ebm 0.99.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ebm/__init__.py +0 -0
- ebm/__main__.py +152 -0
- ebm/__version__.py +1 -0
- ebm/cmd/__init__.py +0 -0
- ebm/cmd/calibrate.py +83 -0
- ebm/cmd/calibrate_excel_com_io.py +128 -0
- ebm/cmd/heating_systems_by_year.py +18 -0
- ebm/cmd/helpers.py +134 -0
- ebm/cmd/initialize.py +167 -0
- ebm/cmd/migrate.py +92 -0
- ebm/cmd/pipeline.py +227 -0
- ebm/cmd/prepare_main.py +174 -0
- ebm/cmd/result_handler.py +272 -0
- ebm/cmd/run_calculation.py +221 -0
- ebm/data/area.csv +92 -0
- ebm/data/area_new_residential_buildings.csv +3 -0
- ebm/data/area_per_person.csv +12 -0
- ebm/data/building_code_parameters.csv +9 -0
- ebm/data/energy_need_behaviour_factor.csv +6 -0
- ebm/data/energy_need_improvements.csv +7 -0
- ebm/data/energy_need_original_condition.csv +534 -0
- ebm/data/heating_system_efficiencies.csv +13 -0
- ebm/data/heating_system_forecast.csv +9 -0
- ebm/data/heating_system_initial_shares.csv +1113 -0
- ebm/data/holiday_home_energy_consumption.csv +24 -0
- ebm/data/holiday_home_stock.csv +25 -0
- ebm/data/improvement_building_upgrade.csv +9 -0
- ebm/data/new_buildings_residential.csv +32 -0
- ebm/data/population_forecast.csv +51 -0
- ebm/data/s_curve.csv +40 -0
- ebm/energy_consumption.py +307 -0
- ebm/extractors.py +115 -0
- ebm/heating_system_forecast.py +472 -0
- ebm/holiday_home_energy.py +341 -0
- ebm/migrations.py +224 -0
- ebm/model/__init__.py +0 -0
- ebm/model/area.py +403 -0
- ebm/model/bema.py +149 -0
- ebm/model/building_category.py +150 -0
- ebm/model/building_condition.py +78 -0
- ebm/model/calibrate_energy_requirements.py +84 -0
- ebm/model/calibrate_heating_systems.py +180 -0
- ebm/model/column_operations.py +157 -0
- ebm/model/construction.py +827 -0
- ebm/model/data_classes.py +223 -0
- ebm/model/database_manager.py +410 -0
- ebm/model/dataframemodels.py +115 -0
- ebm/model/defaults.py +30 -0
- ebm/model/energy_need.py +6 -0
- ebm/model/energy_need_filter.py +182 -0
- ebm/model/energy_purpose.py +115 -0
- ebm/model/energy_requirement.py +353 -0
- ebm/model/energy_use.py +202 -0
- ebm/model/enums.py +8 -0
- ebm/model/exceptions.py +4 -0
- ebm/model/file_handler.py +388 -0
- ebm/model/filter_scurve_params.py +83 -0
- ebm/model/filter_tek.py +152 -0
- ebm/model/heat_pump.py +53 -0
- ebm/model/heating_systems.py +20 -0
- ebm/model/heating_systems_parameter.py +17 -0
- ebm/model/heating_systems_projection.py +3 -0
- ebm/model/heating_systems_share.py +28 -0
- ebm/model/scurve.py +224 -0
- ebm/model/tek.py +1 -0
- ebm/s_curve.py +515 -0
- ebm/services/__init__.py +0 -0
- ebm/services/calibration_writer.py +262 -0
- ebm/services/console.py +106 -0
- ebm/services/excel_loader.py +66 -0
- ebm/services/files.py +38 -0
- ebm/services/spreadsheet.py +289 -0
- ebm/temp_calc.py +99 -0
- ebm/validators.py +565 -0
- ebm-0.99.3.dist-info/METADATA +217 -0
- ebm-0.99.3.dist-info/RECORD +80 -0
- ebm-0.99.3.dist-info/WHEEL +5 -0
- ebm-0.99.3.dist-info/entry_points.txt +3 -0
- ebm-0.99.3.dist-info/licenses/LICENSE +21 -0
- ebm-0.99.3.dist-info/top_level.txt +1 -0
ebm/model/area.py
ADDED
@@ -0,0 +1,403 @@
|
|
1
|
+
from loguru import logger
|
2
|
+
import pandas as pd
|
3
|
+
|
4
|
+
from ebm.model.building_condition import BuildingCondition
|
5
|
+
from ebm.model.data_classes import YearRange
|
6
|
+
from ebm.model.database_manager import DatabaseManager
|
7
|
+
from ebm.model.scurve import SCurve
|
8
|
+
from ebm.model.construction import ConstructionCalculator
|
9
|
+
|
10
|
+
|
11
|
+
def transform_area_forecast_to_area_change(area_forecast: pd.DataFrame,
|
12
|
+
building_code_parameters: pd.DataFrame | None = None) -> pd.DataFrame:
|
13
|
+
"""
|
14
|
+
Transform area forecast data into yearly area changes due to construction and demolition.
|
15
|
+
|
16
|
+
This function processes forecasted area data and optional building_code parameters to compute
|
17
|
+
the net yearly area change. It distinguishes between construction (positive area change)
|
18
|
+
and demolition (negative area change), and returns a combined DataFrame.
|
19
|
+
|
20
|
+
Parameters
|
21
|
+
----------
|
22
|
+
area_forecast : pandas.DataFrame
|
23
|
+
A DataFrame containing forecasted building area data, including construction and demolition.
|
24
|
+
|
25
|
+
building_code_parameters : pandas.DataFrame, optional
|
26
|
+
A DataFrame containing building_code-related parameters used to refine construction data.
|
27
|
+
If None, construction is assumed to be of TEK17. (transform_construction_by_year)
|
28
|
+
|
29
|
+
Returns
|
30
|
+
-------
|
31
|
+
pandas.DataFrame
|
32
|
+
A DataFrame with yearly area changes. Columns include:
|
33
|
+
- 'building_category': Category of the building.
|
34
|
+
- 'building_code': building_code classification.
|
35
|
+
- 'year': Year of the area change.
|
36
|
+
- 'demolition_construction': Indicates whether the change is due to 'construction' or 'demolition'.
|
37
|
+
- 'm2': Area change in square meters (positive for construction, negative for demolition).
|
38
|
+
|
39
|
+
Notes
|
40
|
+
-----
|
41
|
+
- Demolition areas are negated to represent area loss.
|
42
|
+
- Missing values are filled with 0.0.
|
43
|
+
- Assumes helper functions `transform_construction_by_year` and
|
44
|
+
`transform_cumulative_demolition_to_yearly_demolition` are defined elsewhere.
|
45
|
+
"""
|
46
|
+
construction_by_year = transform_construction_by_year(area_forecast, building_code_parameters)
|
47
|
+
construction_by_year.loc[:, 'demolition_construction'] = 'construction'
|
48
|
+
|
49
|
+
demolition_by_year = transform_cumulative_demolition_to_yearly_demolition(area_forecast)
|
50
|
+
demolition_by_year.loc[:, 'demolition_construction'] = 'demolition'
|
51
|
+
demolition_by_year.loc[:, 'm2'] = -demolition_by_year.loc[:, 'm2']
|
52
|
+
|
53
|
+
area_change = pd.concat([
|
54
|
+
demolition_by_year[['building_category', 'building_code', 'year', 'demolition_construction', 'm2']],
|
55
|
+
construction_by_year.reset_index()[['building_category', 'building_code', 'year', 'demolition_construction', 'm2']]
|
56
|
+
])
|
57
|
+
return area_change.fillna(0.0)
|
58
|
+
|
59
|
+
|
60
|
+
def transform_cumulative_demolition_to_yearly_demolition(area_forecast: pd.DataFrame) -> pd.DataFrame:
|
61
|
+
"""
|
62
|
+
Convert accumulated demolition area data to yearly demolition values.
|
63
|
+
|
64
|
+
This function filters the input DataFrame for rows where the building condition is demolition,
|
65
|
+
and calculates the yearly change in square meters (m2) by computing the difference between
|
66
|
+
consecutive years within each group defined by building category and building_code standard.
|
67
|
+
|
68
|
+
Parameters
|
69
|
+
----------
|
70
|
+
area_forecast : pandas.DataFrame
|
71
|
+
A DataFrame containing forecasted building area data. Must include the columns:
|
72
|
+
'building_category', 'building_code', 'year', 'building_condition', and 'm2'.
|
73
|
+
|
74
|
+
Returns
|
75
|
+
-------
|
76
|
+
pandas.DataFrame
|
77
|
+
A DataFrame with columns ['building_category', 'building_code', 'year', 'm2'], where 'm2' represents
|
78
|
+
the yearly demolition area (difference from the previous year). Missing values are filled with 0.
|
79
|
+
|
80
|
+
Notes
|
81
|
+
-----
|
82
|
+
- The function assumes that the input data is cumulative and sorted by year.
|
83
|
+
- The first year in each group will have a demolition value of 0.
|
84
|
+
"""
|
85
|
+
if area_forecast is None:
|
86
|
+
raise ValueError('Expected area_forecast of type pandas DataFrame. Got «None» instead.')
|
87
|
+
expected_columns = ('building_category', 'building_code', 'building_condition', 'year', 'm2')
|
88
|
+
missing_columns = [c for c in expected_columns if c not in area_forecast.columns]
|
89
|
+
if missing_columns:
|
90
|
+
raise ValueError(f'Column {", ".join(missing_columns)} not found in area_forecast')
|
91
|
+
|
92
|
+
df = area_forecast[area_forecast['building_condition'] == BuildingCondition.DEMOLITION].copy()
|
93
|
+
df = df.set_index(['building_category', 'building_code', 'building_condition', 'year']).sort_index()
|
94
|
+
df['m2'] = df['m2'].fillna(0)
|
95
|
+
df['diff'] = df.groupby(by=['building_category', 'building_code', 'building_condition']).diff()['m2']
|
96
|
+
|
97
|
+
return df.reset_index()[['building_category', 'building_code', 'year', 'diff']].rename(columns={'diff': 'm2'})
|
98
|
+
|
99
|
+
|
100
|
+
def transform_construction_by_year(area_forecast: pd.DataFrame,
|
101
|
+
building_code_parameters: pd.DataFrame | None = None) -> pd.DataFrame:
|
102
|
+
"""
|
103
|
+
Calculate yearly constructed building area based on building_code parameters.
|
104
|
+
|
105
|
+
This function filters the input forecast data to include only construction (non-demolition)
|
106
|
+
within the building_code-defined construction period. It then calculates the yearly change in constructed
|
107
|
+
area (m2) for each combination of building category and building_code standard.
|
108
|
+
|
109
|
+
Parameters
|
110
|
+
----------
|
111
|
+
area_forecast : pandas.DataFrame
|
112
|
+
A DataFrame containing forecasted building area data. Must include the columns:
|
113
|
+
'building_category', 'building_code', 'year', 'building_condition', and 'm2'.
|
114
|
+
|
115
|
+
building_code_parameters : pandas.DataFrame or None, optional
|
116
|
+
A DataFrame containing building_code construction period definitions with columns:
|
117
|
+
['building_code', 'building_year', 'period_start_year', 'period_end_year'].
|
118
|
+
If None, a default TEK17 period is used (2020–2050 with building year 2025).
|
119
|
+
|
120
|
+
Returns
|
121
|
+
-------
|
122
|
+
pandas.DataFrame
|
123
|
+
A DataFrame with columns ['building_category', 'building_code', 'year', 'm2'], where 'm2' represents
|
124
|
+
the yearly constructed area in square meters.
|
125
|
+
|
126
|
+
Notes
|
127
|
+
-----
|
128
|
+
- The function assumes that the input data is cumulative and calculates the difference
|
129
|
+
between consecutive years to derive yearly values.
|
130
|
+
- Construction is defined as all building conditions except 'demolition'.
|
131
|
+
- If no building_codeparameters are provided, a default TEK17 range is used.
|
132
|
+
"""
|
133
|
+
if area_forecast is None:
|
134
|
+
raise ValueError('Expected area_forecast of type pandas DataFrame. Got «None» instead.')
|
135
|
+
|
136
|
+
expected_columns = ('building_category', 'building_code', 'building_condition', 'year', 'm2')
|
137
|
+
missing_columns = [c for c in expected_columns if c not in area_forecast.columns]
|
138
|
+
if missing_columns:
|
139
|
+
raise ValueError(f'Column {", ".join(missing_columns)} not found in area_forecast')
|
140
|
+
|
141
|
+
building_code_params = building_code_parameters
|
142
|
+
if building_code_params is None:
|
143
|
+
building_code_params = pd.DataFrame(
|
144
|
+
data=[['TEK17', 2025, 2020, 2050]],
|
145
|
+
columns=['building_code', 'building_year', 'period_start_year', 'period_end_year'])
|
146
|
+
logger.warning('Using default TEK17 for construction')
|
147
|
+
|
148
|
+
expected_columns = ('building_code', 'building_year', 'period_start_year', 'period_end_year')
|
149
|
+
missing_columns = [c for c in expected_columns if c not in building_code_params.columns]
|
150
|
+
if missing_columns:
|
151
|
+
raise ValueError(f'Column {", ".join(missing_columns)} not found in building_code_parameters')
|
152
|
+
|
153
|
+
area_forecast = area_forecast.merge(building_code_params, on='building_code', how='left')
|
154
|
+
constructed = area_forecast.query(
|
155
|
+
'period_end_year >= year and building_condition!="demolition"').copy()
|
156
|
+
constructed = constructed[['building_category', 'building_code', 'year', 'building_condition', 'm2']]
|
157
|
+
constructed = constructed.set_index(['building_category', 'building_code', 'year', 'building_condition'])[['m2']].unstack()
|
158
|
+
|
159
|
+
constructed['total'] = constructed.sum(axis=1)
|
160
|
+
|
161
|
+
constructed=constructed.groupby(by=['building_category', 'building_code'], as_index=False).diff()
|
162
|
+
constructed = constructed.reset_index()[['building_category', 'building_code', 'year', 'total']]
|
163
|
+
constructed.columns = ['building_category', 'building_code', 'year', 'm2']
|
164
|
+
return constructed
|
165
|
+
|
166
|
+
|
167
|
+
def transform_demolition_construction(energy_use: pd.DataFrame, area_change: pd.DataFrame) -> pd.DataFrame:
|
168
|
+
"""
|
169
|
+
Calculate energy use in GWh for construction and demolition activities based on area changes.
|
170
|
+
|
171
|
+
This function filters energy use data for renovation and small measures, aggregates it by
|
172
|
+
building category, TEK, and year, and merges it with area change data to compute the
|
173
|
+
total energy use in GWh.
|
174
|
+
|
175
|
+
Parameters
|
176
|
+
----------
|
177
|
+
energy_use : pandas.DataFrame
|
178
|
+
A DataFrame containing energy use data, including columns:
|
179
|
+
- 'building_category'
|
180
|
+
- 'building_condition'
|
181
|
+
- 'building_code'
|
182
|
+
- 'year'
|
183
|
+
- 'kwh_m2'
|
184
|
+
|
185
|
+
area_change : pandas.DataFrame
|
186
|
+
A DataFrame containing area changes due to construction and demolition, including columns:
|
187
|
+
- 'building_category'
|
188
|
+
- 'building_code'
|
189
|
+
- 'year'
|
190
|
+
- 'demolition_construction'
|
191
|
+
- 'm2'
|
192
|
+
|
193
|
+
Returns
|
194
|
+
-------
|
195
|
+
pandas.DataFrame
|
196
|
+
A DataFrame with the following columns:
|
197
|
+
- 'year': Year of the activity.
|
198
|
+
- 'demolition_construction': Indicates whether the activity is 'construction' or 'demolition'.
|
199
|
+
- 'building_category': Category of the building.
|
200
|
+
- 'building_code': building_codeclassification.
|
201
|
+
- 'm2': Area change in square meters.
|
202
|
+
- 'gwh': Energy use in gigawatt-hours (GWh), calculated as (kWh/m² * m²) / 1,000,000.
|
203
|
+
|
204
|
+
Notes
|
205
|
+
-----
|
206
|
+
- Only energy use data with 'building_condition' equal to 'renovation_and_small_measure' is considered.
|
207
|
+
- The merge is performed on 'building_category', 'building_code', and 'year'.
|
208
|
+
"""
|
209
|
+
|
210
|
+
df = energy_use[energy_use['building_condition']=='renovation_and_small_measure']
|
211
|
+
|
212
|
+
energy_use_m2 = df.groupby(by=['building_category', 'building_condition', 'building_code', 'year'], as_index=False).sum()[['building_category', 'building_code', 'year', 'kwh_m2']]
|
213
|
+
|
214
|
+
dem_con = pd.merge(left=area_change, right=energy_use_m2, on=['building_category', 'building_code', 'year'])
|
215
|
+
dem_con['gwh'] = (dem_con['kwh_m2'] * dem_con['m2']) / 1_000_000
|
216
|
+
return dem_con[['year', 'demolition_construction', 'building_category', 'building_code', 'm2', 'gwh']]
|
217
|
+
|
218
|
+
|
219
|
+
def merge_building_code_and_condition(area_forecast: pd.DataFrame) -> pd.DataFrame:
|
220
|
+
"""
|
221
|
+
Add general building_codeand building condition categories to area forecast data.
|
222
|
+
|
223
|
+
This function creates a copy of the input DataFrame and assigns the value 'all' to both
|
224
|
+
the 'building_code' and 'building_condition' columns. This is useful for aggregating or analyzing
|
225
|
+
data across all building_codetypes and building conditions.
|
226
|
+
|
227
|
+
Parameters
|
228
|
+
----------
|
229
|
+
area_forecast : pandas.DataFrame
|
230
|
+
A DataFrame containing forecasted building area data, including at least the columns
|
231
|
+
'building_code' and 'building_condition'.
|
232
|
+
|
233
|
+
Returns
|
234
|
+
-------
|
235
|
+
pandas.DataFrame
|
236
|
+
A modified copy of the input DataFrame where:
|
237
|
+
- 'building_code' is set to 'all'
|
238
|
+
- 'building_condition' is set to 'all'
|
239
|
+
|
240
|
+
Notes
|
241
|
+
-----
|
242
|
+
- This function does not modify the original DataFrame in place.
|
243
|
+
- Useful for creating aggregate views across all building_codeand condition categories.
|
244
|
+
"""
|
245
|
+
|
246
|
+
all_existing_area = area_forecast.copy()
|
247
|
+
all_existing_area.loc[:, 'building_code'] = 'all'
|
248
|
+
all_existing_area.loc[:, 'building_condition'] = 'all'
|
249
|
+
|
250
|
+
return all_existing_area
|
251
|
+
|
252
|
+
|
253
|
+
def filter_existing_area(area_forecast: pd.DataFrame) -> pd.DataFrame:
|
254
|
+
"""
|
255
|
+
Filter out demolition entries from area forecast data to retain only existing areas.
|
256
|
+
|
257
|
+
This function removes rows where the building condition is 'demolition' and returns
|
258
|
+
a DataFrame containing only the relevant columns for existing building areas.
|
259
|
+
|
260
|
+
Parameters
|
261
|
+
----------
|
262
|
+
area_forecast : pandas.DataFrame
|
263
|
+
A DataFrame containing forecasted building area data, including at least the columns:
|
264
|
+
- 'year'
|
265
|
+
- 'building_category'
|
266
|
+
- 'building_code'
|
267
|
+
- 'building_condition'
|
268
|
+
- 'm2'
|
269
|
+
|
270
|
+
Returns
|
271
|
+
-------
|
272
|
+
pandas.DataFrame
|
273
|
+
A filtered DataFrame containing only rows where 'building_condition' is not 'demolition',
|
274
|
+
with the following columns:
|
275
|
+
- 'year'
|
276
|
+
- 'building_category'
|
277
|
+
- 'building_code'
|
278
|
+
- 'building_condition'
|
279
|
+
- 'm2'
|
280
|
+
|
281
|
+
Notes
|
282
|
+
-----
|
283
|
+
- The function returns a copy of the filtered DataFrame to avoid modifying the original.
|
284
|
+
- Useful for isolating existing building stock from forecast data.
|
285
|
+
"""
|
286
|
+
|
287
|
+
existing_area = area_forecast.query('building_condition!="demolition"').copy()
|
288
|
+
existing_area = existing_area[['year','building_category','building_code','building_condition']+['m2']]
|
289
|
+
return existing_area
|
290
|
+
|
291
|
+
|
292
|
+
def building_condition_scurves(scurve_parameters: pd.DataFrame) -> pd.DataFrame:
|
293
|
+
scurves = []
|
294
|
+
|
295
|
+
for r, v in scurve_parameters.iterrows():
|
296
|
+
scurve = SCurve(earliest_age=v.earliest_age_for_measure,
|
297
|
+
average_age=v.average_age_for_measure,
|
298
|
+
last_age=v.last_age_for_measure,
|
299
|
+
rush_years=v.rush_period_years,
|
300
|
+
never_share=v.never_share,
|
301
|
+
rush_share=v.rush_share)
|
302
|
+
|
303
|
+
rate = scurve.get_rates_per_year_over_building_lifetime().to_frame().reset_index()
|
304
|
+
rate.loc[:, 'building_category'] = v['building_category']
|
305
|
+
rate.loc[:, 'building_condition'] = v['condition']
|
306
|
+
|
307
|
+
scurves.append(rate)
|
308
|
+
|
309
|
+
|
310
|
+
df = pd.concat(scurves).set_index(['building_category', 'age', 'building_condition'])
|
311
|
+
|
312
|
+
return df
|
313
|
+
|
314
|
+
|
315
|
+
def building_condition_accumulated_scurves(scurve_parameters: pd.DataFrame) -> pd.DataFrame:
|
316
|
+
scurves = []
|
317
|
+
|
318
|
+
for r, v in scurve_parameters.iterrows():
|
319
|
+
scurve = SCurve(earliest_age=v.earliest_age_for_measure,
|
320
|
+
average_age=v.average_age_for_measure,
|
321
|
+
last_age=v.last_age_for_measure,
|
322
|
+
rush_years=v.rush_period_years,
|
323
|
+
never_share=v.never_share,
|
324
|
+
rush_share=v.rush_share)
|
325
|
+
|
326
|
+
acc = scurve.calc_scurve().to_frame().reset_index()
|
327
|
+
acc.loc[:, 'building_category'] = v['building_category']
|
328
|
+
acc.loc[:, 'building_condition'] = v['condition'] + '_acc'
|
329
|
+
|
330
|
+
scurves.append(acc)
|
331
|
+
|
332
|
+
df = pd.concat(scurves).set_index(['building_category', 'age', 'building_condition'])
|
333
|
+
|
334
|
+
return df
|
335
|
+
|
336
|
+
|
337
|
+
def multiply_s_curves_with_floor_area(s_curves_by_condition, with_area):
|
338
|
+
floor_area_by_condition = s_curves_by_condition.multiply(with_area['area'], axis=0)
|
339
|
+
floor_area_forecast = floor_area_by_condition.stack().reset_index()
|
340
|
+
floor_area_forecast = floor_area_forecast.rename(columns={'level_3': 'building_condition', 0: 'm2'}) # m²
|
341
|
+
return floor_area_forecast
|
342
|
+
|
343
|
+
|
344
|
+
def merge_total_area_by_year(construction_by_building_category_yearly, existing_area):
|
345
|
+
total_area_by_year = pd.concat([existing_area.drop(columns=['year_r'], errors='ignore'),
|
346
|
+
construction_by_building_category_yearly])
|
347
|
+
return total_area_by_year
|
348
|
+
|
349
|
+
|
350
|
+
def calculate_existing_area(area_parameters, building_code_parameters, years):
|
351
|
+
# ## Make area
|
352
|
+
# Define the range of years
|
353
|
+
index = pd.MultiIndex.from_product(
|
354
|
+
[area_parameters.index.get_level_values(level='building_category').unique(), building_code_parameters.building_code.unique(),
|
355
|
+
years],
|
356
|
+
names=['building_category', 'building_code', 'year'])
|
357
|
+
# Reindex the DataFrame to include all combinations, filling missing values with NaN
|
358
|
+
area = index.to_frame().set_index(['building_category', 'building_code', 'year']).reindex(index).reset_index()
|
359
|
+
# Optional: Fill missing values with a default, e.g., 0
|
360
|
+
existing_area = pd.merge(left=area_parameters, right=area, on=['building_category', 'building_code'], suffixes=['_r', ''])
|
361
|
+
existing_area = existing_area.set_index(['building_category', 'building_code', 'year'])
|
362
|
+
return existing_area
|
363
|
+
|
364
|
+
|
365
|
+
def construction_with_building_code(building_category_demolition_by_year: pd.Series,
|
366
|
+
building_code: pd.DataFrame,
|
367
|
+
construction_floor_area_by_year: pd.Series,
|
368
|
+
years:YearRange) -> pd.Series:
|
369
|
+
if not years:
|
370
|
+
years = YearRange.from_series(building_category_demolition_by_year)
|
371
|
+
|
372
|
+
building_code_years = years.cross_join(building_code)
|
373
|
+
|
374
|
+
filtered_building_code_years = building_code_years.query(f'period_end_year>={years.start}')
|
375
|
+
|
376
|
+
construction_with_building_code = pd.merge(
|
377
|
+
left=construction_floor_area_by_year,
|
378
|
+
right=filtered_building_code_years[['year', 'building_code', 'period_start_year', 'period_end_year']],
|
379
|
+
left_on=['year'], right_on=['year'])
|
380
|
+
|
381
|
+
query_period_start_end = 'period_start_year > year or period_end_year < year'
|
382
|
+
construction_with_building_code.loc[
|
383
|
+
construction_with_building_code.query(query_period_start_end).index, 'constructed_floor_area'] = 0.0
|
384
|
+
|
385
|
+
df = construction_with_building_code.set_index(['building_category', 'building_code', 'year'])[['constructed_floor_area']]
|
386
|
+
|
387
|
+
s = df.groupby(by=['building_category', 'building_code'])['constructed_floor_area'].cumsum()
|
388
|
+
s.name = 'area'
|
389
|
+
|
390
|
+
return s
|
391
|
+
|
392
|
+
|
393
|
+
def sum_building_category_demolition_by_year(demolition_by_year):
|
394
|
+
demolition_by_building_category_year = demolition_by_year.groupby(by=['building_category', 'year']).sum()
|
395
|
+
return demolition_by_building_category_year
|
396
|
+
|
397
|
+
|
398
|
+
def calculate_demolition_floor_area_by_year(
|
399
|
+
area_parameters: pd.DataFrame, s_curve_cumulative_demolition: pd.Series) -> pd.Series:
|
400
|
+
demolition_by_year = area_parameters.loc[:, 'area'] * s_curve_cumulative_demolition.loc[:]
|
401
|
+
demolition_by_year.name = 'demolition'
|
402
|
+
demolition_by_year = demolition_by_year.to_frame().loc[(slice(None), slice(None), slice(2020, 2050))]
|
403
|
+
return demolition_by_year.demolition
|
ebm/model/bema.py
ADDED
@@ -0,0 +1,149 @@
|
|
1
|
+
from types import MappingProxyType
|
2
|
+
|
3
|
+
from ebm.model.building_category import BuildingCategory, RESIDENTIAL, NON_RESIDENTIAL
|
4
|
+
from ebm.model.building_condition import BuildingCondition
|
5
|
+
|
6
|
+
_building_category_order = {
|
7
|
+
BuildingCategory.HOUSE: 101, BuildingCategory.APARTMENT_BLOCK: 102, RESIDENTIAL: 199,
|
8
|
+
'holiday_home': 299,
|
9
|
+
BuildingCategory.RETAIL: 301, BuildingCategory.OFFICE: 302, BuildingCategory.KINDERGARTEN: 303, BuildingCategory.SCHOOL: 304,
|
10
|
+
BuildingCategory.UNIVERSITY: 305, BuildingCategory.HOSPITAL: 306, BuildingCategory.NURSING_HOME: 307,
|
11
|
+
BuildingCategory.HOTEL: 308, BuildingCategory.SPORTS: 309, BuildingCategory.CULTURE: 310,
|
12
|
+
BuildingCategory.STORAGE: 312, 'storage': 311, NON_RESIDENTIAL: 399}
|
13
|
+
|
14
|
+
BUILDING_CATEGORY_ORDER = MappingProxyType(_building_category_order)
|
15
|
+
"""An immutable dict of BeMa sorting order for building_category"""
|
16
|
+
|
17
|
+
_building_group_order = {'residential': 199, 'holiday_home': 299, 'non_residential': 399}
|
18
|
+
|
19
|
+
BUILDING_GROUP_ORDER = MappingProxyType(_building_group_order)
|
20
|
+
"""An immutable dict of BeMa sorting order for building_group"""
|
21
|
+
|
22
|
+
|
23
|
+
_building_mix_order = _building_group_order| _building_category_order
|
24
|
+
|
25
|
+
|
26
|
+
_building_code_order = {'PRE_TEK49': 1814, 'TEK49': 1949, 'TEK69': 1969, 'TEK87': 1987, 'TEK97': 1997,
|
27
|
+
'TEK07': 2007, 'TEK10': 2010, 'TEK17': 2017,
|
28
|
+
'TEK21': 2021, 'default': 9998, 'all': 9999}
|
29
|
+
|
30
|
+
TEK_ORDER = MappingProxyType(_building_code_order)
|
31
|
+
"""A dict of BeMa sorting order for TEK"""
|
32
|
+
|
33
|
+
_purpose_order = {'heating_rv': 1, 'heating_dhw': 2, 'fans_and_pumps': 3, 'lighting': 4,
|
34
|
+
'electrical_equipment': 5, 'cooling': 6}
|
35
|
+
|
36
|
+
PURPOSE_ORDER = MappingProxyType(_purpose_order)
|
37
|
+
"""A dict of BeMa sorting order for purpose"""
|
38
|
+
|
39
|
+
_building_condition_order = {BuildingCondition.ORIGINAL_CONDITION: 1, BuildingCondition.SMALL_MEASURE: 2,
|
40
|
+
BuildingCondition.RENOVATION: 3, BuildingCondition.RENOVATION_AND_SMALL_MEASURE: 4, BuildingCondition.DEMOLITION: 5}
|
41
|
+
|
42
|
+
BUILDING_CONDITION_ORDER = MappingProxyType(_building_condition_order)
|
43
|
+
"""A dict of BeMa sorting order for building_condition"""
|
44
|
+
|
45
|
+
_start_row_building_category_construction = {BuildingCategory.HOUSE: 11, BuildingCategory.APARTMENT_BLOCK: 23,
|
46
|
+
BuildingCategory.KINDERGARTEN: 41, BuildingCategory.SCHOOL: 55, BuildingCategory.UNIVERSITY: 69,
|
47
|
+
BuildingCategory.OFFICE: 83, BuildingCategory.RETAIL: 97, BuildingCategory.HOTEL: 111,
|
48
|
+
BuildingCategory.HOSPITAL: 125, BuildingCategory.NURSING_HOME: 139, BuildingCategory.CULTURE: 153,
|
49
|
+
BuildingCategory.SPORTS: 167, BuildingCategory.STORAGE: 182}
|
50
|
+
|
51
|
+
START_ROWS_CONSTRUCTION_BUILDING_CATEGORY = MappingProxyType(_start_row_building_category_construction)
|
52
|
+
"""A dict of BeMa sorting order for start row of each building category in the sheet `nybygging`"""
|
53
|
+
|
54
|
+
|
55
|
+
def get_building_category_sheet(building_category: BuildingCategory, area_sheet: bool = True) -> str:
|
56
|
+
"""
|
57
|
+
Returns the appropriate sheet name based on the building category and area sheet type.
|
58
|
+
|
59
|
+
Parameters
|
60
|
+
----------
|
61
|
+
- building_category: An instance of BuildingCategory.
|
62
|
+
- area_sheet (bool): Determines whether to return the area sheet ('A') or rates sheet ('R') name. Defaults to True for the area sheet.
|
63
|
+
|
64
|
+
Returns
|
65
|
+
-------
|
66
|
+
- sheet (str): The sheet name corresponding to the building category and sheet type.
|
67
|
+
"""
|
68
|
+
building_category_sheets = {BuildingCategory.HOUSE: ['A hus', 'R hus'],
|
69
|
+
BuildingCategory.APARTMENT_BLOCK: ['A leil', 'R leil'], BuildingCategory.KINDERGARTEN: ['A bhg', 'R bhg'],
|
70
|
+
BuildingCategory.SCHOOL: ['A skole', 'R skole'], BuildingCategory.UNIVERSITY: ['A uni', 'R uni'],
|
71
|
+
BuildingCategory.OFFICE: ['A kont', 'R kont'], BuildingCategory.RETAIL: ['A forr', 'R forr'],
|
72
|
+
BuildingCategory.HOTEL: ['A hotell', 'R hotell'], BuildingCategory.HOSPITAL: ['A shus', 'R shus'],
|
73
|
+
BuildingCategory.NURSING_HOME: ['A shjem', 'R shjem'], BuildingCategory.CULTURE: ['A kult', 'R kult'],
|
74
|
+
BuildingCategory.SPORTS: ['A idr', 'R idr'], BuildingCategory.STORAGE: ['A ind', 'R ind']}
|
75
|
+
|
76
|
+
if area_sheet:
|
77
|
+
sheet = building_category_sheets[building_category][0]
|
78
|
+
else:
|
79
|
+
sheet = building_category_sheets[building_category][1]
|
80
|
+
|
81
|
+
return sheet
|
82
|
+
|
83
|
+
|
84
|
+
# noinspection PyTypeChecker
|
85
|
+
def map_sort_order(column):
|
86
|
+
"""
|
87
|
+
Map the sort order from bema to a DataFrame. The function is meant to be used as the key parameter for
|
88
|
+
a pandas DataFrame methods sort_values and sort_index.
|
89
|
+
|
90
|
+
Example below.
|
91
|
+
|
92
|
+
Parameters
|
93
|
+
----------
|
94
|
+
column : pandas.Series
|
95
|
+
A pandas Series whose `name` attribute determines which predefined
|
96
|
+
mapping to apply to its values.
|
97
|
+
|
98
|
+
Returns
|
99
|
+
-------
|
100
|
+
pandas.Series
|
101
|
+
A Series with values mapped to integers according to the corresponding
|
102
|
+
sort order. If the column name does not match any predefined mapping,
|
103
|
+
the original Series is returned unchanged.
|
104
|
+
|
105
|
+
Notes
|
106
|
+
-----
|
107
|
+
The function supports the following mappings:
|
108
|
+
|
109
|
+
- 'building_category': uses `_building_mix_order`
|
110
|
+
- 'building_group': uses `BUILDING_GROUP_ORDER`
|
111
|
+
- 'building_condition': uses `BUILDING_CONDITION_ORDER`
|
112
|
+
- 'purpose': uses `PURPOSE_ORDER`
|
113
|
+
- 'building_code': uses `TEK_ORDER`
|
114
|
+
|
115
|
+
Examples
|
116
|
+
--------
|
117
|
+
>>> import pandas as pd
|
118
|
+
>>> df = pd.DataFrame(
|
119
|
+
>>> data=[('culture', 'PRE_TEK49', 'heating_rv', 2022, 'LAST'),
|
120
|
+
>>> ('house', 'TEK07', 'heating_dhw', 2021, 'FIRST')],
|
121
|
+
>>> columns=['building_category', 'building_code', 'purpose', 'year', 'value'])
|
122
|
+
>>> df.sort_values(by=['building_category', 'building_code', 'purpose', 'year'], key=map_sort_order)
|
123
|
+
building_category building_code purpose year value
|
124
|
+
1 house TEK07 heating_dhw 2020 FIRST
|
125
|
+
0 culture PRE_TEK49 heating_rv 2021 LAST
|
126
|
+
…
|
127
|
+
>>> from ebm.model.bema import map_sort_order
|
128
|
+
>>> import pandas as pd
|
129
|
+
>>> df = pd.DataFrame(data=['3', '2', 'last', 'first'],
|
130
|
+
>>> index=pd.Index(['non_residential', 'holiday_home', 'all', 'residential'],
|
131
|
+
>>> name='building_group'))
|
132
|
+
>>> df.sort_index(key=map_sort_order)
|
133
|
+
building_group
|
134
|
+
residential first
|
135
|
+
holiday_home 2
|
136
|
+
non_residential 3
|
137
|
+
all last
|
138
|
+
"""
|
139
|
+
if column.name=='building_category':
|
140
|
+
return column.map(_building_mix_order)
|
141
|
+
if column.name=='building_group':
|
142
|
+
return column.map(BUILDING_GROUP_ORDER)
|
143
|
+
if column.name=='building_condition':
|
144
|
+
return column.map(BUILDING_CONDITION_ORDER)
|
145
|
+
if column.name=='purpose':
|
146
|
+
return column.map(PURPOSE_ORDER)
|
147
|
+
if column.name=='building_code':
|
148
|
+
return column.map(TEK_ORDER)
|
149
|
+
return column
|