dycw-utilities 0.109.16__py3-none-any.whl → 0.109.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dycw_utilities-0.109.16.dist-info → dycw_utilities-0.109.18.dist-info}/METADATA +1 -1
- {dycw_utilities-0.109.16.dist-info → dycw_utilities-0.109.18.dist-info}/RECORD +7 -7
- utilities/__init__.py +1 -1
- utilities/numpy.py +129 -23
- utilities/polars.py +38 -0
- {dycw_utilities-0.109.16.dist-info → dycw_utilities-0.109.18.dist-info}/WHEEL +0 -0
- {dycw_utilities-0.109.16.dist-info → dycw_utilities-0.109.18.dist-info}/licenses/LICENSE +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
utilities/__init__.py,sha256=
|
1
|
+
utilities/__init__.py,sha256=oi6A9do1IFvsNef8qyo7k6dU87Y8HcM7SGeQWrtR5w0,61
|
2
2
|
utilities/altair.py,sha256=Gpja-flOo-Db0PIPJLJsgzAlXWoKUjPU1qY-DQ829ek,9156
|
3
3
|
utilities/astor.py,sha256=xuDUkjq0-b6fhtwjhbnebzbqQZAjMSHR1IIS5uOodVg,777
|
4
4
|
utilities/asyncio.py,sha256=41oQUurWMvadFK5gFnaG21hMM0Vmfn2WS6OpC0R9mas,14757
|
@@ -36,7 +36,7 @@ utilities/math.py,sha256=TexfvLCI12d9Sw5_W4pKVBZ3nRr3zk2iPkcEU7xdEWU,26771
|
|
36
36
|
utilities/memory_profiler.py,sha256=tf2C51P2lCujPGvRt2Rfc7VEw5LDXmVPCG3z_AvBmbU,962
|
37
37
|
utilities/modules.py,sha256=SnhsRHRUS1po_acejrINauihGQpPvVsp8RDNCei1OLQ,3173
|
38
38
|
utilities/more_itertools.py,sha256=CPUxrMAcTwRxbzbhiqPKi3Xx9hxqI0t6gkWjutaibGk,5534
|
39
|
-
utilities/numpy.py,sha256
|
39
|
+
utilities/numpy.py,sha256=cBgCBet8YfZP_rb4nkCJHZx9_03qPEinVENMk1dGVYQ,25683
|
40
40
|
utilities/operator.py,sha256=0M2yZJ0PODH47ogFEnkGMBe_cfxwZR02T_92LZVZvHo,3715
|
41
41
|
utilities/optuna.py,sha256=loyJGWTzljgdJaoLhP09PT8Jz6o_pwBOwehY33lHkhw,1923
|
42
42
|
utilities/orjson.py,sha256=Wj5pzG_VdgoAy14a7Luhem-BgYrRtRFvvl_POiszRd0,36930
|
@@ -46,7 +46,7 @@ utilities/pathlib.py,sha256=31WPMXdLIyXgYOMMl_HOI2wlo66MGSE-cgeelk-Lias,1410
|
|
46
46
|
utilities/period.py,sha256=ikHXsWtDLr553cfH6p9mMaiCnIAP69B7q84ckWV3HaA,10884
|
47
47
|
utilities/pickle.py,sha256=Bhvd7cZl-zQKQDFjUerqGuSKlHvnW1K2QXeU5UZibtg,657
|
48
48
|
utilities/platform.py,sha256=NU7ycTvAXAG-fdYmDXaM1m4EOml2cGiaYwaUzfzSqyU,1767
|
49
|
-
utilities/polars.py,sha256=
|
49
|
+
utilities/polars.py,sha256=tagkPZ-LlyyC9Mx-iCmLmCl3FlblKUVxWSXAaTh-G_M,53164
|
50
50
|
utilities/polars_ols.py,sha256=Uc9V5kvlWZ5cU93lKZ-cfAKdVFFw81tqwLW9PxtUvMs,5618
|
51
51
|
utilities/pqdm.py,sha256=foRytQybmOQ05pjt5LF7ANyzrIa--4ScDE3T2wd31a4,3118
|
52
52
|
utilities/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -86,7 +86,7 @@ utilities/warnings.py,sha256=yUgjnmkCRf6QhdyAXzl7u0qQFejhQG3PrjoSwxpbHrs,1819
|
|
86
86
|
utilities/whenever.py,sha256=TjoTAJ1R27-rKXiXzdE4GzPidmYqm0W58XydDXp-QZM,17786
|
87
87
|
utilities/zipfile.py,sha256=24lQc9ATcJxHXBPc_tBDiJk48pWyRrlxO2fIsFxU0A8,699
|
88
88
|
utilities/zoneinfo.py,sha256=-DQz5a0Ikw9jfSZtL0BEQkXOMC9yGn_xiJYNCLMiqEc,1989
|
89
|
-
dycw_utilities-0.109.
|
90
|
-
dycw_utilities-0.109.
|
91
|
-
dycw_utilities-0.109.
|
92
|
-
dycw_utilities-0.109.
|
89
|
+
dycw_utilities-0.109.18.dist-info/METADATA,sha256=QCV1ccFqiVe1zuFNo1eiBrkw5_X9YtyA409swR54OPM,13005
|
90
|
+
dycw_utilities-0.109.18.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
91
|
+
dycw_utilities-0.109.18.dist-info/licenses/LICENSE,sha256=gppZp16M6nSVpBbUBrNL6JuYfvKwZiKgV7XoKKsHzqo,1066
|
92
|
+
dycw_utilities-0.109.18.dist-info/RECORD,,
|
utilities/__init__.py
CHANGED
utilities/numpy.py
CHANGED
@@ -14,12 +14,12 @@ from numpy import (
|
|
14
14
|
digitize,
|
15
15
|
dtype,
|
16
16
|
errstate,
|
17
|
+
exp,
|
17
18
|
flatnonzero,
|
18
|
-
float64,
|
19
19
|
floating,
|
20
20
|
full_like,
|
21
21
|
inf,
|
22
|
-
|
22
|
+
integer,
|
23
23
|
isclose,
|
24
24
|
isfinite,
|
25
25
|
isinf,
|
@@ -38,11 +38,13 @@ from numpy.linalg import det, eig
|
|
38
38
|
from numpy.random import default_rng
|
39
39
|
from numpy.typing import NDArray
|
40
40
|
|
41
|
-
from utilities.iterables import is_iterable_not_str
|
41
|
+
from utilities.iterables import always_iterable, is_iterable_not_str
|
42
42
|
|
43
43
|
if TYPE_CHECKING:
|
44
44
|
from collections.abc import Callable, Iterable
|
45
45
|
|
46
|
+
from utilities.types import MaybeIterable
|
47
|
+
|
46
48
|
|
47
49
|
##
|
48
50
|
|
@@ -88,8 +90,9 @@ timedelta64as = dtype("timedelta64[as]")
|
|
88
90
|
|
89
91
|
NDArrayA = NDArray[Any]
|
90
92
|
NDArrayB = NDArray[bool_]
|
91
|
-
|
92
|
-
|
93
|
+
NDArrayC128 = NDArray[complex128]
|
94
|
+
NDArrayF = NDArray[floating[Any]]
|
95
|
+
NDArrayI = NDArray[integer[Any]]
|
93
96
|
NDArrayO = NDArray[object_]
|
94
97
|
|
95
98
|
|
@@ -133,6 +136,65 @@ class AsIntError(Exception): ...
|
|
133
136
|
##
|
134
137
|
|
135
138
|
|
139
|
+
def boxcar(
|
140
|
+
array: NDArrayF,
|
141
|
+
/,
|
142
|
+
*,
|
143
|
+
loc_low: float = -1.0,
|
144
|
+
slope_low: float = 1.0,
|
145
|
+
loc_high: float = 1.0,
|
146
|
+
slope_high: float = 1.0,
|
147
|
+
rtol: float | None = None,
|
148
|
+
atol: float | None = None,
|
149
|
+
) -> NDArrayF:
|
150
|
+
"""Construct a boxcar function."""
|
151
|
+
if not is_at_most(loc_low, loc_high, rtol=rtol, atol=atol):
|
152
|
+
raise _BoxCarLocationsError(low=loc_low, high=loc_high)
|
153
|
+
if not is_positive(slope_low, rtol=rtol, atol=atol):
|
154
|
+
raise _BoxCarLowerBoundSlopeError(slope=slope_low)
|
155
|
+
if not is_positive(slope_high, rtol=rtol, atol=atol):
|
156
|
+
raise _BoxCarUpperBoundSlopeError(slope=slope_high)
|
157
|
+
return (
|
158
|
+
sigmoid(array, loc=loc_low, slope=slope_low)
|
159
|
+
+ sigmoid(array, loc=loc_high, slope=-slope_high)
|
160
|
+
) / 2
|
161
|
+
|
162
|
+
|
163
|
+
@dataclass(kw_only=True, slots=True)
|
164
|
+
class BoxCarError(Exception): ...
|
165
|
+
|
166
|
+
|
167
|
+
@dataclass(kw_only=True, slots=True)
|
168
|
+
class _BoxCarLocationsError(BoxCarError):
|
169
|
+
low: float
|
170
|
+
high: float
|
171
|
+
|
172
|
+
@override
|
173
|
+
def __str__(self) -> str:
|
174
|
+
return f"Location parameters must be consistent; got {self.low} and {self.high}"
|
175
|
+
|
176
|
+
|
177
|
+
@dataclass(kw_only=True, slots=True)
|
178
|
+
class _BoxCarLowerBoundSlopeError(BoxCarError):
|
179
|
+
slope: float
|
180
|
+
|
181
|
+
@override
|
182
|
+
def __str__(self) -> str:
|
183
|
+
return f"Lower-bound slope parameter must be positive; got {self.slope}"
|
184
|
+
|
185
|
+
|
186
|
+
@dataclass(kw_only=True, slots=True)
|
187
|
+
class _BoxCarUpperBoundSlopeError(BoxCarError):
|
188
|
+
slope: float
|
189
|
+
|
190
|
+
@override
|
191
|
+
def __str__(self) -> str:
|
192
|
+
return f"Upper-bound slope parameter must be positive; got {self.slope}"
|
193
|
+
|
194
|
+
|
195
|
+
##
|
196
|
+
|
197
|
+
|
136
198
|
def discretize(x: NDArrayF, bins: int | Iterable[float], /) -> NDArrayF:
|
137
199
|
"""Discretize an array of floats.
|
138
200
|
|
@@ -164,28 +226,43 @@ def fillna(array: NDArrayF, /, *, value: float = 0.0) -> NDArrayF:
|
|
164
226
|
##
|
165
227
|
|
166
228
|
|
167
|
-
def
|
229
|
+
def adjust_frequencies(
|
168
230
|
array: NDArrayF,
|
169
231
|
/,
|
170
|
-
|
232
|
+
*,
|
233
|
+
filters: MaybeIterable[Callable[[NDArrayF], NDArrayB]] | None = None,
|
234
|
+
weights: MaybeIterable[Callable[[NDArrayF], NDArrayF]] | None = None,
|
171
235
|
d: int = 1,
|
172
236
|
) -> NDArrayF:
|
173
|
-
"""
|
237
|
+
"""Adjust an array via its FFT frequencies."""
|
174
238
|
(n,) = array.shape
|
175
|
-
|
239
|
+
amplitudes = fft(array)
|
176
240
|
freqs = fftfreq(n, d=d)
|
177
|
-
|
178
|
-
|
241
|
+
if filters is not None:
|
242
|
+
amplitudes = reduce(
|
243
|
+
partial(_adjust_frequencies_filter_one, freqs=freqs),
|
244
|
+
always_iterable(filters),
|
245
|
+
amplitudes,
|
246
|
+
)
|
247
|
+
if weights is not None:
|
248
|
+
amplitudes = reduce(
|
249
|
+
partial(_adjust_frequencies_weight_one, freqs=freqs),
|
250
|
+
always_iterable(weights),
|
251
|
+
amplitudes,
|
252
|
+
)
|
253
|
+
return ifft(amplitudes).real
|
254
|
+
|
255
|
+
|
256
|
+
def _adjust_frequencies_filter_one(
|
257
|
+
acc: NDArrayC128, el: Callable[[NDArrayF], NDArrayB], /, *, freqs: NDArrayF
|
258
|
+
) -> NDArrayC128:
|
259
|
+
return where(el(freqs), acc, 0.0)
|
179
260
|
|
180
261
|
|
181
|
-
def
|
182
|
-
acc:
|
183
|
-
|
184
|
-
|
185
|
-
*,
|
186
|
-
freqs: NDArray[floating[Any]],
|
187
|
-
) -> NDArray[complex128]:
|
188
|
-
return where(el(freqs), acc, 0.0)
|
262
|
+
def _adjust_frequencies_weight_one(
|
263
|
+
acc: NDArrayC128, el: Callable[[NDArrayF], NDArrayF], /, *, freqs: NDArrayF
|
264
|
+
) -> NDArrayC128:
|
265
|
+
return acc * el(freqs)
|
189
266
|
|
190
267
|
|
191
268
|
##
|
@@ -224,12 +301,12 @@ class FlatN0MultipleError(FlatN0Error):
|
|
224
301
|
##
|
225
302
|
|
226
303
|
|
227
|
-
def get_frequency_spectrum(array: NDArrayF, /, *, d: int = 1) ->
|
304
|
+
def get_frequency_spectrum(array: NDArrayF, /, *, d: int = 1) -> NDArrayF:
|
228
305
|
"""Get the frequency spectrum."""
|
229
306
|
(n,) = array.shape
|
230
|
-
|
307
|
+
amplitudes = fft(array)
|
231
308
|
freqs = fftfreq(n, d=d)
|
232
|
-
amplitudes = np.abs(
|
309
|
+
amplitudes = np.abs(amplitudes)
|
233
310
|
data = np.hstack([freqs.reshape(-1, 1), amplitudes.reshape(-1, 1)])
|
234
311
|
return data[argsort(data[:, 0])]
|
235
312
|
|
@@ -847,6 +924,31 @@ def shift_bool(
|
|
847
924
|
##
|
848
925
|
|
849
926
|
|
927
|
+
def sigmoid(
|
928
|
+
array: NDArrayF,
|
929
|
+
/,
|
930
|
+
*,
|
931
|
+
loc: float = 0.0,
|
932
|
+
slope: float = 1.0,
|
933
|
+
rtol: float | None = None,
|
934
|
+
atol: float | None = None,
|
935
|
+
) -> NDArrayF:
|
936
|
+
"""Construct a sigmoid function."""
|
937
|
+
if is_zero(slope, rtol=rtol, atol=atol):
|
938
|
+
raise SigmoidError
|
939
|
+
return 1 / (1 + exp(-slope * (array - loc)))
|
940
|
+
|
941
|
+
|
942
|
+
@dataclass(kw_only=True, slots=True)
|
943
|
+
class SigmoidError(Exception):
|
944
|
+
@override
|
945
|
+
def __str__(self) -> str:
|
946
|
+
return "Slope must be non-zero"
|
947
|
+
|
948
|
+
|
949
|
+
##
|
950
|
+
|
951
|
+
|
850
952
|
def _is_close(
|
851
953
|
x: Any,
|
852
954
|
y: Any,
|
@@ -869,6 +971,7 @@ def _is_close(
|
|
869
971
|
__all__ = [
|
870
972
|
"DEFAULT_RNG",
|
871
973
|
"AsIntError",
|
974
|
+
"BoxCarError",
|
872
975
|
"FlatN0EmptyError",
|
873
976
|
"FlatN0Error",
|
874
977
|
"FlatN0MultipleError",
|
@@ -878,8 +981,11 @@ __all__ = [
|
|
878
981
|
"NDArrayI",
|
879
982
|
"NDArrayO",
|
880
983
|
"ShiftError",
|
984
|
+
"SigmoidError",
|
985
|
+
"adjust_frequencies",
|
881
986
|
"array_indexer",
|
882
987
|
"as_int",
|
988
|
+
"boxcar",
|
883
989
|
"datetime64D",
|
884
990
|
"datetime64M",
|
885
991
|
"datetime64W",
|
@@ -895,7 +1001,6 @@ __all__ = [
|
|
895
1001
|
"datetime64us",
|
896
1002
|
"discretize",
|
897
1003
|
"fillna",
|
898
|
-
"filter_frequencies",
|
899
1004
|
"flatn0",
|
900
1005
|
"get_frequency_spectrum",
|
901
1006
|
"has_dtype",
|
@@ -948,4 +1053,5 @@ __all__ = [
|
|
948
1053
|
"maximum",
|
949
1054
|
"minimum",
|
950
1055
|
"shift_bool",
|
1056
|
+
"sigmoid",
|
951
1057
|
]
|
utilities/polars.py
CHANGED
@@ -119,6 +119,7 @@ if TYPE_CHECKING:
|
|
119
119
|
TimeUnit, # pyright: ignore[reportPrivateImportUsage]
|
120
120
|
)
|
121
121
|
|
122
|
+
from utilities.numpy import NDArrayB, NDArrayF
|
122
123
|
from utilities.types import (
|
123
124
|
Dataclass,
|
124
125
|
MaybeIterable,
|
@@ -141,6 +142,27 @@ _FINITE_EWM_MIN_WEIGHT = 0.9999
|
|
141
142
|
##
|
142
143
|
|
143
144
|
|
145
|
+
def adjust_frequencies(
|
146
|
+
series: Series,
|
147
|
+
/,
|
148
|
+
*,
|
149
|
+
filters: MaybeIterable[Callable[[NDArrayF], NDArrayB]] | None = None,
|
150
|
+
weights: MaybeIterable[Callable[[NDArrayF], NDArrayF]] | None = None,
|
151
|
+
d: int = 1,
|
152
|
+
) -> Series:
|
153
|
+
"""Adjust a Series via its FFT frequencies."""
|
154
|
+
import utilities.numpy
|
155
|
+
|
156
|
+
array = series.to_numpy()
|
157
|
+
adjusted = utilities.numpy.adjust_frequencies(
|
158
|
+
array, filters=filters, weights=weights, d=d
|
159
|
+
)
|
160
|
+
return Series(name=series.name, values=adjusted, dtype=Float64)
|
161
|
+
|
162
|
+
|
163
|
+
##
|
164
|
+
|
165
|
+
|
144
166
|
def append_dataclass(df: DataFrame, obj: Dataclass, /) -> DataFrame:
|
145
167
|
"""Append a dataclass object to a DataFrame."""
|
146
168
|
non_null_fields = {k: v for k, v in asdict(obj).items() if v is not None}
|
@@ -1027,6 +1049,20 @@ class _GetDataTypeOrSeriesTimeZoneNotZonedError(GetDataTypeOrSeriesTimeZoneError
|
|
1027
1049
|
##
|
1028
1050
|
|
1029
1051
|
|
1052
|
+
def get_frequency_spectrum(series: Series, /, *, d: int = 1) -> DataFrame:
|
1053
|
+
"""Get the frequency spectrum."""
|
1054
|
+
import utilities.numpy
|
1055
|
+
|
1056
|
+
array = series.to_numpy()
|
1057
|
+
spectrum = utilities.numpy.get_frequency_spectrum(array, d=d)
|
1058
|
+
return DataFrame(
|
1059
|
+
data=spectrum, schema={"frequency": Float64, "amplitude": Float64}, orient="row"
|
1060
|
+
)
|
1061
|
+
|
1062
|
+
|
1063
|
+
##
|
1064
|
+
|
1065
|
+
|
1030
1066
|
@overload
|
1031
1067
|
def get_series_number_of_decimals(
|
1032
1068
|
series: Series, /, *, nullable: Literal[True]
|
@@ -1736,6 +1772,7 @@ __all__ = [
|
|
1736
1772
|
"SetFirstRowAsColumnsError",
|
1737
1773
|
"StructFromDataClassError",
|
1738
1774
|
"YieldStructSeriesElementsError",
|
1775
|
+
"adjust_frequencies",
|
1739
1776
|
"append_dataclass",
|
1740
1777
|
"are_frames_equal",
|
1741
1778
|
"ceil_datetime",
|
@@ -1753,6 +1790,7 @@ __all__ = [
|
|
1753
1790
|
"finite_ewm_mean",
|
1754
1791
|
"floor_datetime",
|
1755
1792
|
"get_data_type_or_series_time_zone",
|
1793
|
+
"get_frequency_spectrum",
|
1756
1794
|
"get_series_number_of_decimals",
|
1757
1795
|
"insert_after",
|
1758
1796
|
"insert_before",
|
File without changes
|
File without changes
|