dycw-utilities 0.109.14__py3-none-any.whl → 0.109.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dycw_utilities-0.109.14.dist-info → dycw_utilities-0.109.16.dist-info}/METADATA +1 -1
- {dycw_utilities-0.109.14.dist-info → dycw_utilities-0.109.16.dist-info}/RECORD +7 -7
- utilities/__init__.py +1 -1
- utilities/numpy.py +48 -2
- utilities/polars_ols.py +107 -7
- {dycw_utilities-0.109.14.dist-info → dycw_utilities-0.109.16.dist-info}/WHEEL +0 -0
- {dycw_utilities-0.109.14.dist-info → dycw_utilities-0.109.16.dist-info}/licenses/LICENSE +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
utilities/__init__.py,sha256=
|
1
|
+
utilities/__init__.py,sha256=4AFXsQvJMy-nibpq-XnsnHXbkRajpf73GAF_okhFQgY,61
|
2
2
|
utilities/altair.py,sha256=Gpja-flOo-Db0PIPJLJsgzAlXWoKUjPU1qY-DQ829ek,9156
|
3
3
|
utilities/astor.py,sha256=xuDUkjq0-b6fhtwjhbnebzbqQZAjMSHR1IIS5uOodVg,777
|
4
4
|
utilities/asyncio.py,sha256=41oQUurWMvadFK5gFnaG21hMM0Vmfn2WS6OpC0R9mas,14757
|
@@ -36,7 +36,7 @@ utilities/math.py,sha256=TexfvLCI12d9Sw5_W4pKVBZ3nRr3zk2iPkcEU7xdEWU,26771
|
|
36
36
|
utilities/memory_profiler.py,sha256=tf2C51P2lCujPGvRt2Rfc7VEw5LDXmVPCG3z_AvBmbU,962
|
37
37
|
utilities/modules.py,sha256=SnhsRHRUS1po_acejrINauihGQpPvVsp8RDNCei1OLQ,3173
|
38
38
|
utilities/more_itertools.py,sha256=CPUxrMAcTwRxbzbhiqPKi3Xx9hxqI0t6gkWjutaibGk,5534
|
39
|
-
utilities/numpy.py,sha256
|
39
|
+
utilities/numpy.py,sha256=-VCZZBUs9GaLxcPOHGVc_iLkVP_SEKKRL7YjV05jrS4,22961
|
40
40
|
utilities/operator.py,sha256=0M2yZJ0PODH47ogFEnkGMBe_cfxwZR02T_92LZVZvHo,3715
|
41
41
|
utilities/optuna.py,sha256=loyJGWTzljgdJaoLhP09PT8Jz6o_pwBOwehY33lHkhw,1923
|
42
42
|
utilities/orjson.py,sha256=Wj5pzG_VdgoAy14a7Luhem-BgYrRtRFvvl_POiszRd0,36930
|
@@ -47,7 +47,7 @@ utilities/period.py,sha256=ikHXsWtDLr553cfH6p9mMaiCnIAP69B7q84ckWV3HaA,10884
|
|
47
47
|
utilities/pickle.py,sha256=Bhvd7cZl-zQKQDFjUerqGuSKlHvnW1K2QXeU5UZibtg,657
|
48
48
|
utilities/platform.py,sha256=NU7ycTvAXAG-fdYmDXaM1m4EOml2cGiaYwaUzfzSqyU,1767
|
49
49
|
utilities/polars.py,sha256=aOQNVyV04qYZjg7Exi6zYERhSQoCMzBP74oufxqANFY,52167
|
50
|
-
utilities/polars_ols.py,sha256=
|
50
|
+
utilities/polars_ols.py,sha256=Uc9V5kvlWZ5cU93lKZ-cfAKdVFFw81tqwLW9PxtUvMs,5618
|
51
51
|
utilities/pqdm.py,sha256=foRytQybmOQ05pjt5LF7ANyzrIa--4ScDE3T2wd31a4,3118
|
52
52
|
utilities/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
53
53
|
utilities/pydantic.py,sha256=f6qtR5mO2YMuyvNmbaEj5YeD9eGA4YYfb7Bjzh9jUs0,1845
|
@@ -86,7 +86,7 @@ utilities/warnings.py,sha256=yUgjnmkCRf6QhdyAXzl7u0qQFejhQG3PrjoSwxpbHrs,1819
|
|
86
86
|
utilities/whenever.py,sha256=TjoTAJ1R27-rKXiXzdE4GzPidmYqm0W58XydDXp-QZM,17786
|
87
87
|
utilities/zipfile.py,sha256=24lQc9ATcJxHXBPc_tBDiJk48pWyRrlxO2fIsFxU0A8,699
|
88
88
|
utilities/zoneinfo.py,sha256=-DQz5a0Ikw9jfSZtL0BEQkXOMC9yGn_xiJYNCLMiqEc,1989
|
89
|
-
dycw_utilities-0.109.
|
90
|
-
dycw_utilities-0.109.
|
91
|
-
dycw_utilities-0.109.
|
92
|
-
dycw_utilities-0.109.
|
89
|
+
dycw_utilities-0.109.16.dist-info/METADATA,sha256=u1Fl275S55bRfV6fTrMT8qHsS8_bu4aispHkIR6QNz8,13005
|
90
|
+
dycw_utilities-0.109.16.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
91
|
+
dycw_utilities-0.109.16.dist-info/licenses/LICENSE,sha256=gppZp16M6nSVpBbUBrNL6JuYfvKwZiKgV7XoKKsHzqo,1066
|
92
|
+
dycw_utilities-0.109.16.dist-info/RECORD,,
|
utilities/__init__.py
CHANGED
utilities/numpy.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
3
|
from dataclasses import dataclass
|
4
|
-
from functools import reduce
|
4
|
+
from functools import partial, reduce
|
5
5
|
from itertools import repeat
|
6
6
|
from typing import TYPE_CHECKING, Any, overload, override
|
7
7
|
|
8
8
|
import numpy as np
|
9
9
|
from numpy import (
|
10
|
+
argsort,
|
10
11
|
array,
|
11
12
|
bool_,
|
13
|
+
complex128,
|
12
14
|
digitize,
|
13
15
|
dtype,
|
14
16
|
errstate,
|
15
17
|
flatnonzero,
|
16
18
|
float64,
|
19
|
+
floating,
|
17
20
|
full_like,
|
18
21
|
inf,
|
19
22
|
int64,
|
@@ -30,6 +33,7 @@ from numpy import (
|
|
30
33
|
roll,
|
31
34
|
where,
|
32
35
|
)
|
36
|
+
from numpy.fft import fft, fftfreq, ifft
|
33
37
|
from numpy.linalg import det, eig
|
34
38
|
from numpy.random import default_rng
|
35
39
|
from numpy.typing import NDArray
|
@@ -37,7 +41,7 @@ from numpy.typing import NDArray
|
|
37
41
|
from utilities.iterables import is_iterable_not_str
|
38
42
|
|
39
43
|
if TYPE_CHECKING:
|
40
|
-
from collections.abc import Iterable
|
44
|
+
from collections.abc import Callable, Iterable
|
41
45
|
|
42
46
|
|
43
47
|
##
|
@@ -160,6 +164,33 @@ def fillna(array: NDArrayF, /, *, value: float = 0.0) -> NDArrayF:
|
|
160
164
|
##
|
161
165
|
|
162
166
|
|
167
|
+
def filter_frequencies(
|
168
|
+
array: NDArrayF,
|
169
|
+
/,
|
170
|
+
*filters: Callable[[NDArray[floating[Any]]], NDArrayB],
|
171
|
+
d: int = 1,
|
172
|
+
) -> NDArrayF:
|
173
|
+
"""Filter an array by the frequencies of its FFT."""
|
174
|
+
(n,) = array.shape
|
175
|
+
fft_vals = fft(array)
|
176
|
+
freqs = fftfreq(n, d=d)
|
177
|
+
reduced = reduce(partial(_filter_frequencies_one, freqs=freqs), filters, fft_vals)
|
178
|
+
return ifft(reduced).real
|
179
|
+
|
180
|
+
|
181
|
+
def _filter_frequencies_one(
|
182
|
+
acc: NDArray[complex128],
|
183
|
+
el: Callable[[NDArray[floating[Any]]], NDArrayB],
|
184
|
+
/,
|
185
|
+
*,
|
186
|
+
freqs: NDArray[floating[Any]],
|
187
|
+
) -> NDArray[complex128]:
|
188
|
+
return where(el(freqs), acc, 0.0)
|
189
|
+
|
190
|
+
|
191
|
+
##
|
192
|
+
|
193
|
+
|
163
194
|
def flatn0(array: NDArrayB, /) -> int:
|
164
195
|
"""Return the index of the unique True element."""
|
165
196
|
if not array.any():
|
@@ -193,6 +224,19 @@ class FlatN0MultipleError(FlatN0Error):
|
|
193
224
|
##
|
194
225
|
|
195
226
|
|
227
|
+
def get_frequency_spectrum(array: NDArrayF, /, *, d: int = 1) -> NDArray[floating[Any]]:
|
228
|
+
"""Get the frequency spectrum."""
|
229
|
+
(n,) = array.shape
|
230
|
+
fft_vals = fft(array)
|
231
|
+
freqs = fftfreq(n, d=d)
|
232
|
+
amplitudes = np.abs(fft_vals)
|
233
|
+
data = np.hstack([freqs.reshape(-1, 1), amplitudes.reshape(-1, 1)])
|
234
|
+
return data[argsort(data[:, 0])]
|
235
|
+
|
236
|
+
|
237
|
+
##
|
238
|
+
|
239
|
+
|
196
240
|
def has_dtype(x: Any, dtype: Any, /) -> bool:
|
197
241
|
"""Check if an object has the required dtype."""
|
198
242
|
if is_iterable_not_str(dtype):
|
@@ -851,7 +895,9 @@ __all__ = [
|
|
851
895
|
"datetime64us",
|
852
896
|
"discretize",
|
853
897
|
"fillna",
|
898
|
+
"filter_frequencies",
|
854
899
|
"flatn0",
|
900
|
+
"get_frequency_spectrum",
|
855
901
|
"has_dtype",
|
856
902
|
"is_at_least",
|
857
903
|
"is_at_least_or_nan",
|
utilities/polars_ols.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
from typing import TYPE_CHECKING
|
3
|
+
from typing import TYPE_CHECKING, overload
|
4
4
|
|
5
|
-
from polars import struct
|
5
|
+
from polars import Expr, Series, struct
|
6
6
|
from polars_ols import RollingKwargs, compute_rolling_least_squares
|
7
7
|
|
8
|
-
from utilities.
|
8
|
+
from utilities.errors import ImpossibleCaseError
|
9
|
+
from utilities.functions import is_sequence_of
|
10
|
+
from utilities.polars import concat_series, ensure_expr_or_series
|
9
11
|
|
10
12
|
if TYPE_CHECKING:
|
11
|
-
from polars import
|
13
|
+
from polars._typing import IntoExprColumn
|
12
14
|
from polars_ols import NullPolicy
|
13
15
|
|
14
16
|
from utilities.polars import ExprLike
|
15
17
|
|
16
18
|
|
19
|
+
@overload
|
17
20
|
def compute_rolling_ols(
|
18
21
|
target: ExprLike,
|
19
22
|
*features: ExprLike,
|
@@ -24,9 +27,106 @@ def compute_rolling_ols(
|
|
24
27
|
min_periods: int | None = None,
|
25
28
|
use_woodbury: bool | None = None,
|
26
29
|
alpha: float | None = None,
|
30
|
+
) -> Expr: ...
|
31
|
+
@overload
|
32
|
+
def compute_rolling_ols(
|
33
|
+
target: Series,
|
34
|
+
*features: Series,
|
35
|
+
sample_weights: Series | None = None,
|
36
|
+
add_intercept: bool = False,
|
37
|
+
null_policy: NullPolicy = "drop_window",
|
38
|
+
window_size: int = 1000000,
|
39
|
+
min_periods: int | None = None,
|
40
|
+
use_woodbury: bool | None = None,
|
41
|
+
alpha: float | None = None,
|
42
|
+
) -> Series: ...
|
43
|
+
@overload
|
44
|
+
def compute_rolling_ols(
|
45
|
+
target: IntoExprColumn,
|
46
|
+
*features: IntoExprColumn,
|
47
|
+
sample_weights: IntoExprColumn | None = None,
|
48
|
+
add_intercept: bool = False,
|
49
|
+
null_policy: NullPolicy = "drop_window",
|
50
|
+
window_size: int = 1000000,
|
51
|
+
min_periods: int | None = None,
|
52
|
+
use_woodbury: bool | None = None,
|
53
|
+
alpha: float | None = None,
|
54
|
+
) -> Expr | Series: ...
|
55
|
+
def compute_rolling_ols(
|
56
|
+
target: IntoExprColumn,
|
57
|
+
*features: IntoExprColumn,
|
58
|
+
sample_weights: IntoExprColumn | None = None,
|
59
|
+
add_intercept: bool = False,
|
60
|
+
null_policy: NullPolicy = "drop_window",
|
61
|
+
window_size: int = 1000000,
|
62
|
+
min_periods: int | None = None,
|
63
|
+
use_woodbury: bool | None = None,
|
64
|
+
alpha: float | None = None,
|
65
|
+
) -> Expr | Series:
|
66
|
+
"""Compute a rolling OLS."""
|
67
|
+
target = ensure_expr_or_series(target)
|
68
|
+
features2 = tuple(map(ensure_expr_or_series, features))
|
69
|
+
sample_weights = (
|
70
|
+
None if sample_weights is None else ensure_expr_or_series(sample_weights)
|
71
|
+
)
|
72
|
+
if (
|
73
|
+
isinstance(target, Expr)
|
74
|
+
and is_sequence_of(features2, Expr)
|
75
|
+
and ((sample_weights is None) or isinstance(sample_weights, Expr))
|
76
|
+
):
|
77
|
+
return _compute_rolling_ols_expr(
|
78
|
+
target,
|
79
|
+
*features2,
|
80
|
+
sample_weights=sample_weights,
|
81
|
+
add_intercept=add_intercept,
|
82
|
+
null_policy=null_policy,
|
83
|
+
window_size=window_size,
|
84
|
+
min_periods=min_periods,
|
85
|
+
use_woodbury=use_woodbury,
|
86
|
+
alpha=alpha,
|
87
|
+
)
|
88
|
+
if (
|
89
|
+
isinstance(target, Series)
|
90
|
+
and is_sequence_of(features2, Series)
|
91
|
+
and ((sample_weights is None) or isinstance(sample_weights, Series))
|
92
|
+
):
|
93
|
+
return concat_series(
|
94
|
+
target, *features2, *([] if sample_weights is None else [sample_weights])
|
95
|
+
).with_columns(
|
96
|
+
_compute_rolling_ols_expr(
|
97
|
+
target.name,
|
98
|
+
*(f.name for f in features2),
|
99
|
+
sample_weights=None if sample_weights is None else sample_weights.name,
|
100
|
+
add_intercept=add_intercept,
|
101
|
+
null_policy=null_policy,
|
102
|
+
window_size=window_size,
|
103
|
+
min_periods=min_periods,
|
104
|
+
use_woodbury=use_woodbury,
|
105
|
+
alpha=alpha,
|
106
|
+
)
|
107
|
+
)["ols"]
|
108
|
+
raise ImpossibleCaseError( # pragma: no cover
|
109
|
+
case=[f"{target=}", f"{features2=}", f"{sample_weights=}"]
|
110
|
+
)
|
111
|
+
|
112
|
+
|
113
|
+
def _compute_rolling_ols_expr(
|
114
|
+
target: ExprLike,
|
115
|
+
*features: ExprLike,
|
116
|
+
sample_weights: ExprLike | None = None,
|
117
|
+
add_intercept: bool = False,
|
118
|
+
null_policy: NullPolicy = "drop_window",
|
119
|
+
window_size: int = 1000000,
|
120
|
+
min_periods: int | None = None,
|
121
|
+
use_woodbury: bool | None = None,
|
122
|
+
alpha: float | None = None,
|
27
123
|
) -> Expr:
|
28
124
|
"""Compute a rolling OLS."""
|
29
125
|
target = ensure_expr_or_series(target)
|
126
|
+
features2 = tuple(map(ensure_expr_or_series, features))
|
127
|
+
sample_weights = (
|
128
|
+
None if sample_weights is None else ensure_expr_or_series(sample_weights)
|
129
|
+
)
|
30
130
|
rolling_kwargs = RollingKwargs(
|
31
131
|
null_policy=null_policy,
|
32
132
|
window_size=window_size,
|
@@ -36,7 +136,7 @@ def compute_rolling_ols(
|
|
36
136
|
)
|
37
137
|
coefficients = compute_rolling_least_squares(
|
38
138
|
target,
|
39
|
-
*
|
139
|
+
*features2,
|
40
140
|
sample_weights=sample_weights,
|
41
141
|
add_intercept=add_intercept,
|
42
142
|
mode="coefficients",
|
@@ -44,7 +144,7 @@ def compute_rolling_ols(
|
|
44
144
|
).alias("coefficients")
|
45
145
|
predictions = compute_rolling_least_squares(
|
46
146
|
target,
|
47
|
-
*
|
147
|
+
*features2,
|
48
148
|
sample_weights=sample_weights,
|
49
149
|
add_intercept=add_intercept,
|
50
150
|
mode="predictions",
|
@@ -52,7 +152,7 @@ def compute_rolling_ols(
|
|
52
152
|
).alias("predictions")
|
53
153
|
residuals = compute_rolling_least_squares(
|
54
154
|
target,
|
55
|
-
*
|
155
|
+
*features2,
|
56
156
|
sample_weights=sample_weights,
|
57
157
|
add_intercept=add_intercept,
|
58
158
|
mode="residuals",
|
File without changes
|
File without changes
|