e2D 1.4.13__py3-none-any.whl → 1.4.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
e2D/__init__.py CHANGED
@@ -17,9 +17,9 @@ class Vector2D:
17
17
  self.x = x
18
18
  self.y = y
19
19
 
20
- def distance_to(self, other, sqrd=True) -> int|float:
20
+ def distance_to(self, other, rooted=True) -> int|float:
21
21
  d = (self.x - other.x)**2 + (self.y - other.y)**2
22
- return (d**(1/2) if sqrd else d)
22
+ return d**(1/2) if rooted else d
23
23
 
24
24
  def angle_to(self, other) -> int|float:
25
25
  return _mt.atan2(other.y - self.y, other.x - self.x)
@@ -32,8 +32,8 @@ class Vector2D:
32
32
  return _mt.atan2(self.y, self.x)
33
33
 
34
34
  @angle.setter
35
- def angle(self, argv) -> None:
36
- print(argv)
35
+ def angle(self, new_angle) -> None:
36
+ self.rotate(new_angle - self.angle)
37
37
 
38
38
  @property
39
39
  def copy(self) -> "Vector2D":
@@ -42,13 +42,13 @@ class Vector2D:
42
42
  @property
43
43
  def sign(self) -> "Vector2D":
44
44
  return Vector2D(sign(self.x), sign(self.y))
45
-
45
+
46
46
  @property
47
47
  def normalize(self) -> "Vector2D":
48
48
  if (mag:=self.length) == 0:
49
49
  return self.copy
50
50
  return Vector2D(self.x / mag, self.y / mag)
51
-
51
+
52
52
  @property
53
53
  def length(self) -> float:
54
54
  return (self.x ** 2 + self.y ** 2) ** .5
@@ -93,16 +93,12 @@ class Vector2D:
93
93
  def reflection(self, normal) -> "Vector2D":
94
94
  return self - self.projection(normal) * 2
95
95
 
96
- def cartesian_to_polar(self) -> tuple:
97
- r = self.length
98
- theta = _mt.atan2(self.y, self.x)
99
- return r, theta
96
+ def cartesian_to_polar(self) -> tuple[float, float]:
97
+ return self.length, _mt.atan2(self.y, self.x)
100
98
 
101
99
  @classmethod
102
100
  def polar_to_cartesian(cls, r, theta) -> "Vector2D":
103
- x = r * _mt.cos(theta)
104
- y = r * _mt.sin(theta)
105
- return cls(x, y)
101
+ return cls(r * _mt.cos(theta), r * _mt.sin(theta))
106
102
 
107
103
  def cartesian_to_complex(self) -> complex:
108
104
  return self.x + self.y * 1j
@@ -112,19 +108,17 @@ class Vector2D:
112
108
  return cls(complex_n.real, complex_n.imag)
113
109
 
114
110
  def lerp(self, other, t=.1) -> "Vector2D":
115
- other = Vector2D.__normalize__(other)
116
- if not 0 <= t <= 1:
117
- raise ValueError("t must be between 0 and 1 for linear interpolation.")
118
111
  return Vector2D(self.x + (other.x - self.x) * t, self.y + (other.y - self.y) * t)
119
112
 
120
- def rotate(self, angle, center=None) -> "Vector2D":
121
- if center is None: center = Vector2D.zero()
113
+ def rotate(self, angle, center=None) -> None:
114
+ if center == None: center = Vector2D.zero()
122
115
  translated = self - center
123
116
  cos_angle = _mt.cos(angle)
124
117
  sin_angle = _mt.sin(angle)
125
- return Vector2D(translated.x * cos_angle - translated.y * sin_angle, translated.x * sin_angle + translated.y * cos_angle) + center
118
+ self.x = translated.x * cos_angle - translated.y * sin_angle + center.x
119
+ self.y = translated.x * sin_angle + translated.y * cos_angle + center.y
126
120
 
127
- def no_zero_div_error(self, n, error_mode="zero") -> "Vector2D":
121
+ def no_zero_div_error(self, n, error_mode=Literal["zero", "null", "nan"]) -> "Vector2D":
128
122
  if isinstance(n, (int, float)):
129
123
  if n == 0:
130
124
  return Vector2D(0 if error_mode == "zero" else (self.x if error_mode == "null" else _mt.nan), 0 if error_mode == "zero" else (self.y if error_mode == "null" else _mt.nan))
@@ -171,20 +165,20 @@ class Vector2D:
171
165
  def sub(self, both=.0, x=.0, y=.0) -> Vector2D:
172
166
  return Vector2D(self.x - (x + both), self.y - (y + both))
173
167
 
174
- def mult(self, both=.0, x=.0, y=.0) -> Vector2D:
175
- return Vector2D(self.x * (x + both), self.y * (y + both))
168
+ def mult(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
169
+ return Vector2D(self.x * x * both, self.y * y * both)
176
170
 
177
- def pow(self, both=.0, x=.0, y=.0) -> Vector2D:
171
+ def pow(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
178
172
  return Vector2D(self.x ** (x + both), self.y ** (y + both))
179
173
 
180
- def mod(self, both=.0, x=.0, y=.0) -> Vector2D:
174
+ def mod(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
181
175
  return Vector2D(self.x % (x + both), self.y % (y + both))
182
176
 
183
- def div(self, both=.0, x=.0, y=.0) -> Vector2D:
184
- return Vector2D(self.x / (x + both), self.y / (y + both))
177
+ def div(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
178
+ return Vector2D(self.x / x / both, self.y / y / both)
185
179
 
186
- def fdiv(self, both=.0, x=.0, y=.0) -> Vector2D:
187
- return Vector2D(self.x // (x + both), self.y // (y + both))
180
+ def fdiv(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
181
+ return Vector2D(self.x // x // both, self.y // y // both)
188
182
 
189
183
  # fast inplace operations Vector2D.ioperation(both,x,y)
190
184
  def set(self, both=.0, x=.0, y=.0) -> Vector2D:
@@ -202,29 +196,29 @@ class Vector2D:
202
196
  self.y -= y + both
203
197
  return self
204
198
 
205
- def imult(self, both=.0, x=.0, y=.0) -> Vector2D:
206
- self.x *= x + both
207
- self.y *= y + both
199
+ def imult(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
200
+ self.x *= x * both
201
+ self.y *= y * both
208
202
  return self
209
203
 
210
- def ipow(self, both=.0, x=.0, y=.0) -> Vector2D:
204
+ def ipow(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
211
205
  self.x **= x + both
212
206
  self.y **= y + both
213
207
  return self
214
208
 
215
- def imod(self, both=.0, x=.0, y=.0) -> Vector2D:
209
+ def imod(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
216
210
  self.x %= x + both
217
211
  self.y %= y + both
218
212
  return self
219
213
 
220
- def idiv(self, both=.0, x=.0, y=.0) -> Vector2D:
221
- self.x /= x + both
222
- self.y /= y + both
214
+ def idiv(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
215
+ self.x /= x * both
216
+ self.y /= y * both
223
217
  return self
224
218
 
225
- def ifdiv(self, both=.0, x=.0, y=.0) -> Vector2D:
226
- self.x //= x + both
227
- self.y //= y + both
219
+ def ifdiv(self, both=1.0, x=1.0, y=1.0) -> Vector2D:
220
+ self.x //= x * both
221
+ self.y //= y * both
228
222
  return self
229
223
 
230
224
  # normal operations Vector2D + a
@@ -518,9 +512,9 @@ def weighted_color_fade(colors_dict:dict) -> tuple[float, float, float]:
518
512
  if float("inf") in weights: return list(colors)[list(weights).index(float("inf"))]
519
513
  return tuple(sum(n[i]*w for n,w in zip(colors, weights)) / sum(weights) for i in range(3)) #type: ignore
520
514
 
521
- def color_distance(starting_c:list|tuple, final_c:list|tuple, sqrd) -> float:
515
+ def color_distance(starting_c:list|tuple, final_c:list|tuple, rooted) -> float:
522
516
  distance = sum([(starting_c[i]-final_c[i])**2 for i in range(3)])
523
- return (distance ** .5) if sqrd else distance
517
+ return (distance ** .5) if rooted else distance
524
518
 
525
519
  def lerp(starting, ending, step=.1) -> float:
526
520
  return starting + (ending - starting) * step
e2D/__init__.pyi CHANGED
@@ -39,31 +39,31 @@ class Vector2D:
39
39
  self.x : int|float
40
40
  self.y : int|float
41
41
 
42
- def distance_to(self:"Vector2D", other:"Vector2D", sqrd:bool=True) -> int|float:
42
+ def distance_to(self:"Vector2D", other:"Vector2D", rooted:bool=True) -> int|float:
43
43
  """
44
44
  # Calculate the distance between the current Vector2D other and another other.
45
45
 
46
46
  ## Parameters:
47
47
  other (float or int or Vector2D or list|tuple): The other other to which the distance is calculated.
48
- squared (bool, optional): If True, return the squared distance. If False, return the actual distance.
48
+ rooted (bool, optional): If True, return the normal distance. If False, return the square distance.
49
49
  Default is True.
50
50
 
51
51
  ## Returns:
52
- int|float: The squared distance between the current Vector2D other and the other other if `squared` is True,
53
- otherwise the actual distance.
52
+ int|float: The distance between the current Vector2D other and the other other if `rooted` is True,
53
+ otherwise the squared distance.
54
54
 
55
55
  ## Example:
56
56
  point1 = Vector2D(0, 0)
57
57
 
58
58
  point2 = Vector2D(3, 4)
59
59
 
60
- squared_distance = point1.distance_to(point2)
60
+ normal_distance = point1.distance_to(point2)
61
61
 
62
- print(f"Squared Distance: {squared_distance}")
62
+ print(f"Normal Distance: {normal_distance}")
63
63
 
64
- distance = point1.distance_to(point2, squared=False)
64
+ squared_distance = point1.distance_to(point2, rooted=False)
65
65
 
66
- print(f"Actual Distance: {distance}")
66
+ print(f"Squared Distance: {distance}")
67
67
 
68
68
  This will calculate the squared and actual distances between the two points.
69
69
 
@@ -71,7 +71,7 @@ class Vector2D:
71
71
  The function calculates the squared distance between the current Vector2D other (self) and another other
72
72
  (other) using the formula: (self.x - other.x)**2 + (self.y - other.y)**2.
73
73
 
74
- The result is returned as the squared distance if `squared` is True, or as the actual distance if `squared` is False.
74
+ The result is returned as the squared distance if `rooted` is False, or as the actual distance if `rooted` is True.
75
75
  """
76
76
  ...
77
77
 
@@ -391,7 +391,7 @@ class Vector2D:
391
391
  """
392
392
  ...
393
393
 
394
- def cartesian_to_polar(self:"Vector2D") -> tuple:
394
+ def cartesian_to_polar(self:"Vector2D") -> tuple[float, float]:
395
395
  """
396
396
  # Convert Cartesian Coordinates to Polar Coordinates
397
397
 
@@ -483,7 +483,7 @@ class Vector2D:
483
483
  """
484
484
  ...
485
485
 
486
- def rotate(self:"Vector2D", angle: int|float, center:"Vector2D|None"=None) -> "Vector2D":
486
+ def rotate(self:"Vector2D", angle: int|float, center:"Vector2D|None"=None) -> None:
487
487
  """
488
488
  # Rotate the vector by a given angle around the origin or a specified center.
489
489
 
@@ -493,7 +493,7 @@ class Vector2D:
493
493
  If None, the vector is rotated around the origin (0, 0).
494
494
 
495
495
  ## Returns:
496
- Vector2D or V2: The rotated vector.
496
+ None
497
497
 
498
498
  ## Example:
499
499
  v = Vector2D(3, 4)
@@ -581,32 +581,32 @@ class Vector2D:
581
581
 
582
582
  def sub(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
583
583
 
584
- def mult(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
584
+ def mult(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
585
585
 
586
- def pow(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
586
+ def pow(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
587
587
 
588
- def mod(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
588
+ def mod(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
589
589
 
590
- def div(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
590
+ def div(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
591
591
 
592
- def fdiv(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
592
+ def fdiv(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
593
593
 
594
594
  # fast inplace operations Vector2D.ioperation(both,x,y)
595
- def set(self, both=int|float, x:int|float, y:int|float) -> Vector2D: ...
595
+ def set(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
596
596
 
597
- def iadd(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
597
+ def iadd(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
598
598
 
599
- def isub(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
599
+ def isub(self, both:int|float=.0, x:int|float=.0, y:int|float=.0) -> Vector2D: ...
600
600
 
601
- def imult(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
601
+ def imult(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
602
602
 
603
- def ipow(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
603
+ def ipow(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
604
604
 
605
- def imod(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
605
+ def imod(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
606
606
 
607
- def idiv(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
607
+ def idiv(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
608
608
 
609
- def ifdiv(self, both:int|float, x:int|float, y=int|float) -> Vector2D: ...
609
+ def ifdiv(self, both:int|float=1.0, x:int|float=1.0, y:int|float=1.0) -> Vector2D: ...
610
610
 
611
611
  # normal operations Vector2D + a
612
612
  def __add__(self:"Vector2D", other:"int|float|Vector2D|list|tuple") -> "Vector2D": ...
@@ -889,18 +889,18 @@ def weighted_color_fade(colors_dict:dict) -> tuple[float, float, float]:
889
889
  """
890
890
  ...
891
891
 
892
- def color_distance(starting_c: list|tuple, final_c: list|tuple, sqrd:bool=True) -> float:
892
+ def color_distance(starting_c: list|tuple, final_c: list|tuple, rooted:bool=True) -> float:
893
893
  """
894
894
  # Calculate the distance between two colors in RGB space.
895
895
 
896
896
  ## Parameters:
897
897
  starting_c (list or tuple): The RGB values of the starting color.
898
898
  final_c (list or tuple): The RGB values of the final color.
899
- sqrd (bool, optional): If True, return the squared distance. If False, return
899
+ rooted (bool, optional): If True, return the rooted distance. If False, return
900
900
  the actual distance. Default is True.
901
901
 
902
902
  ## Returns:
903
- float: The squared distance between the two colors if `sqrd` is True, otherwise
903
+ float: The squared distance between the two colors if `rooted` is False, otherwise
904
904
  the actual distance.
905
905
 
906
906
  ## Example:
@@ -912,7 +912,7 @@ def color_distance(starting_c: list|tuple, final_c: list|tuple, sqrd:bool=True)
912
912
 
913
913
  print(f"Squared Distance: {squared_distance}")
914
914
 
915
- distance = color_distance(starting_c, final_c, sqrd=False)
915
+ distance = color_distance(starting_c, final_c, rooted=True)
916
916
 
917
917
  print(f"Actual Distance: {distance}")
918
918
 
@@ -924,9 +924,9 @@ def color_distance(starting_c: list|tuple, final_c: list|tuple, sqrd:bool=True)
924
924
  components for each color. The squared distance is obtained by taking the square
925
925
  root of this sum.
926
926
 
927
- The `sqrd` parameter allows the user to choose between returning the squared
928
- distance or the actual distance. If `sqrd` is True, the function returns the
929
- squared distance, and if `sqrd` is False, it returns the actual distance.
927
+ The `rooted` parameter allows the user to choose between returning the squared
928
+ distance or the actual distance. If `rooted` is True, the function returns the
929
+ actual distance, and if `rooted` is False, it returns the squared distance.
930
930
  """
931
931
  ...
932
932
 
e2D/envs.py CHANGED
@@ -5,7 +5,7 @@ from .utils import *
5
5
  import pygame as pg
6
6
 
7
7
  """ CODE EXAMPLE FOR RootEnv
8
- from e2D.envs import *
8
+ from e2D.envs import * #type: ignore
9
9
 
10
10
  class Env(DefEnv):
11
11
  def __init__(self) -> None:
e2D/plots.py CHANGED
@@ -127,8 +127,8 @@ class MathFunction(Function):
127
127
  id:int|str,
128
128
  function:Callable[[int|float, int|float], int|float],
129
129
  domain:list[float]=[-np.inf, np.inf],
130
- codomain:list[float]=[-np.inf, np.inf], colo
131
- :list[float]|tuple[float,float,float]=(255,255,255)) -> None:
130
+ codomain:list[float]=[-np.inf, np.inf],
131
+ color:list[float]|tuple[float,float,float]=(255,255,255)) -> None:
132
132
  super().__init__()
133
133
  self.id = id
134
134
  self.color = color
@@ -398,7 +398,7 @@ class Plot:
398
398
  self.focus_using_corners(top_left_plot_coord, bottom_right_plot_coord)
399
399
 
400
400
  def set_borders_by_position_and_zoom(self) -> None:
401
- self.top_left_plot_coord = self.current_offset - 2**(-.1*self.current_zoom) * self.__y_axis_multiplier__
401
+ self.top_left_plot_coord = self.current_offset - 2**(self.current_zoom.mult(-.1)) * self.__y_axis_multiplier__
402
402
  self.bottom_right_plot_coord = self.current_offset + 2**(-.1*self.current_zoom) * self.__y_axis_multiplier__
403
403
  self.top_left_x, self.top_left_y = self.top_left_plot_coord
404
404
  self.bottom_right_x, self.bottom_right_y = self.bottom_right_plot_coord
e2D/utils.py CHANGED
@@ -3,6 +3,8 @@ from typing import Any, Callable, Literal
3
3
  import pygame as pg
4
4
  from e2D import *
5
5
 
6
+ import math as _mt
7
+
6
8
  pg.font.init()
7
9
 
8
10
  __KEY_MODE_TYPES_DICT__ = dict(zip(["pressed", "just_pressed", "just_released"], range(3)))
@@ -95,6 +97,7 @@ class Util:
95
97
  self.rootEnv = None
96
98
  self.surface : pg.Surface
97
99
  self.id : int|str
100
+ self.is_hovered :bool= False
98
101
  def draw(self) -> None: pass
99
102
  def update(self) -> None: pass
100
103
 
@@ -153,14 +156,15 @@ class InputCell(Util):
153
156
  if self.border_width:
154
157
  pg.draw.rect(self.text_surface, self.border_color, self.margin_rect, self.border_width, -1, *self.border_radius)
155
158
  else:
156
- pg.draw.rect(self.text_surface, [127 + 127 * _mt.sin(self.rootEnv.get_time_from_start() * 10)]*3, self.margin_rect, self.border_width if self.border_width else 10, -1, *self.border_radius)
159
+ pg.draw.rect(self.text_surface, [127 + 127 * _mt.sin(self.rootEnv.runtime_seconds * 10)]*3, self.margin_rect, self.border_width if self.border_width else 10, -1, *self.border_radius)
157
160
 
158
161
  self.surface.blit(self.text_surface, self.position())
159
162
 
160
163
  def update(self) -> None:
164
+ self.is_hovered = self.position.x < self.rootEnv.mouse.position.x < self.position.x + self.size.x and\
165
+ self.position.y < self.rootEnv.mouse.position.y < self.position.y + self.size.y
161
166
  if self.rootEnv.mouse.get_key(0, "just_pressed"):
162
- if self.position.x < self.rootEnv.mouse.position.x < self.position.x + self.size.x and\
163
- self.position.y < self.rootEnv.mouse.position.y < self.position.y + self.size.y:
167
+ if self.is_hovered:
164
168
  self.rootEnv.selected_util = self if self.rootEnv.selected_util != self else None
165
169
  self.update_text()
166
170
  if self.rootEnv.selected_util == self:
e2D/winrec.py CHANGED
@@ -18,7 +18,7 @@ class WinRec:
18
18
  return self.rootEnv.current_frame/self.fps
19
19
 
20
20
  def draw(self, draw_on_screen=False) -> None:
21
- text = f"[cfps:{self.rootEnv.current_frame} || realtime:{round(self.get_rec_seconds(),2)} || apptime:{round(self.rootEnv.get_time_from_start(),2)}]"
21
+ text = f"[cfps:{self.rootEnv.current_frame} || realtime:{round(self.get_rec_seconds(),2)} || apptime:{round(self.rootEnv.runtime_seconds,2)}]"
22
22
  pg.display.set_caption(text)
23
23
  if draw_on_screen: self.rootEnv.print(text, self.rootEnv.screen_size, pivot_position='bottom_right')
24
24
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: e2D
3
- Version: 1.4.13
3
+ Version: 1.4.14
4
4
  Summary: Python library for 2D games. Streamlines dev with keyboard/mouse input, vector calculations, color manipulation, and collision detection. Simplify game creation and unleash creativity!
5
5
  Home-page: https://github.com/marick-py/e2D
6
6
  Author: Riccardo Mariani
@@ -0,0 +1,11 @@
1
+ e2D/__init__.py,sha256=klic-pOCE3h0JqwhpkKz6euZLS7wrvKQEUPTKTR9YRI,23066
2
+ e2D/__init__.pyi,sha256=rMceBt26-bozw_Xt3JQWfQ_20G8RAkE2j4CqIf7PIuQ,48013
3
+ e2D/envs.py,sha256=Kf6f9szesdI9xado9u1FiDOBEVusbJDAvU-i9rMESws,6306
4
+ e2D/plots.py,sha256=S4YWKJVrb1bfJGxUebFy4167coCb4oTdcNl_DKcJtlA,36075
5
+ e2D/utils.py,sha256=tDs_Fl_8YBQoJaATQmgmFD50oNu39i4bCmvxxU16cS0,14152
6
+ e2D/winrec.py,sha256=EFFfWYbk27NhS-rWD-BLChXvLjFW1uYZ5LkRGMj_Xo0,1116
7
+ e2D-1.4.14.dist-info/LICENSE,sha256=wymkNVDvj3qmjdO_rAhkRPM4t5y3_SqffGsFdgfvznU,1066
8
+ e2D-1.4.14.dist-info/METADATA,sha256=LxDaWfll8xiSRggk4Wv6r8Nv6BdDgu7SgajDuxcXwaU,9611
9
+ e2D-1.4.14.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
10
+ e2D-1.4.14.dist-info/top_level.txt,sha256=3vKZ-CGzNlTCpzVMmM0Ht76krCofKw7hZ0wBf-dnKdM,4
11
+ e2D-1.4.14.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.4.0)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
e2D/cvb.py DELETED
@@ -1,831 +0,0 @@
1
- from __future__ import annotations
2
-
3
- __all__ = ['cV2', 'cVector2D']
4
-
5
- class Vector2D:
6
- round_values_on_print :int|float= 2
7
- def __init__(self:"Vector2D", x:int|float=0.0, y:int|float=0.0) -> None:
8
- """
9
- # Initialize a 2D vector with the specified x and y components.
10
-
11
- ## Parameters:
12
- x (int | float, optional): The x-component of the vector. Default is 0.
13
- y (int | float, optional): The y-component of the vector. Default is 0.
14
-
15
- ## Example:
16
- vector1 = Vector2D() # Creates a vector with x=0 and y=0
17
- vector2 = Vector2D(3, -2.5) # Creates a vector with x=3 and y=-2.5
18
-
19
- ## Explanation:
20
- This constructor initializes a 2D vector with the specified x and y components.
21
-
22
- If no arguments are provided, the default values for x and y are both set to 0.
23
-
24
- The x and y components can be integers or floating-point numbers.
25
-
26
- Example usage is shown in the "Example" section above.
27
- """
28
- self.x = x
29
- self.y = y
30
-
31
- def set(self:"Vector2D", x:int|float=0, y:int|float=0) -> None:
32
- """
33
- # Change the components of the Vector2D other without creating a new one.
34
-
35
- ## Parameters:
36
- x (int | float, optional): The new x-component to set. Default is 0.
37
- y (int | float, optional): The new y-component to set. Default is 0.
38
-
39
- ## Example:
40
- vector = Vector2D(1, 2)
41
- vector.set(3, -4)
42
- print(vector.x, vector.y) # Output: 3, -4
43
-
44
- ## Explanation:
45
- The method updates the x and y components of the Vector2D other to the specified values.
46
-
47
- If no arguments are provided, the default values for x and y are both set to 0.
48
-
49
- The x and y components can be integers or floating-point numbers.
50
-
51
- The method does not return any value, but it modifies the Vector2D other in place.
52
-
53
- Example usage is shown in the "Example" section above.
54
- """
55
- self.x = x
56
- self.y = y
57
-
58
- def distance_to(self:"Vector2D", other:"float|int|Vector2D|list|tuple", sqrd:bool=True) -> int|float:
59
- """
60
- # Calculate the distance between the current Vector2D other and another other.
61
-
62
- ## Parameters:
63
- other (float or int or Vector2D or list|tuple): The other other to which the distance is calculated.
64
- squared (bool, optional): If True, return the squared distance. If False, return the actual distance.
65
- Default is True.
66
-
67
- ## Returns:
68
- int|float: The squared distance between the current Vector2D other and the other other if `squared` is True,
69
- otherwise the actual distance.
70
-
71
- ## Example:
72
- point1 = Vector2D(0, 0)
73
-
74
- point2 = Vector2D(3, 4)
75
-
76
- squared_distance = point1.distance_to(point2)
77
-
78
- print(f"Squared Distance: {squared_distance}")
79
-
80
- distance = point1.distance_to(point2, squared=False)
81
-
82
- print(f"Actual Distance: {distance}")
83
-
84
- This will calculate the squared and actual distances between the two points.
85
-
86
- ## Explanation:
87
- The function calculates the squared distance between the current Vector2D other (self) and another other
88
- (other) using the formula: (self.x - other.x)**2 + (self.y - other.y)**2.
89
-
90
- The result is returned as the squared distance if `squared` is True, or as the actual distance if `squared` is False.
91
- """
92
- other = self.__normalize__(other)
93
- d = (self.x - other.x)**2 + (self.y - other.y)**2
94
- return (d**(1/2) if sqrd else d)
95
-
96
- def angle_to(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> int|float:
97
- """
98
- # Calculate the angle between the current Vector2D other and another other.
99
-
100
- ## Parameters:
101
- other (float or int or Vector2D or list|tuple): The other other to which the angle is calculated.
102
-
103
- ## Returns:
104
- int|float: The angle in radians between the current Vector2D other and the other other.
105
-
106
- ## Example:
107
- point1 = Vector2D(0, 0)
108
-
109
- point2 = Vector2D(1, 1)
110
-
111
- angle = point1.angle_to(point2)
112
-
113
- print(f"Angle in radians: {angle}")
114
-
115
- This will calculate the angle in radians between the two points.
116
-
117
- ## Explanation:
118
- The function calculates the angle in radians between the current Vector2D other (self) and another other
119
- (other) using the `atan2` function from the `math` module.
120
-
121
- The result is returned as the angle in radians.
122
- """
123
- other = self.__normalize__(other)
124
- return _mt.atan2(other.y - self.y, other.x - self.x)
125
-
126
- def point_from_degs(self:"Vector2D", degs:int|float, radius:int|float) -> "Vector2D":
127
- """
128
- # Calculate a new Vector2D point from the current point based on an angle in degs and a radius.
129
-
130
- ## Parameters:
131
- rad (int|float): The angle in degs.
132
- radius (int|float): The distance from the current point.
133
-
134
- ## Returns:
135
- Vector2D: A new Vector2D point calculated from the current point.
136
-
137
- ## Example:
138
- point1 = Vector2D(0, 0)
139
-
140
- angle = 45
141
-
142
- distance = 5
143
-
144
- new_point = point1.point_from_degs(angle, distance)
145
-
146
- print(new_point.x, new_point.y)
147
-
148
- This will calculate a new point 5 units away from point1 at a 45-degree angle.
149
-
150
- ## Explanation:
151
- The function calculates a new Vector2D point based on an angle in degs (degs) and a distance (radius)
152
- from the current Vector2D point.
153
-
154
- It computes the new x and y coordinates of the point using the trigonometric functions `cos` and `sin`
155
- to determine the horizontal and vertical components of the new point.
156
-
157
- The result is returned as a new Vector2D point with the calculated coordinates.
158
- """
159
- x = radius * _mt.cos(_mt.radians(degs)) + self.x
160
- y = radius * _mt.sin(_mt.radians(degs)) + self.y
161
- return Vector2D(x, y)
162
-
163
- def point_from_rads(self:"Vector2D", rad:int|float, radius:int|float) -> "Vector2D":
164
- """
165
- # Calculate a new Vector2D point from the current point based on an angle in radians and a radius.
166
-
167
- ## Parameters:
168
- rad (int|float): The angle in radians.
169
- radius (int|float): The distance from the current point.
170
-
171
- ## Returns:
172
- Vector2D: A new Vector2D point calculated from the current point.
173
-
174
- ## Example:
175
- point1 = Vector2D(0, 0)
176
-
177
- angle = 45
178
-
179
- distance = 5
180
-
181
- new_point = point1.point_from_degs(_mt.radians(angle), distance)
182
-
183
- print(new_point.x, new_point.y)
184
-
185
- This will calculate a new point 5 units away from point1 at a 45-degree angle.
186
-
187
- ## Explanation:
188
- The function calculates a new Vector2D point based on an angle in radians (rad) and a distance (radius)
189
- from the current Vector2D point.
190
-
191
- It computes the new x and y coordinates of the point using the trigonometric functions `cos` and `sin`
192
- to determine the horizontal and vertical components of the new point.
193
-
194
- The result is returned as a new Vector2D point with the calculated coordinates.
195
- """
196
- x = radius * _mt.cos(rad) + self.x
197
- y = radius * _mt.sin(rad) + self.y
198
- return Vector2D(x, y)
199
-
200
- def copy(self:"Vector2D") -> "Vector2D":
201
- """
202
- # Create a copy of the current Vector2D other.
203
-
204
- ## Returns:
205
- Vector2D: A new Vector2D other with the same x and y coordinates as the current other.
206
-
207
- ## Example:
208
- point1 = Vector2D(1, 2)
209
-
210
- point2 = point1.copy()
211
-
212
- print(point2.x, point2.y)
213
-
214
- This will print the x and y coordinates of the copied Vector2D other (1, 2).
215
-
216
- ## Explanation:
217
- The function creates a new Vector2D other with the same x and y coordinates as the current other.
218
-
219
- The result is returned as a new Vector2D other, effectively making a copy of the original other.
220
- """
221
- return Vector2D(self.x, self.y)
222
-
223
- def sign(self:"Vector2D") -> "Vector2D":
224
- """
225
- # Perform an "absolute round" operation on the Vector2D other.
226
-
227
- ## Parameters:
228
- n (int|float, optional): The numeric value to scale the "absolute rounded" vector. Default is 1.
229
-
230
- ## Returns:
231
- Vector2D: The "absolute rounded" Vector2D other scaled by the provided numeric value.
232
-
233
- ## Example:
234
- vector1 = Vector2D(3.3, -4.7)
235
-
236
- result1 = vector1.absolute_round(0.5)
237
-
238
- print(result1.x, result1.y)
239
-
240
- vector2 = Vector2D(-2.8, 1.1)
241
-
242
- result2 = vector2.absolute_round()
243
-
244
- print(result2.x, result2.y)
245
-
246
- ## Explanation:
247
- The function performs an "absolute round" operation on the Vector2D other.
248
-
249
- The "absolute round" operation involves taking the absolute values of both the x and y components of the Vector2D other,
250
- and then scaling the resulting vector by the provided numeric value (n).
251
-
252
- The default value of n is 1, which means the "absolute rounded" vector will have the same magnitude as the original vector.
253
-
254
- If the provided numeric value (n) is 0, the function returns a Vector2D other with zeros for both components.
255
-
256
- If the provided numeric value (n) is negative, the resulting "absolute rounded" vector will point in the opposite direction
257
- as the original vector but will have the same magnitude.
258
-
259
- Note: The "absolute round" operation does not perform standard mathematical rounding; instead, it ensures the resulting
260
- vector points in the same direction as the original vector but has non-negative components.
261
- """
262
- return self.no_zero_div_error(abs(self), "zero")
263
-
264
- def floor(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
265
- return self.__floor__(n)
266
-
267
- def ceil(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
268
- return self.__ceil__(n)
269
-
270
- def round(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
271
- return self.__round__(n)
272
-
273
- def randomize(start:"int|float|Vector2D|None"=None, end:"int|float|Vector2D|None"=None) -> "Vector2D": #type: ignore
274
- """
275
- # Generate a random Vector2D point within the specified range.
276
-
277
- ## Parameters:
278
- start (int|float or Vector2D or None, optional): The starting point of the range.
279
- Default is None, which corresponds to (0, 0).
280
- If numeric, both x and y will have the same value.
281
- end (int|float or Vector2D or None, optional): The ending point of the range.
282
- Default is None, which corresponds to (1, 1).
283
- If numeric, both x and y will have the same value.
284
-
285
- ## Returns:
286
- Vector2D: A new random Vector2D point within the specified range.
287
-
288
- ## Example:
289
- random_point = randomize(Vector2D(10, 20), Vector2D(50, 70))
290
-
291
- print(random_point.x, random_point.y)
292
-
293
- This will print a random point between (10, 20) and (50, 70).
294
-
295
- ## Explanation:
296
- The function generates a random Vector2D point within the specified range defined by `start` and `end`.
297
-
298
- If `start` and `end` are numeric values (int or float), both x and y coordinates will have the same value.
299
-
300
- If `start` and `end` are None, the default range is assumed to be (0, 0) to (1, 1).
301
-
302
- The function first checks if `start` and `end` are Vector2D others. If not, it creates new Vector2D others
303
- based on the numeric values provided or the default values.
304
-
305
- It then generates random x and y coordinates in the range [0, 1) using the `random()` function from the `random` module.
306
- These random values are then scaled by (end - start) and added to the start point to obtain the final random Vector2D point.
307
- """
308
- if not any(isinstance(start, cls) for cls in {Vector2D, V2}):
309
- if type(start) in int|float: start = Vector2D(start, start) #type: ignore
310
- elif type(start) == None: start = Vector2D(0,0)
311
- else: raise Exception(f"\nArg start must be in [Vector2D, int, float, tuple, list] not a [{type(start)}]\n")
312
- if not any(isinstance(end, cls) for cls in {Vector2D, V2}):
313
- if type(end) in int|float: end = Vector2D(end, end) #type: ignore
314
- elif type(end) == None: end = Vector2D(1,1)
315
- else: raise Exception(f"\nArg end must be in [Vector2D, int, float, tuple, list] not a [{type(end)}]\n")
316
- return start + Vector2D(_rnd.random(), _rnd.random()) * (end - start) #type: ignore
317
-
318
- def dot_product(self, other:"float|int|Vector2D|list|tuple") -> float:
319
- other = self.__normalize__(other)
320
- """
321
- # Calculate the dot product of the current vector with another vector.
322
-
323
- ## Parameters:
324
- other (Vector2D): The other vector for the dot product calculation.
325
-
326
- ## Returns:
327
- float: The dot product value.
328
-
329
- ## Example:
330
- v1 = Vector2D(2, 3)
331
- v2 = Vector2D(4, -1)
332
- result = v1.dot_product(v2)
333
- print(result) # Output: 5
334
-
335
- ## Explanation:
336
- The dot product of two vectors (A and B) is given by the formula: dot_product = A.x * B.x + A.y * B.y
337
-
338
- The method takes another vector (other) as input and returns the dot product value.
339
-
340
- Example usage is shown in the "Example" section above.
341
- """
342
- return self.x * other.x + self.y * other.y
343
-
344
- def normalize(self) -> "Vector2D":
345
- """
346
- # Vector Normalization
347
-
348
- ## Returns:
349
- Vector2D: A new vector with the same direction as the current vector but with a magnitude of 1.
350
-
351
- ## Raises:
352
- ValueError: If the magnitude of the current vector is zero (zero vector).
353
-
354
- ## Example:
355
- v = Vector2D(3, 4)
356
- normalized_v = v.normalize() # Normalize the vector (3, 4)
357
- print(normalized_v) # Output: (0.6, 0.8)
358
-
359
- ## Explanation:
360
- This method calculates the normalized version of the current vector, which means a new vector with the same direction as the original but with a magnitude of 1.
361
-
362
- The method first calculates the magnitude of the current vector using the 'magnitude' method.
363
-
364
- If the magnitude is zero (zero vector), a ValueError is raised, as normalization is not defined for zero vectors.
365
-
366
- The normalized vector is obtained by dividing each component of the current vector by its magnitude.
367
-
368
- The resulting normalized vector is returned.
369
-
370
- Example usage is shown in the "Example" section above.
371
- """
372
- mag = self.length()
373
- if mag == 0:
374
- return self
375
- return Vector2D(self.x / mag, self.y / mag)
376
-
377
- def projection(self, other:"float|int|Vector2D|list|tuple") -> "Vector2D":
378
- """
379
- # Vector Projection
380
-
381
- ## Parameters:
382
- other (float, int, Vector2D, V2, list, tuple): The vector onto which to project.
383
-
384
- ## Returns:
385
- Vector2D or V2: The projection of the current vector onto the 'other' vector.
386
-
387
- ## Raises:
388
- ValueError: If 'other' is a zero vector.
389
-
390
- ## Example:
391
- v1 = Vector2D(3, 4)
392
- v2 = Vector2D(1, 0)
393
- projection_v = v1.projection(v2) # Calculate the projection of v1 onto v2
394
- print(projection_v) # Output: (3.0, 0.0)
395
-
396
- ## Explanation:
397
- This method calculates the projection of the current vector onto the 'other' vector.
398
- The projection is a vector that represents the component of the current vector in the direction of the 'other' vector.
399
-
400
- If 'other' is not a Vector2D instance, it will be converted to one using the '__normalize__' method.
401
- The method first normalizes the 'other' vector using the '__normalize__' method of the vector.
402
-
403
- Next, it calculates the dot product of the current vector and the normalized 'other' vector using the 'dot_product' method.
404
- It also calculates the squared magnitude of the 'other' vector using the 'magnitude' method.
405
-
406
- If the magnitude of 'other' is zero (a zero vector), a ValueError is raised, as projection is not defined for zero vectors.
407
-
408
- The projection is then obtained by scaling the 'other' vector by the dot product divided by the squared magnitude.
409
-
410
- The resulting projection vector is returned.
411
-
412
- Example usage is shown in the "Example" section above.
413
- """
414
- other = self.__normalize__(other)
415
- dot_product = self.dot_product(other)
416
- magnitude_product = other.length() ** 2
417
- if magnitude_product == 0:
418
- raise ValueError("Cannot calculate projection for zero vectors.")
419
- return other * (dot_product / magnitude_product)
420
-
421
- def reflection(self, normal:"float|int|Vector2D|list|tuple") -> "Vector2D":
422
- """
423
- # Vector Reflection
424
-
425
- ## Parameters:
426
- normal (float, int, Vector2D, V2, list, tuple): The normal vector representing the surface of reflection.
427
-
428
- ## Returns:
429
- Vector2D or V2: The reflected vector.
430
-
431
- ## Example:
432
- incident_vector = Vector2D(3, 4)
433
- normal_vector = Vector2D(1, 0)
434
- reflected_vector = incident_vector.reflection(normal_vector) # Calculate the reflection of the incident vector over the given normal
435
- print(reflected_vector) # Output: (-3.0, 4.0)
436
-
437
- ## Explanation:
438
- This method calculates the reflection of the current vector over the given normal vector.
439
- The normal vector represents the surface of reflection, and it should be normalized (unit vector).
440
-
441
- The method first normalizes the 'normal' vector using the '__normalize__' method of the vector.
442
- Next, it calculates the projection of the current vector onto the 'normal' vector using the 'projection' method.
443
- The reflected vector is obtained by subtracting twice the projection from the current vector.
444
-
445
- The resulting reflected vector is returned.
446
-
447
- Example usage is shown in the "Example" section above.
448
- """
449
- normal = self.__normalize__(normal)
450
- projection = self.projection(normal)
451
- return self - projection * 2
452
-
453
- def cartesian_to_polar(self) -> tuple:
454
- """
455
- # Convert Cartesian Coordinates to Polar Coordinates
456
-
457
- ## Returns:
458
- tuple: A tuple containing the radial distance (magnitude) 'r' and the angle 'theta' in radians.
459
-
460
- ## Example:
461
- v = Vector2D(3, 4)
462
- r, theta = v.cartesian_to_polar() # Convert Cartesian coordinates (3, 4) to polar
463
- print(r, theta) # Output: (5.0, 0.9272952180016122)
464
-
465
- ## Explanation:
466
- This method converts Cartesian coordinates (x, y) to polar coordinates (r, theta).
467
- 'r' is the radial distance (magnitude) from the origin to the point, and 'theta' is the angle
468
- (in radians) measured from the positive x-axis to the point.
469
-
470
- The method calculates the radial distance 'r' using the 'magnitude' method of the vector.
471
- The angle 'theta' is calculated using the arctan2 function, which takes the y and x components of the vector.
472
-
473
- The resulting 'r' and 'theta' are returned as a tuple.
474
-
475
- Example usage is shown in the "Example" section above.
476
- """
477
- r = self.length()
478
- theta = _mt.atan2(self.y, self.x)
479
- return r, theta
480
-
481
- @classmethod
482
- def polar_to_cartesian(cls, r: float|int, theta: float|int) -> "Vector2D":
483
- """
484
- # Convert Polar Coordinates to Cartesian Coordinates
485
-
486
- ## Parameters:
487
- r (float or int): The radial distance (magnitude) from the origin to the point.
488
- theta (float or int): The angle (in radians or degrees) measured from the positive x-axis to the point.
489
-
490
- ## Returns:
491
- Vector2D or V2: A new vector representing the Cartesian coordinates (x, y) of the point.
492
-
493
- ## Example:
494
- cartesian_point = Vector2D.polar_to_cartesian(5, math.pi/4) # Convert polar coordinates (r=5, theta=45 degrees) to Cartesian
495
- print(cartesian_point) # Output: (3.5355339059327378, 3.5355339059327373)
496
-
497
- ## Explanation:
498
- This class method converts polar coordinates (r, theta) to Cartesian coordinates (x, y).
499
- 'r' is the radial distance (magnitude) from the origin to the point, and 'theta' is the angle
500
- (in radians or degrees) measured from the positive x-axis to the point.
501
-
502
- The method calculates the x and y components using trigonometric functions (cosine and sine) based on 'r' and 'theta'.
503
-
504
- Example usage is shown in the "Example" section above.
505
- """
506
- x = r * _mt.cos(theta)
507
- y = r * _mt.sin(theta)
508
- return cls(x, y)
509
-
510
- def cartesian_to_complex(self) -> complex:
511
- return self.x + self.y * 1j
512
-
513
- @classmethod
514
- def complex_to_cartesian(cls, complex_n: complex) -> "Vector2D":
515
- return cls(complex_n.real, complex_n.imag)
516
-
517
- def length(self) -> float:
518
- return (self.x ** 2 + self.y ** 2) ** .5
519
-
520
- def lerp(self, other:"float|int|Vector2D|list|tuple", t: float) -> "Vector2D":
521
- """
522
- # Linear Interpolation (LERP)
523
-
524
- ## Parameters:
525
- other (float, int, Vector2D, V2, list, tuple): The vector to interpolate towards.
526
- t (float): The interpolation parameter. Must be between 0 and 1.
527
-
528
- ## Returns:
529
- Vector2D or V2: The result of the linear interpolation.
530
-
531
- ## Raises:
532
- ValueError: If t is not within the range [0, 1].
533
-
534
- ## Example:
535
- v1 = Vector2D(1, 2)
536
- v2 = Vector2D(5, 7)
537
- interpolated_v = v1.lerp(v2, 0.5) # Linearly interpolate between v1 and v2 with t = 0.5
538
- print(interpolated_v) # Output: (3.0, 4.5)
539
-
540
- ## Explanation:
541
- This method performs linear interpolation between the current vector and the 'other' vector.
542
- The 't' parameter represents the interpolation parameter, which controls how much the interpolation
543
- leans towards the 'other' vector. When 't' is 0, the result will be equal to the current vector (self).
544
- When 't' is 1, the result will be equal to the 'other' vector. For intermediate values of 't', the
545
- result will be a linear combination of the two vectors, smoothly transitioning between them.
546
-
547
- If 'other' is not a Vector2D instance, it will be converted to one using the '__normalize__' method.
548
- If 't' is not within the range [0, 1], a ValueError is raised.
549
-
550
- Example usage is shown in the "Example" section above.
551
- """
552
- other = self.__normalize__(other)
553
- if not 0 <= t <= 1:
554
- raise ValueError("t must be between 0 and 1 for linear interpolation.")
555
- return Vector2D(self.x + (other.x - self.x) * t, self.y + (other.y - self.y) * t)
556
-
557
- def rotate(self, angle: int|float, center:"float|int|Vector2D|list|tuple|None"=None) -> "Vector2D":
558
- """
559
- # Rotate the vector by a given angle around the origin or a specified center.
560
-
561
- ## Parameters:
562
- angle (int or float): The angle of rotation in radians or degrees, depending on the trigonometric functions used.
563
- center (float, int, Vector2D, V2, list, tuple, or None): The center of rotation.
564
- If None, the vector is rotated around the origin (0, 0).
565
-
566
- ## Returns:
567
- Vector2D or V2: The rotated vector.
568
-
569
- ## Example:
570
- v = Vector2D(3, 4)
571
- rotated_v = v.rotate(math.pi / 4) # Rotate 45 degrees around the origin
572
- print(rotated_v) # Output: (0.7071067811865476, 5.656854249492381)
573
-
574
- center = Vector2D(1, 1)
575
- rotated_v = v.rotate(math.pi / 4, center) # Rotate 45 degrees around the center (1, 1)
576
- print(rotated_v) # Output: (1.7071067811865475, 2.656854249492381)
577
-
578
- ## Explanation:
579
- This method rotates the vector by the specified angle around the given center.
580
- If no center is provided, the vector is rotated around the origin (0, 0).
581
-
582
- The method calculates the trigonometric functions (cosine and sine) of the angle to perform the rotation.
583
- The translated vector is obtained by subtracting the center from the current vector.
584
- The rotated vector is then obtained by applying the rotation transformation to the translated vector.
585
- The center is added back to the rotated vector to obtain the final result.
586
-
587
- Example usage is shown in the "Example" section above.
588
- """
589
- if center is None: center = V2z
590
- else: center = self.__normalize__(center)
591
- translated = self - center
592
- cos_angle = _mt.cos(angle)
593
- sin_angle = _mt.sin(angle)
594
- return Vector2D(translated.x * cos_angle - translated.y * sin_angle, translated.x * sin_angle + translated.y * cos_angle) + center
595
-
596
- def no_zero_div_error(self:"Vector2D", n:"int|float|Vector2D", error_mode:str="zero") -> "Vector2D":
597
- """
598
- # Handle division between the Vector2D other and a numeric value or another Vector2D other.
599
-
600
- ## Parameters:
601
- n (int|float or Vector2D): The numeric value or Vector2D other for division.
602
- error_mode (str, optional): The mode to handle division by zero scenarios.
603
- - "zero" (default): Return a Vector2D other with zeros for both components.
604
- - "null": Return a Vector2D other with the original x or y component if available,
605
- otherwise, return NaN (Not a Number) for the component.
606
-
607
- ## Returns:
608
- Vector2D: A new Vector2D other after division or handling division by zero scenarios.
609
-
610
- ## Example:
611
- vector1 = Vector2D(3, 4)
612
-
613
- result1 = vector1.no_zero_div_error(2)
614
-
615
- print(result1.x, result1.y)
616
-
617
- vector2 = Vector2D(5, 0)
618
-
619
- result2 = vector1.no_zero_div_error(vector2, error_mode="null")
620
-
621
- print(result2.x, result2.y)
622
-
623
- ## Explanation:
624
- The function handles division between the Vector2D other and a numeric value or another Vector2D other.
625
-
626
- If n is a numeric value (int or float):
627
- - If n is zero, the function returns a Vector2D other with zeros for both components if error_mode is "zero".
628
- - If error_mode is "null", the function returns a Vector2D other with the original x or y component if available,
629
- otherwise, return NaN (Not a Number) for the component.
630
-
631
- If n is a Vector2D other:
632
- - If n's x or y component is zero, the function returns a Vector2D other with zeros for the corresponding component
633
- if error_mode is "zero".
634
- - If error_mode is "null", the function returns a Vector2D other with the original x or y component if available,
635
- otherwise, return NaN (Not a Number) for the component.
636
-
637
- If n is neither a numeric value nor a Vector2D other, the function raises an exception.
638
- """
639
- if any(isinstance(n, cls) for cls in {int, float}):
640
- if n == 0:
641
- return Vector2D(0 if error_mode == "zero" else (self.x if error_mode == "null" else _mt.nan), 0 if error_mode == "zero" else (self.y if error_mode == "null" else _mt.nan))
642
- else:
643
- return self / n
644
- elif any(isinstance(n, cls) for cls in {Vector2D, V2}):
645
- return Vector2D((0 if error_mode == "zero" else (self.x if error_mode == "null" else _mt.nan)) if n.x == 0 else self.x / n.x, (0 if error_mode == "zero" else (self.y if error_mode == "null" else _mt.nan)) if n.y == 0 else self.y / n.y) #type: ignore
646
- else:
647
- raise Exception(f"\nArg n must be in [Vector2D, int, float, tuple, list] not a [{type(n)}]\n")
648
-
649
- def min(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
650
- other = self.__normalize__(other)
651
- return Vector2D(min(self.x, other.x), min(self.y, other.y))
652
-
653
- def max(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
654
- other = self.__normalize__(other)
655
- return Vector2D(max(self.x, other.x), max(self.y, other.y))
656
-
657
- def advanced_stringify(self:"Vector2D", precision:float|None=None, use_scientific_notation:bool=False, return_as_list=False) -> str:
658
- precision = self.round_values_on_print if precision == None else precision
659
- def optimize(value) -> str:
660
- abs_value = abs(value)
661
- if abs_value < 1/10**precision and abs_value != 0:
662
- return f"{value:.{precision}e}"
663
- elif abs_value < 10**precision:
664
- return f"{value:.{precision}f}".rstrip('0').rstrip('.')
665
- else:
666
- return f"{value:.{precision}e}"
667
- if return_as_list:
668
- return [optimize(self.x), optimize(self.y)] if use_scientific_notation else [f"{self.x:.{precision}f}", f"{self.y:.{precision}f}"] #type: ignore
669
- return f"{optimize(self.x)}, {optimize(self.y)}" if use_scientific_notation else f"{self.x:.{precision}f}, {self.y:.{precision}f}"
670
-
671
- def __str__(self:"Vector2D") -> str:
672
- return f"{self.x:.{self.round_values_on_print}f}, {self.y:.{self.round_values_on_print}f}"
673
-
674
- def __repr__(self:"Vector2D") -> str:
675
- return f"x:{self.x:.{self.round_values_on_print}f}\ty:{self.y:.{self.round_values_on_print}f}"
676
-
677
- def __call__(self:"Vector2D", return_tuple=False) -> list|tuple:
678
- return (self.x, self.y) if return_tuple else [self.x, self.y]
679
-
680
- # normal operations Vector2D + a
681
- def __add__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
682
- other = self.__normalize__(other)
683
- return Vector2D(self.x + other.x, self.y + other.y)
684
-
685
- def __sub__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
686
- other = self.__normalize__(other)
687
- return Vector2D(self.x - other.x, self.y - other.y)
688
-
689
- def __mul__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
690
- other = self.__normalize__(other)
691
- return Vector2D(self.x * other.x, self.y * other.y)
692
-
693
- def __mod__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
694
- other = self.__normalize__(other)
695
- return Vector2D(self.x % other.x, self.y % other.y)
696
-
697
- def __pow__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
698
- other = self.__normalize__(other)
699
- return Vector2D(self.x ** other.x, self.y ** other.y)
700
-
701
- def __truediv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
702
- other = self.__normalize__(other)
703
- return Vector2D(self.x / other.x, self.y / other.y)
704
-
705
- def __floordiv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
706
- other = self.__normalize__(other)
707
- return Vector2D(self.x // other.x, self.y // other.y)
708
-
709
- # right operations a + Vector2D
710
- def __radd__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
711
- return self.__add__(other)
712
-
713
- def __rsub__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
714
- other = self.__normalize__(other)
715
- return Vector2D(other.x - self.x, other.y - self.y)
716
-
717
- def __rmul__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
718
- return self.__mul__(other)
719
-
720
- def __rmod__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
721
- other = self.__normalize__(other)
722
- return Vector2D(other.x % self.x, other.y % self.y)
723
-
724
- def __rpow__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
725
- other = self.__normalize__(other)
726
- return Vector2D(other.x ** self.x, other.y ** self.y)
727
-
728
- def __rtruediv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
729
- other = self.__normalize__(other)
730
- return Vector2D(other.x / self.x, other.y / self.y)
731
-
732
- def __rfloordiv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
733
- other = self.__normalize__(other)
734
- return Vector2D(other.x // self.x, other.y // self.y)
735
-
736
- # in-place operations Vector2D += a
737
- def __iadd__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
738
- other = self.__normalize__(other)
739
- self.x += other.x
740
- self.y += other.y
741
- return self
742
-
743
- def __isub__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
744
- other = self.__normalize__(other)
745
- self.x -= other.x
746
- self.y -= other.y
747
- return self
748
-
749
- def __imul__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
750
- other = self.__normalize__(other)
751
- self.x *= other.x
752
- self.y *= other.y
753
- return self
754
-
755
- def __itruediv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
756
- other = self.__normalize__(other)
757
- self.x /= other.x
758
- self.y /= other.y
759
- return self
760
-
761
- def __imod__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
762
- other = self.__normalize__(other)
763
- self.x %= other.x
764
- self.y %= other.y
765
- return self
766
-
767
- def __ipow__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
768
- other = self.__normalize__(other)
769
- self.x **= other.x
770
- self.y **= other.y
771
- return self
772
-
773
- def __ifloordiv__(self:"Vector2D", other:"float|int|Vector2D|list|tuple") -> "Vector2D":
774
- other = self.__normalize__(other)
775
- self.x //= other.x
776
- self.y //= other.y
777
- return self
778
-
779
- # comparasion
780
- def __eq__(self, other) -> bool:
781
- try: other = self.__normalize__(other)
782
- except: return False
783
- return self.x == other.x and self.y == other.y
784
-
785
- def __ne__(self, other) -> bool:
786
- return not self.__eq__(other)
787
-
788
- def __abs__(self:"Vector2D") -> "Vector2D":
789
- return Vector2D(abs(self.x), abs(self.y))
790
-
791
- def __round__(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
792
- n = self.__normalize__(n)
793
- return Vector2D(round(self.x / n.x) * n.x, round(self.y / n.y) * n.y)
794
-
795
- def __floor__(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
796
- n = self.__normalize__(n)
797
- return Vector2D(_mt.floor(self.x / n.x) * n.x, _mt.floor(self.y / n.y) * n.y)
798
-
799
- def __ceil__(self:"Vector2D", n:"int|float|Vector2D"=1) -> "Vector2D":
800
- n = self.__normalize__(n)
801
- return Vector2D(_mt.ceil(self.x / n.x) * n.x, _mt.ceil(self.y / n.y) * n.y)
802
-
803
- def __float__(self:"Vector2D") -> "Vector2D":
804
- return Vector2D(float(self.x), float(self.y))
805
-
806
- def __getitem__(self:"Vector2D", n) -> int|float:
807
- if n in [0, "x"]:
808
- return self.x
809
- elif n in [1, "y"]:
810
- return self.y
811
- else:
812
- raise IndexError("V2 has only x,y...")
813
-
814
- def __normalize__(self:"Vector2D", other) -> "Vector2D":
815
- if not isinstance(other, Vector2D):
816
- if any(isinstance(other, cls) for cls in {int, float}):
817
- return Vector2D(other, other)
818
- elif any(isinstance(other, cls) for cls in {list, tuple}):
819
- return Vector2D(*other[:2])
820
- else:
821
- raise TypeError(f"The value {other} is not a num type: [{int|float}] nor an array type: [{list|tuple}]")
822
- return other
823
-
824
- try:
825
- from .Cmain import * #type: ignore
826
- cV2 = Vector2D
827
- cVector2D = Vector2D
828
- except Exception as err:
829
- print(Warning(f"Unable to load the C-version on Vector2D: \n\t{err}"))
830
- cV2 = None
831
- cVector2D = None
@@ -1,12 +0,0 @@
1
- e2D/__init__.py,sha256=0bgnk4XOipVE1FAeOSwkJ85I8sXzLPEj8TnrNXGP7bw,23188
2
- e2D/__init__.pyi,sha256=vJjIrU1F8qLyyL5OcFyW56reghTOu4qQ7xqwwYesBzA,47925
3
- e2D/cvb.py,sha256=xMpwUBE1G2TOdah-x62W_6yXZey-n1p0OkvfiijZfNY,37445
4
- e2D/envs.py,sha256=yh_NBLSgZFi3zwGbSzR7tZTRDn2hKzC-oQNTWQRS7VA,6292
5
- e2D/plots.py,sha256=qNQZTwpYqDyonXGv_cDt-R3nGvu3xR7RSFDRdJma4rA,36069
6
- e2D/utils.py,sha256=7SkfQj5Y6J3_pW9ssWMKVDSawrDANv3GtehGRVeH96k,14048
7
- e2D/winrec.py,sha256=QMcQrED4xC8o5KAHEbhOR03lJ_-XRNAtUI3y-cRHsck,1122
8
- e2D-1.4.13.dist-info/LICENSE,sha256=wymkNVDvj3qmjdO_rAhkRPM4t5y3_SqffGsFdgfvznU,1066
9
- e2D-1.4.13.dist-info/METADATA,sha256=1kkNPGcb63ZzfUf-HluW5dwHCkTAcSJ_NrmLT7brPV0,9611
10
- e2D-1.4.13.dist-info/WHEEL,sha256=a7TGlA-5DaHMRrarXjVbQagU3Man_dCnGIWMJr5kRWo,91
11
- e2D-1.4.13.dist-info/top_level.txt,sha256=3vKZ-CGzNlTCpzVMmM0Ht76krCofKw7hZ0wBf-dnKdM,4
12
- e2D-1.4.13.dist-info/RECORD,,
File without changes