
171
|
+
and Mirascope versions.
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
response: The Mirascope CallResponse object.
|
|
175
|
+
|
|
176
|
+
Returns:
|
|
177
|
+
The stop reason as a string, or None if not available.
|
|
178
|
+
"""
|
|
179
|
+
# Try common attribute names
|
|
180
|
+
stop_reason = getattr(response, "stop_reason", None)
|
|
181
|
+
if stop_reason is None:
|
|
182
|
+
stop_reason = getattr(response, "finish_reason", None)
|
|
183
|
+
|
|
184
|
+
# Mirascope V2: try response.raw.stop_reason
|
|
185
|
+
if stop_reason is None and hasattr(response, "raw") and response.raw is not None:
|
|
186
|
+
stop_reason = getattr(response.raw, "stop_reason", None)
|
|
187
|
+
if stop_reason is None:
|
|
188
|
+
stop_reason = getattr(response.raw, "finish_reason", None)
|
|
189
|
+
|
|
190
|
+
return stop_reason
|
|
191
|
+
|
|
192
|
+
@classmethod
|
|
193
|
+
def _parse_tool_args(cls, args: Any) -> dict[str, Any]:
|
|
194
|
+
"""
|
|
195
|
+
Parse tool arguments from various formats.
|
|
196
|
+
|
|
197
|
+
Mirascope V2 returns args as a JSON string (e.g., '{"city": "Tokyo"}'),
|
|
198
|
+
while we need a dict for execution.
|
|
199
|
+
|
|
200
|
+
Args:
|
|
201
|
+
args: Tool arguments (string, dict, or None).
|
|
202
|
+
|
|
203
|
+
Returns:
|
|
204
|
+
Parsed arguments as a dict.
|
|
205
|
+
"""
|
|
206
|
+
import json
|
|
207
|
+
|
|
208
|
+
if args is None:
|
|
209
|
+
return {}
|
|
210
|
+
if isinstance(args, dict):
|
|
211
|
+
return args
|
|
212
|
+
if isinstance(args, str):
|
|
213
|
+
try:
|
|
214
|
+
parsed = json.loads(args)
|
|
215
|
+
return parsed if isinstance(parsed, dict) else {}
|
|
216
|
+
except json.JSONDecodeError:
|
|
217
|
+
return {}
|
|
218
|
+
return {}
|
|
219
|
+
|
|
220
|
+
@classmethod
|
|
221
|
+
def from_mirascope(cls, response: Any, provider: str) -> DurableResponse:
|
|
222
|
+
"""
|
|
223
|
+
Convert a Mirascope response to DurableResponse.
|
|
224
|
+
|
|
225
|
+
Args:
|
|
226
|
+
response: The Mirascope CallResponse object.
|
|
227
|
+
provider: The provider name (e.g., "anthropic").
|
|
228
|
+
|
|
229
|
+
Returns:
|
|
230
|
+
A DurableResponse instance with serializable data.
|
|
231
|
+
"""
|
|
232
|
+
# Extract tool calls if available
|
|
233
|
+
tool_calls = None
|
|
234
|
+
if hasattr(response, "tool_calls") and response.tool_calls:
|
|
235
|
+
tool_calls = []
|
|
236
|
+
for tc in response.tool_calls:
|
|
237
|
+
if hasattr(tc, "model_dump"):
|
|
238
|
+
tc_dict = tc.model_dump()
|
|
239
|
+
# Ensure args is a dict, not a JSON string
|
|
240
|
+
tc_dict["args"] = cls._parse_tool_args(tc_dict.get("args"))
|
|
241
|
+
tool_calls.append(tc_dict)
|
|
242
|
+
elif isinstance(tc, dict):
|
|
243
|
+
tc["args"] = cls._parse_tool_args(tc.get("args"))
|
|
244
|
+
tool_calls.append(tc)
|
|
245
|
+
else:
|
|
246
|
+
# Fallback: extract common attributes
|
|
247
|
+
raw_args = getattr(tc, "args", None) or getattr(tc, "arguments", {})
|
|
248
|
+
tool_calls.append(
|
|
249
|
+
{
|
|
250
|
+
"name": getattr(tc, "name", None) or getattr(tc, "tool_name", None),
|
|
251
|
+
"args": cls._parse_tool_args(raw_args),
|
|
252
|
+
"id": getattr(tc, "id", None) or getattr(tc, "tool_call_id", None),
|
|
253
|
+
}
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
return cls(
|
|
257
|
+
content=cls._extract_content(response),
|
|
258
|
+
model=cls._extract_model(response),
|
|
259
|
+
provider=provider,
|
|
260
|
+
usage=cls._extract_usage(response),
|
|
261
|
+
tool_calls=tool_calls,
|
|
262
|
+
stop_reason=cls._extract_stop_reason(response),
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
@property
|
|
266
|
+
def has_tool_calls(self) -> bool:
|
|
267
|
+
"""Check if the response contains tool calls."""
|
|
268
|
+
return bool(self.tool_calls)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: edda-framework
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.11.0
|
|
4
4
|
Summary: Lightweight Durable Execution Framework
|
|
5
5
|
Project-URL: Homepage, https://github.com/i2y/edda
|
|
6
6
|
Project-URL: Documentation, https://github.com/i2y/edda#readme
|
|
@@ -44,6 +44,9 @@ Requires-Dist: testcontainers[postgres]>=4.0.0; extra == 'dev'
|
|
|
44
44
|
Requires-Dist: tsuno>=0.1.3; extra == 'dev'
|
|
45
45
|
Provides-Extra: mcp
|
|
46
46
|
Requires-Dist: mcp>=1.22.0; extra == 'mcp'
|
|
47
|
+
Provides-Extra: mirascope
|
|
48
|
+
Requires-Dist: mirascope[anthropic,google,openai]>=2.0.0a0; extra == 'mirascope'
|
|
49
|
+
Requires-Dist: pydantic-settings>=2.0.0; extra == 'mirascope'
|
|
47
50
|
Provides-Extra: mysql
|
|
48
51
|
Requires-Dist: aiomysql>=0.2.0; extra == 'mysql'
|
|
49
52
|
Provides-Extra: opentelemetry
|
|
@@ -93,6 +96,7 @@ For detailed documentation, visit [https://i2y.github.io/edda/](https://i2y.gith
|
|
|
93
96
|
- 📬 **Channel-based Messaging**: Actor-model style communication with competing (job queue) and broadcast (fan-out) modes
|
|
94
97
|
- ⚡ **Instant Notifications**: PostgreSQL LISTEN/NOTIFY for near-instant event delivery (optional)
|
|
95
98
|
- 🤖 **MCP Integration**: Expose durable workflows as AI tools via Model Context Protocol
|
|
99
|
+
- 🧠 **Mirascope Integration**: Durable LLM calls
|
|
96
100
|
- 🌍 **ASGI/WSGI Support**: Deploy with your preferred server (uvicorn, gunicorn, uWSGI)
|
|
97
101
|
|
|
98
102
|
## Use Cases
|
|
@@ -16,6 +16,11 @@ edda/integrations/__init__.py,sha256=F_CaTvlDEbldfOpPKq_U9ve1E573tS6XzqXnOtyHcXI
|
|
|
16
16
|
edda/integrations/mcp/__init__.py,sha256=YK-8m0DIdP-RSqewlIX7xnWU7TD3NioCiW2_aZSgnn8,1232
|
|
17
17
|
edda/integrations/mcp/decorators.py,sha256=31SmbDwmHEGvUNa3aaatW91hBkpnS5iN9uy47dID3J4,10037
|
|
18
18
|
edda/integrations/mcp/server.py,sha256=Q5r4AbMn-9gBcy2CZocbgW7O0fn7Qb4e9CBJa1FEmzU,14507
|
|
19
|
+
edda/integrations/mirascope/__init__.py,sha256=TKKIs1W2ef88qT1oNoNm0-DQZObOc7tiuw3ul38nc6U,2509
|
|
20
|
+
edda/integrations/mirascope/agent.py,sha256=9y2HmyEDs5zREJgRuXI9EINjj09rWy991Khs7eDXfyY,16235
|
|
21
|
+
edda/integrations/mirascope/call.py,sha256=2pSDrja8Zix6d3TM4VejLmp1DHxbUnSAdSBSg7CFC7k,5754
|
|
22
|
+
edda/integrations/mirascope/decorator.py,sha256=TIK9qoR5ydaz-r33HAMuLrY4rsKJ5tsPlJJp5T_06B8,5488
|
|
23
|
+
edda/integrations/mirascope/types.py,sha256=vgEAu8EFTLSd92XSAxtZpMoe5gv93fe4Rm0DaXaDlV8,9088
|
|
19
24
|
edda/integrations/opentelemetry/__init__.py,sha256=x1_PyyygGDW-rxQTwoIrGzyjKErXHOOKdquFAMlCOAo,906
|
|
20
25
|
edda/integrations/opentelemetry/hooks.py,sha256=rCb6K_gJJMxjQ-UoJnbIOWsafapipzu7w-YPROZKxDA,21330
|
|
21
26
|
edda/outbox/__init__.py,sha256=azXG1rtheJEjOyoWmMsBeR2jp8Bz02R3wDEd5tQnaWA,424
|
|
@@ -38,8 +43,8 @@ edda/viewer_ui/theme.py,sha256=mrXoXLRzgSnvE2a58LuMcPJkhlvHEDMWVa8Smqtk4l0,8118
|
|
|
38
43
|
edda/visualizer/__init__.py,sha256=DOpDstNhR0VcXAs_eMKxaL30p_0u4PKZ4o2ndnYhiRo,343
|
|
39
44
|
edda/visualizer/ast_analyzer.py,sha256=plmx7C9X_X35xLY80jxOL3ljg3afXxBePRZubqUIkxY,13663
|
|
40
45
|
edda/visualizer/mermaid_generator.py,sha256=XWa2egoOTNDfJEjPcwoxwQmblUqXf7YInWFjFRI1QGo,12457
|
|
41
|
-
edda_framework-0.
|
|
42
|
-
edda_framework-0.
|
|
43
|
-
edda_framework-0.
|
|
44
|
-
edda_framework-0.
|
|
45
|
-
edda_framework-0.
|
|
46
|
+
edda_framework-0.11.0.dist-info/METADATA,sha256=AkgFtGUJNfhOoHXzti_R7fLli1q45Bg5xO6TfpjvsO8,36587
|
|
47
|
+
edda_framework-0.11.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
48
|
+
edda_framework-0.11.0.dist-info/entry_points.txt,sha256=dPH47s6UoJgUZxHoeSMqZsQkLaSE-SGLi-gh88k2WrU,48
|
|
49
|
+
edda_framework-0.11.0.dist-info/licenses/LICENSE,sha256=udxb-V7_cYKTHqW7lNm48rxJ-Zpf0WAY_PyGDK9BPCo,1069
|
|
50
|
+
edda_framework-0.11.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|