eba-xbridge 1.5.0rc3__py3-none-any.whl → 1.5.0rc5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,308 @@
1
+ Metadata-Version: 2.4
2
+ Name: eba-xbridge
3
+ Version: 1.5.0rc5
4
+ Summary: XBRL-XML to XBRL-CSV converter for EBA Taxonomy (version 4.1)
5
+ License: Apache 2.0
6
+ License-File: LICENSE
7
+ Keywords: xbrl,eba,taxonomy,csv,xml
8
+ Author: MeaningfulData
9
+ Author-email: info@meaningfuldata.eu
10
+ Maintainer: Antonio Olleros
11
+ Maintainer-email: antonio.olleros@meaningfuldata.eu
12
+ Requires-Python: >=3.9
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Intended Audience :: Information Technology
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Typing :: Typed
19
+ Requires-Dist: lxml (>=5.2.1,<6.0)
20
+ Requires-Dist: numpy (>=1.23.2,<2) ; python_version < "3.13"
21
+ Requires-Dist: numpy (>=2.1.0) ; python_version >= "3.13"
22
+ Requires-Dist: pandas (>=2.1.4,<3.0)
23
+ Project-URL: Documentation, https://docs.xbridge.meaningfuldata.eu
24
+ Project-URL: IssueTracker, https://github.com/Meaningful-Data/xbridge/issues
25
+ Project-URL: MeaningfulData, https://www.meaningfuldata.eu/
26
+ Project-URL: Repository, https://github.com/Meaningful-Data/xbridge
27
+ Description-Content-Type: text/x-rst
28
+
29
+ XBridge (eba-xbridge)
30
+ #####################
31
+
32
+ .. image:: https://img.shields.io/pypi/v/eba-xbridge.svg
33
+ :target: https://pypi.org/project/eba-xbridge/
34
+ :alt: PyPI version
35
+
36
+ .. image:: https://img.shields.io/pypi/pyversions/eba-xbridge.svg
37
+ :target: https://pypi.org/project/eba-xbridge/
38
+ :alt: Python versions
39
+
40
+ .. image:: https://img.shields.io/github/license/Meaningful-Data/xbridge.svg
41
+ :target: https://github.com/Meaningful-Data/xbridge/blob/main/LICENSE
42
+ :alt: License
43
+
44
+ .. image:: https://img.shields.io/github/actions/workflow/status/Meaningful-Data/xbridge/testing.yml?branch=main
45
+ :target: https://github.com/Meaningful-Data/xbridge/actions
46
+ :alt: Build status
47
+
48
+ Overview
49
+ ========
50
+
51
+ XBridge is a Python library for converting XBRL-XML files into XBRL-CSV files using the EBA (European Banking Authority) taxonomy. It provides a simple, reliable way to transform regulatory reporting data from XML format to CSV format.
52
+
53
+ The library currently supports **EBA Taxonomy version 4.2** and includes support for DORA (Digital Operational Resilience Act) CSV conversion. The library must be updated with each new EBA taxonomy version release.
54
+
55
+ Key Features
56
+ ============
57
+
58
+ * **XBRL-XML to XBRL-CSV Conversion**: Seamlessly convert XBRL-XML instance files to XBRL-CSV format
59
+ * **Command-Line Interface**: Quick conversions without writing code using the ``xbridge`` CLI
60
+ * **Python API**: Programmatic conversion for integration with other tools and workflows
61
+ * **EBA Taxonomy 4.2 Support**: Built for the latest EBA taxonomy specification
62
+ * **DORA CSV Conversion**: Support for Digital Operational Resilience Act reporting
63
+ * **Configurable Validation**: Flexible filing indicator validation with strict or warning modes
64
+ * **Decimal Handling**: Intelligent decimal precision handling with configurable options
65
+ * **Type Safety**: Fully typed codebase with MyPy strict mode compliance
66
+ * **Python 3.9+**: Supports Python 3.9 through 3.13
67
+
68
+ Prerequisites
69
+ =============
70
+
71
+ * **Python**: 3.9 or higher
72
+ * **7z Command-Line Tool**: Required for loading compressed taxonomy files (7z or ZIP format)
73
+
74
+ * On Ubuntu/Debian: ``sudo apt-get install p7zip-full``
75
+ * On macOS: ``brew install p7zip``
76
+ * On Windows: Download from `7-zip.org <https://www.7-zip.org/>`_
77
+
78
+ Installation
79
+ ============
80
+
81
+ Install XBridge from PyPI using pip:
82
+
83
+ .. code-block:: bash
84
+
85
+ pip install eba-xbridge
86
+
87
+ For development installation, see `CONTRIBUTING.md <CONTRIBUTING.md>`_.
88
+
89
+ Quick Start
90
+ ===========
91
+
92
+ XBridge offers two ways to convert XBRL-XML files to XBRL-CSV: a command-line interface (CLI) for quick conversions, and a Python API for programmatic use.
93
+
94
+ Command-Line Interface
95
+ ----------------------
96
+
97
+ The CLI provides a quick way to convert files without writing code:
98
+
99
+ .. code-block:: bash
100
+
101
+ # Basic conversion (output to same directory as input)
102
+ xbridge instance.xbrl
103
+
104
+ # Specify output directory
105
+ xbridge instance.xbrl --output-path ./output
106
+
107
+ # Continue with warnings instead of errors
108
+ xbridge instance.xbrl --no-strict-validation
109
+
110
+ # Include headers as datapoints
111
+ xbridge instance.xbrl --headers-as-datapoints
112
+
113
+ **CLI Options:**
114
+
115
+ * ``--output-path PATH``: Output directory (default: same as input file)
116
+ * ``--headers-as-datapoints``: Treat headers as datapoints (default: False)
117
+ * ``--strict-validation``: Raise errors on validation failures (default: True)
118
+ * ``--no-strict-validation``: Emit warnings instead of errors
119
+
120
+ For more CLI options, run ``xbridge --help``.
121
+
122
+ Python API - Basic Conversion
123
+ ------------------------------
124
+
125
+ Convert an XBRL-XML instance file to XBRL-CSV using the Python API:
126
+
127
+ .. code-block:: python
128
+
129
+ from xbridge.api import convert_instance
130
+
131
+ # Basic conversion
132
+ input_path = "path/to/instance.xbrl"
133
+ output_path = "path/to/output"
134
+
135
+ convert_instance(input_path, output_path)
136
+
137
+ The converted XBRL-CSV files will be saved as a ZIP archive in the output directory.
138
+
139
+ Python API - Advanced Usage
140
+ ----------------------------
141
+
142
+ Customize the conversion with additional parameters:
143
+
144
+ .. code-block:: python
145
+
146
+ from xbridge.api import convert_instance
147
+
148
+ # Conversion with custom options
149
+ convert_instance(
150
+ instance_path="path/to/instance.xbrl",
151
+ output_path="path/to/output",
152
+ headers_as_datapoints=True, # Treat headers as datapoints
153
+ validate_filing_indicators=True, # Validate filing indicators
154
+ strict_validation=False, # Emit warnings instead of errors for orphaned facts
155
+ )
156
+
157
+ Loading an Instance
158
+ -------------------
159
+
160
+ Load and inspect an XBRL-XML instance without converting:
161
+
162
+ .. code-block:: python
163
+
164
+ from xbridge.api import load_instance
165
+
166
+ instance = load_instance("path/to/instance.xbrl")
167
+
168
+ # Access instance properties
169
+ print(f"Entity: {instance.entity}")
170
+ print(f"Period: {instance.period}")
171
+ print(f"Facts count: {len(instance.facts)}")
172
+
173
+ How XBridge Works
174
+ =================
175
+
176
+ XBridge performs the conversion in several steps:
177
+
178
+ 1. **Load the XBRL-XML instance**: Parse and extract facts, contexts, scenarios, and filing indicators
179
+ 2. **Load the EBA taxonomy**: Access pre-processed taxonomy modules containing tables and variables
180
+ 3. **Match and validate**: Join instance facts with taxonomy definitions
181
+ 4. **Generate CSV files**: Create XBRL-CSV files including:
182
+
183
+ * Data tables with facts and dimensions
184
+ * Filing indicators showing reported tables
185
+ * Parameters (entity, period, base currency, decimals)
186
+
187
+ 5. **Package output**: Bundle all CSV files into a ZIP archive
188
+
189
+ Output Structure
190
+ ----------------
191
+
192
+ The output ZIP file contains:
193
+
194
+ * **META-INF/**: JSON report package metadata
195
+ * **reports/**: CSV files for each reported table
196
+ * **filing-indicators.csv**: Table reporting indicators
197
+ * **parameters.csv**: Report-level parameters
198
+
199
+ Documentation
200
+ =============
201
+
202
+ Comprehensive documentation is available at `docs.xbridge.meaningfuldata.eu <https://docs.xbridge.meaningfuldata.eu>`_.
203
+
204
+ The documentation includes:
205
+
206
+ * **API Reference**: Complete API documentation
207
+ * **Quickstart Guide**: Step-by-step tutorials
208
+ * **Technical Notes**: Architecture and design details
209
+ * **FAQ**: Frequently asked questions
210
+
211
+ Taxonomy Loading
212
+ ================
213
+
214
+ If you need to work with the EBA taxonomy directly, you can load it using:
215
+
216
+ .. code-block:: bash
217
+
218
+ python -m xbridge.taxonomy_loader --input_path path/to/FullTaxonomy.7z
219
+
220
+ This generates an ``index.json`` file containing module references and pre-processed taxonomy data.
221
+
222
+ .. warning::
223
+ Loading the taxonomy from a 7z package may take several minutes. Ensure the ``7z`` command is available on your system.
224
+
225
+ Configuration Options
226
+ =====================
227
+
228
+ convert_instance Parameters
229
+ ----------------------------
230
+
231
+ * **instance_path** (str | Path): Path to the XBRL-XML instance file
232
+ * **output_path** (str | Path | None): Output directory for CSV files (default: current directory)
233
+ * **headers_as_datapoints** (bool): Treat table headers as datapoints (default: False)
234
+ * **validate_filing_indicators** (bool): Validate that facts belong to reported tables (default: True)
235
+ * **strict_validation** (bool): Raise errors on validation failures; if False, emit warnings (default: True)
236
+
237
+ Troubleshooting
238
+ ===============
239
+
240
+ Common Issues
241
+ -------------
242
+
243
+ **7z command not found**
244
+ Install the 7z command-line tool using your system's package manager (see Prerequisites).
245
+
246
+ **Taxonomy version mismatch**
247
+ Ensure you're using the correct version of XBridge for your taxonomy version. XBridge 1.5.x supports EBA Taxonomy 4.1.
248
+
249
+ **Orphaned facts warning/error**
250
+ Facts that don't belong to any reported table. Set ``strict_validation=False`` to continue with warnings instead of errors.
251
+
252
+ **Decimal precision issues**
253
+ XBridge automatically handles decimal precision from the taxonomy. Check the parameters.csv file for applied decimal settings.
254
+
255
+ For more issues, see our `FAQ <https://docs.xbridge.meaningfuldata.eu/faq.html>`_ or `open an issue <https://github.com/Meaningful-Data/xbridge/issues>`_.
256
+
257
+ Contributing
258
+ ============
259
+
260
+ We welcome contributions! Please see `CONTRIBUTING.md <CONTRIBUTING.md>`_ for:
261
+
262
+ * Development setup instructions
263
+ * Code style guidelines
264
+ * Testing requirements
265
+ * Pull request process
266
+
267
+ Before contributing, please read our `Code of Conduct <CODE_OF_CONDUCT.md>`_.
268
+
269
+ Changelog
270
+ =========
271
+
272
+ See `CHANGELOG.md <CHANGELOG.md>`_ for a detailed history of changes.
273
+
274
+ Support
275
+ =======
276
+
277
+ * **Documentation**: https://docs.xbridge.meaningfuldata.eu
278
+ * **Issue Tracker**: https://github.com/Meaningful-Data/xbridge/issues
279
+ * **Email**: info@meaningfuldata.eu
280
+ * **Company**: https://www.meaningfuldata.eu/
281
+
282
+ Security
283
+ ========
284
+
285
+ For security issues, please see our `Security Policy <SECURITY.md>`_.
286
+
287
+ License
288
+ =======
289
+
290
+ This project is licensed under the Apache License 2.0 - see the `LICENSE <LICENSE>`_ file for details.
291
+
292
+ Authors & Maintainers
293
+ =====================
294
+
295
+ **MeaningfulData** - https://www.meaningfuldata.eu/
296
+
297
+ Maintainers:
298
+
299
+ * Antonio Olleros (antonio.olleros@meaningfuldata.eu)
300
+ * Jesus Simon (jesus.simon@meaningfuldata.eu)
301
+ * Francisco Javier Hernandez del Caño (javier.hernandez@meaningfuldata.eu)
302
+ * Guillermo Garcia Martin (guillermo.garcia@meaningfuldata.eu)
303
+
304
+ Acknowledgments
305
+ ===============
306
+
307
+ This project is designed to work with the European Banking Authority (EBA) taxonomy for regulatory reporting
308
+
@@ -1,7 +1,8 @@
1
- xbridge/__init__.py,sha256=H66PeuXAnonjcj2yXO8Tis9cgDs-cTh3i3vXOYpDnFw,68
1
+ xbridge/__init__.py,sha256=S6yAyrnTJ19Trbh-OrGVDIwi5lh88C2pCxDncQyX1VY,68
2
+ xbridge/__main__.py,sha256=trtFEv7TRJgrLL84leIapPvgC_iVTj05qLHRRS1Olts,2219
2
3
  xbridge/api.py,sha256=NCBz7VRJWE3gID6ndgL4Awoxw0w1yMIIf_OTLRuZyyQ,1559
3
- xbridge/converter.py,sha256=Xft2lc5R1MMDNftlKRj7NuLTGhDHej-T4xc-z_roIeM,24433
4
- xbridge/instance.py,sha256=_UNB2j6ykHeOPb18TuDGw8qMq0ER-bV6FYTz7tSmDxc,29709
4
+ xbridge/converter.py,sha256=vWlIaqQ2eA8Y5b1jqnqTIcOxeubJEu1itggMrFxYnS8,24077
5
+ xbridge/instance.py,sha256=GA5D2p3IobCp5W4-x1dibgOQFuy_W4R8LmZnQ4H900g,32292
5
6
  xbridge/modules/ae_ae_4.2.json,sha256=AdFvwZqX0KVP3jF1iHeQc5QSnSMvvT3GvoA2G1AgXis,460165
6
7
  xbridge/modules/ae_con_cir-680-2014_2017-04-04.json,sha256=4n0t9dKJNU8Nb5QHpssrDs8ZLwzI-Mw75ax-ar9pLu0,363273
7
8
  xbridge/modules/ae_con_cir-680-2014_2018-03-31.json,sha256=aVWeLLs20p39kQQUthUzqrxBGKTycqhgX9WLk1rVlNw,363538
@@ -379,10 +380,11 @@ xbridge/modules/sbpimv_ind_its-2016-svbxx_2016-02-01.json,sha256=SED-dW--UKxhHNY
379
380
  xbridge/modules/sbpimv_sbp_4.2.json,sha256=Bj4z7zofZngG9EJ7-q74F-JF41O1FK_mX8RTfYdLP9I,7023
380
381
  xbridge/modules/sepa_ipr_pay_4.1.json,sha256=awsJeBUDhMIFs5so6CWUQmlcHSDcGMd8fnLy_r_iMik,27054
381
382
  xbridge/modules/sepa_ipr_pay_4.2.json,sha256=JLJvR02LOAJy6SWPRuhV1TT02oXQhsG83FBn176KWsA,27742
382
- xbridge/modules.py,sha256=8TheJY7oZIy_n-doALa_9AYwwZFu284jaBWt-aol0MA,22292
383
+ xbridge/modules.py,sha256=bTvBXtp3w4Gad2DpEQE7Hb-UfuUQLlRl8gywRstQtpU,22399
383
384
  xbridge/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
384
385
  xbridge/taxonomy_loader.py,sha256=K0lnJVryvkKsaoK3fMis-L2JpmwLO6z3Ruq3yj9FxDY,9317
385
- eba_xbridge-1.5.0rc3.dist-info/METADATA,sha256=ahBEnyB5K2mskMtLQw7LwqVUnRIPZY8TbzUZ3wd2XeA,2088
386
- eba_xbridge-1.5.0rc3.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
387
- eba_xbridge-1.5.0rc3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
388
- eba_xbridge-1.5.0rc3.dist-info/RECORD,,
386
+ eba_xbridge-1.5.0rc5.dist-info/METADATA,sha256=88P20ZbVDK8cMGG0-rs1W7OihOdBrmOxujMvoeB3RQM,10430
387
+ eba_xbridge-1.5.0rc5.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
388
+ eba_xbridge-1.5.0rc5.dist-info/entry_points.txt,sha256=FATct4icSewM04cegjhybtm7xcQWhaSahL-DTtuFdZw,49
389
+ eba_xbridge-1.5.0rc5.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
390
+ eba_xbridge-1.5.0rc5.dist-info/RECORD,,
@@ -0,0 +1,3 @@
1
+ [console_scripts]
2
+ xbridge=xbridge.__main__:main
3
+
xbridge/__init__.py CHANGED
@@ -2,4 +2,4 @@
2
2
  Init file for eba-xbridge library
3
3
  """
4
4
 
5
- __version__ = "1.5.0rc3"
5
+ __version__ = "1.5.0rc5"
xbridge/__main__.py ADDED
@@ -0,0 +1,82 @@
1
+ """Command-line interface for xbridge."""
2
+
3
+ import argparse
4
+ import sys
5
+ from pathlib import Path
6
+
7
+ from xbridge.api import convert_instance
8
+
9
+
10
+ def main() -> None:
11
+ """Main CLI entry point for xbridge converter."""
12
+ parser = argparse.ArgumentParser(
13
+ description="Convert XBRL-XML instances to XBRL-CSV format",
14
+ prog="xbridge",
15
+ )
16
+
17
+ parser.add_argument(
18
+ "input_file",
19
+ type=str,
20
+ help="Path to the input XBRL-XML file",
21
+ )
22
+
23
+ parser.add_argument(
24
+ "--output-path",
25
+ type=str,
26
+ default=None,
27
+ help="Output directory path (default: same folder as input file)",
28
+ )
29
+
30
+ parser.add_argument(
31
+ "--headers-as-datapoints",
32
+ action="store_true",
33
+ default=False,
34
+ help="Treat headers as datapoints (default: False)",
35
+ )
36
+
37
+ parser.add_argument(
38
+ "--strict-validation",
39
+ action="store_true",
40
+ default=True,
41
+ help="Raise errors on validation failures (default: True)",
42
+ )
43
+
44
+ parser.add_argument(
45
+ "--no-strict-validation",
46
+ action="store_false",
47
+ dest="strict_validation",
48
+ help="Emit warnings instead of errors for validation failures",
49
+ )
50
+
51
+ args = parser.parse_args()
52
+
53
+ # Determine output path
54
+ input_path = Path(args.input_file)
55
+ if not input_path.exists():
56
+ print(f"Error: Input file not found: {args.input_file}", file=sys.stderr)
57
+ sys.exit(1)
58
+
59
+ if args.output_path is None:
60
+ output_path = input_path.parent
61
+ else:
62
+ output_path = Path(args.output_path)
63
+ if not output_path.exists():
64
+ print(f"Error: Output path does not exist: {args.output_path}", file=sys.stderr)
65
+ sys.exit(1)
66
+
67
+ try:
68
+ result_path = convert_instance(
69
+ instance_path=input_path,
70
+ output_path=output_path,
71
+ headers_as_datapoints=args.headers_as_datapoints,
72
+ validate_filing_indicators=True,
73
+ strict_validation=args.strict_validation,
74
+ )
75
+ print(f"Conversion successful: {result_path}")
76
+ except Exception as e:
77
+ print(f"Conversion failed: {e}", file=sys.stderr)
78
+ sys.exit(1)
79
+
80
+
81
+ if __name__ == "__main__":
82
+ main()
xbridge/converter.py CHANGED
@@ -77,7 +77,7 @@ class Converter:
77
77
  output_path: Union[str, Path],
78
78
  headers_as_datapoints: bool = False,
79
79
  validate_filing_indicators: bool = True,
80
- strict_validation: bool = True,
80
+ strict_validation: bool = False,
81
81
  ) -> Path:
82
82
  """Convert the ``XML Instance`` to a CSV file or between CSV formats"""
83
83
  if not output_path:
@@ -300,28 +300,27 @@ class Converter:
300
300
  if instance_df.empty or table.variable_df is None:
301
301
  return set()
302
302
 
303
+ variable_columns = set(table.variable_columns or [])
303
304
  open_keys = set(table.open_keys)
304
305
 
305
- datapoint_df = table.variable_df.copy()
306
+ # self.instance.instance_df is guaranteed to not be None due to check at line 296
307
+ instance_columns = set(self.instance.instance_df.columns)
306
308
 
307
- # For validation we match minimally on metric (concept) and any open keys present
308
- merge_cols: list[str] = []
309
- if "metric" in datapoint_df.columns and "metric" in instance_df.columns:
310
- merge_cols.append("metric")
311
- merge_cols.extend(
312
- [key for key in open_keys if key in datapoint_df.columns and key in instance_df.columns]
313
- )
309
+ datapoint_df = table.variable_df.copy()
314
310
 
315
- def _strip_prefix(val: Any) -> Any:
316
- if isinstance(val, str) and ":" in val:
317
- return val.split(":", 1)[1]
318
- return val
311
+ # Handle missing columns by filtering datapoint_df (same as _variable_generator)
312
+ # This prevents requiring dimensions that don't exist in the instance
313
+ missing_cols = list(variable_columns - instance_columns)
314
+ if "data_type" in missing_cols:
315
+ missing_cols.remove("data_type")
316
+ if missing_cols:
317
+ mask = datapoint_df[missing_cols].isnull().all(axis=1)
318
+ datapoint_df = datapoint_df.loc[mask]
319
+ datapoint_df = datapoint_df.drop(columns=missing_cols)
319
320
 
320
- for col in merge_cols:
321
- if col in datapoint_df.columns:
322
- datapoint_df[col] = datapoint_df[col].map(_strip_prefix)
323
- if col in instance_df.columns:
324
- instance_df[col] = instance_df[col].map(_strip_prefix)
321
+ # Match on all variable columns (dimensions) to avoid Cartesian product
322
+ # explosion. Consistent with _variable_generator() to prevent OOM.
323
+ merge_cols = list(variable_columns & instance_columns)
325
324
 
326
325
  instance_df = instance_df.copy()
327
326
  instance_df["_idx"] = instance_df.index
@@ -367,18 +366,6 @@ class Converter:
367
366
  # Join the dataframes on the datapoint_columns
368
367
  merge_cols = list(variable_columns & instance_columns)
369
368
 
370
- def _strip_prefix(val: Any) -> Any:
371
- if isinstance(val, str) and ":" in val:
372
- return val.split(":", 1)[1]
373
- return val
374
-
375
- # Align merge columns by stripping any namespace prefixes from both sides
376
- for col in merge_cols:
377
- if col in datapoint_df.columns:
378
- datapoint_df[col] = datapoint_df[col].map(_strip_prefix)
379
- if col in instance_df.columns:
380
- instance_df[col] = instance_df[col].map(_strip_prefix)
381
-
382
369
  table_df = pd.merge(datapoint_df, instance_df, on=merge_cols, how="inner")
383
370
 
384
371
  if "data_type" in table_df.columns and "decimals" in table_df.columns:
xbridge/instance.py CHANGED
@@ -40,6 +40,49 @@ def _derive_csv_prefix(namespace_uri: str) -> Optional[str]:
40
40
  return prefix
41
41
 
42
42
 
43
+ def _derive_metric_prefix(namespace_uri: str) -> Optional[str]:
44
+ """
45
+ Derive the CSV prefix for metrics from a namespace URI.
46
+
47
+ For metrics, we preserve version suffixes in the prefix:
48
+ - http://www.eba.europa.eu/xbrl/crr/dict/met -> eba_met
49
+ - http://www.eba.europa.eu/xbrl/crr/dict/met/3.5 -> eba_met_3.5
50
+ - http://www.eba.europa.eu/xbrl/crr/dict/met/4.0 -> eba_met_4.0
51
+ """
52
+ if not namespace_uri:
53
+ return None
54
+
55
+ cached = _namespace_prefix_cache.get(f"metric:{namespace_uri}")
56
+ if cached is not None:
57
+ return cached
58
+
59
+ cleaned = namespace_uri.rstrip("#/")
60
+
61
+ # Split the URI into path segments
62
+ segments = cleaned.split("/")
63
+
64
+ # Find the 'met' (metrics) segment and check if there's a version after it
65
+ prefix = None
66
+ for i, segment in enumerate(segments):
67
+ if segment == "met":
68
+ # Check if there's a version suffix (e.g., "3.5", "4.0")
69
+ if i + 1 < len(segments):
70
+ version = segments[i + 1]
71
+ prefix = f"eba_met_{version}"
72
+ else:
73
+ prefix = "eba_met"
74
+ break
75
+
76
+ # If we didn't find 'met', fall back to the standard logic
77
+ if prefix is None:
78
+ prefix = _derive_csv_prefix(namespace_uri)
79
+
80
+ if prefix:
81
+ _namespace_prefix_cache[f"metric:{namespace_uri}"] = prefix
82
+
83
+ return prefix
84
+
85
+
43
86
  def _normalize_namespaced_value(
44
87
  value: Optional[str], nsmap: Dict[Optional[str], str]
45
88
  ) -> Optional[str]:
@@ -67,6 +110,34 @@ def _normalize_namespaced_value(
67
110
  return value
68
111
 
69
112
 
113
+ def _normalize_metric_value(
114
+ value: Optional[str], nsmap: Dict[Optional[str], str]
115
+ ) -> Optional[str]:
116
+ """
117
+ Normalize a metric namespaced value to the CSV prefix convention.
118
+ For metrics, we preserve version suffixes (e.g., eba_met_3.5, eba_met_4.0).
119
+ Returns the original value if no namespace can be resolved.
120
+ """
121
+ if value is None:
122
+ return None
123
+
124
+ # Clark notation: {uri}local
125
+ if value.startswith("{") and "}" in value:
126
+ uri, local = value[1:].split("}", 1)
127
+ derived = _derive_metric_prefix(uri)
128
+ return f"{derived}:{local}" if derived else value
129
+
130
+ # Prefixed notation: prefix:local
131
+ if ":" in value:
132
+ potential_prefix, local = value.split(":", 1)
133
+ namespace_uri = nsmap.get(potential_prefix)
134
+ if namespace_uri:
135
+ derived = _derive_metric_prefix(namespace_uri)
136
+ return f"{derived}:{local}" if derived else value
137
+
138
+ return value
139
+
140
+
70
141
  class Instance:
71
142
  """
72
143
  Abstract class representing an XBRL instance file.
@@ -728,7 +799,11 @@ class Fact:
728
799
  def __dict__(self) -> Dict[str, Any]: # type: ignore[override]
729
800
  metric_clean = ""
730
801
  if self.metric:
731
- metric_clean = self.metric.split("}")[1] if "}" in self.metric else self.metric
802
+ # Normalize metric using metric-specific logic that preserves version suffixes
803
+ metric_clean = _normalize_metric_value(self.metric, self.fact_xml.nsmap) or ""
804
+ # If still in Clark notation, extract the local name
805
+ if metric_clean.startswith("{") and "}" in metric_clean:
806
+ metric_clean = metric_clean.split("}", 1)[1]
732
807
 
733
808
  return {
734
809
  "metric": metric_clean,
xbridge/modules.py CHANGED
@@ -306,9 +306,9 @@ class Table:
306
306
  variable_info: dict[str, Any] = {}
307
307
  for dim_k, dim_v in variable.dimensions.items():
308
308
  if dim_k not in ("unit", "decimals"):
309
- variable_info[dim_k] = dim_v.split(":")[1]
309
+ variable_info[dim_k] = dim_v
310
310
  if "concept" in variable.dimensions:
311
- variable_info["metric"] = variable.dimensions["concept"].split(":")[1]
311
+ variable_info["metric"] = variable.dimensions["concept"]
312
312
  del variable_info["concept"]
313
313
 
314
314
  if variable.code is None:
@@ -324,9 +324,11 @@ class Table:
324
324
  if "dimensions" in column:
325
325
  for dim_k, dim_v in column["dimensions"].items():
326
326
  if dim_k == "concept":
327
- variable_info["metric"] = dim_v.split(":")[1]
327
+ variable_info["metric"] = dim_v
328
328
  elif dim_k not in ("unit", "decimals"):
329
- variable_info[dim_k.split(":")[1]] = dim_v.split(":")[1]
329
+ # Keep the full dimension key and value with prefixes
330
+ dim_k_clean = dim_k.split(":")[1] if ":" in dim_k else dim_k
331
+ variable_info[dim_k_clean] = dim_v
330
332
 
331
333
  if "decimals" in column:
332
334
  variable_info["data_type"] = column["decimals"]
@@ -1,62 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: eba-xbridge
3
- Version: 1.5.0rc3
4
- Summary: XBRL-XML to XBRL-CSV converter for EBA Taxonomy (version 4.1)
5
- License: Apache 2.0
6
- License-File: LICENSE
7
- Keywords: xbrl,eba,taxonomy,csv,xml
8
- Author: MeaningfulData
9
- Author-email: info@meaningfuldata.eu
10
- Maintainer: Antonio Olleros
11
- Maintainer-email: antonio.olleros@meaningfuldata.eu
12
- Requires-Python: >=3.9
13
- Classifier: Development Status :: 5 - Production/Stable
14
- Classifier: Intended Audience :: Developers
15
- Classifier: Intended Audience :: Information Technology
16
- Classifier: Intended Audience :: Science/Research
17
- Classifier: Programming Language :: Python :: 3
18
- Classifier: Typing :: Typed
19
- Requires-Dist: lxml (>=5.2.1,<6.0)
20
- Requires-Dist: numpy (>=1.23.2,<2) ; python_version < "3.13"
21
- Requires-Dist: numpy (>=2.1.0) ; python_version >= "3.13"
22
- Requires-Dist: pandas (>=2.1.4,<3.0)
23
- Project-URL: Documentation, https://docs.xbridge.meaningfuldata.eu
24
- Project-URL: IssueTracker, https://github.com/Meaningful-Data/xbridge/issues
25
- Project-URL: MeaningfulData, https://www.meaningfuldata.eu/
26
- Project-URL: Repository, https://github.com/Meaningful-Data/xbridge
27
- Description-Content-Type: text/x-rst
28
-
29
- Overview
30
- ============
31
- XBridge is a Python library which main function is to convert XBRL-XML files into XBRL-CSV files by using EBA's taxonomy.
32
- It works with EBA Taxonomy latest published version (4.1). Library must be updated on each new EBA taxonomy version.
33
-
34
- Installation
35
- ============
36
-
37
- To install the library, run the following command:
38
-
39
- .. code:: bash
40
-
41
- pip install eba-xbridge
42
-
43
-
44
- How XBridge works:
45
- =========================
46
-
47
- Firstly, an XBRL-XML file has to be selected to convert it. Then, that XBRL-XML file is input in the following function contained in the ``API`` package:
48
-
49
- .. code:: python
50
-
51
- >>> from xbridge.api import convert_instance
52
-
53
- >>> input_path = "data/input"
54
-
55
- >>> output_path = "data/output"
56
-
57
- >>> convert_instance(input_path, output_path)
58
-
59
- The sources to do this process are two: The XML-instances and EBA´s taxonomy.
60
-
61
- The output is the converted XBRL-CSV file placed in the output_path, as zip format
62
-