dv-pipecat-ai 0.0.75.dev870__py3-none-any.whl → 0.0.82.dev807__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dv-pipecat-ai might be problematic. Click here for more details.
- {dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/METADATA +1 -1
- {dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/RECORD +10 -6
- pipecat/audio/vad/data/silero_vad.onnx +0 -0
- pipecat/serializers/genesys.py +95 -0
- pipecat/services/google/test-google-chirp.py +45 -0
- pipecat/services/vistaar/__init__.py +5 -0
- pipecat/services/vistaar/llm.py +377 -0
- {dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/WHEEL +0 -0
- {dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/licenses/LICENSE +0 -0
- {dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
dv_pipecat_ai-0.0.
|
|
1
|
+
dv_pipecat_ai-0.0.82.dev807.dist-info/licenses/LICENSE,sha256=DWY2QGf2eMCFhuu2ChairtT6CB7BEFffNVhXWc4Od08,1301
|
|
2
2
|
pipecat/__init__.py,sha256=j0Xm6adxHhd7D06dIyyPV_GlBYLlBnTAERVvD_jAARQ,861
|
|
3
3
|
pipecat/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
pipecat/adapters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -46,7 +46,7 @@ pipecat/audio/vad/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
|
|
|
46
46
|
pipecat/audio/vad/silero.py,sha256=r9UL8aEe-QoRMNDGWLUlgUYew93-QFojE9sIqLO0VYE,7792
|
|
47
47
|
pipecat/audio/vad/vad_analyzer.py,sha256=XkZLEe4z7Ja0lGoYZst1HNYqt5qOwG-vjsk_w8chiNA,7430
|
|
48
48
|
pipecat/audio/vad/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
49
|
-
pipecat/audio/vad/data/silero_vad.onnx,sha256=
|
|
49
|
+
pipecat/audio/vad/data/silero_vad.onnx,sha256=WX0ws-wHZgjQWUd7sUz-_9-VG_XK43DTj2XTO7_oIAQ,2327524
|
|
50
50
|
pipecat/clocks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
51
|
pipecat/clocks/base_clock.py,sha256=PuTmCtPKz5VG0VxhN5cyhbvduEBnfNPgA6GLAu1eSns,929
|
|
52
52
|
pipecat/clocks/system_clock.py,sha256=ht6TdDAn0JVXEmhLdt5igcHMQOkKO4YHNuOjuKcxkUU,1315
|
|
@@ -126,6 +126,7 @@ pipecat/serializers/__init__.py,sha256=OV61GQX5ZVU7l7Dt7UTBdv2wUF7ZvtbCoXryo7nno
|
|
|
126
126
|
pipecat/serializers/base_serializer.py,sha256=OyBUZccs2ZT9mfkBbq2tGsUJMvci6o-j90Cl1sicPaI,2030
|
|
127
127
|
pipecat/serializers/convox.py,sha256=MXCLhV6GMnoP8bI6-EVrObhrftEyTGOmzVeIU5ywmPo,9536
|
|
128
128
|
pipecat/serializers/exotel.py,sha256=LB4wYoXDjPmtkydrZ0G4H4u-SXpQw9KjyRzBZCYloEE,5907
|
|
129
|
+
pipecat/serializers/genesys.py,sha256=5g6_F-OIWSNmStgc6-bDT5mDQkCHHKxcOWSb-F4s2-A,3564
|
|
129
130
|
pipecat/serializers/livekit.py,sha256=caVZlVJGV-SmEXE_H7i3DRo1RvC9FgGCVqi8IYGrpEo,2552
|
|
130
131
|
pipecat/serializers/plivo.py,sha256=EXZZgwxQzhO61spRU98qveMskVnELuHCQg5piBO6tq0,9210
|
|
131
132
|
pipecat/serializers/protobuf.py,sha256=h0UgVvIa3LXxtpbeQUq0tCGicGbDHxjiY6EdxXJO0_s,5162
|
|
@@ -200,6 +201,7 @@ pipecat/services/google/llm_openai.py,sha256=p_aQYpX1e_ffO63oo0cDyj8ZYWb2CO3N-Ii
|
|
|
200
201
|
pipecat/services/google/llm_vertex.py,sha256=yqs8pqUCTgRj5wvQFHPJbGduoIaXjaqPym5x-lh5LhI,5032
|
|
201
202
|
pipecat/services/google/rtvi.py,sha256=PZb1yVny5YG7_XmJRXPzs3iYapeQ4XHreFN1v6KwTGM,3014
|
|
202
203
|
pipecat/services/google/stt.py,sha256=1vKZNEKZ-KLKp_7lA_VijznSqTwYRFYK1sDn2qteKtI,32814
|
|
204
|
+
pipecat/services/google/test-google-chirp.py,sha256=ji6ta7WDgKMu9yeKovuIVRlcMuk8S6XIyzIokHQY80E,1437
|
|
203
205
|
pipecat/services/google/tts.py,sha256=S_JSPqzLABfuyHLRppNiDmq2g9OFcnJOrfysVg3OHbY,32038
|
|
204
206
|
pipecat/services/grok/__init__.py,sha256=PyaTSnqwxd8jdF5aFTe3lWM-TBhfDyUu9ahRl6nPS-4,251
|
|
205
207
|
pipecat/services/grok/llm.py,sha256=xsJWXqJApfQgEt6z_8U44qUCQJMcpgEdpOHN-u0tNAQ,7330
|
|
@@ -277,6 +279,8 @@ pipecat/services/together/__init__.py,sha256=hNMycJDDf3CLiL9WA9fwvMdYphyDWLv0Oab
|
|
|
277
279
|
pipecat/services/together/llm.py,sha256=VSayO-U6g9Ld0xK9CXRQPUsd5gWJKtiA8qDAyXgsSkE,1958
|
|
278
280
|
pipecat/services/ultravox/__init__.py,sha256=EoHCSXI2o0DFQslELgkhAGZtxDj63gZi-9ZEhXljaKE,259
|
|
279
281
|
pipecat/services/ultravox/stt.py,sha256=uCQm_-LbycXdXRV6IE1a6Mymis6tyww7V8PnPzAQtx8,16586
|
|
282
|
+
pipecat/services/vistaar/__init__.py,sha256=UFfSWFN5rbzl6NN-E_OH_MFaSYodZWNlenAU0wk-rAI,110
|
|
283
|
+
pipecat/services/vistaar/llm.py,sha256=O-sznJDPivnhY_XUsr5xYcwkCqXpMv_zOuZ1rJBfn9Y,14631
|
|
280
284
|
pipecat/services/whisper/__init__.py,sha256=smADmw0Fv98k7cGRuHTEcljKTO2WdZqLpJd0qsTCwH8,281
|
|
281
285
|
pipecat/services/whisper/base_stt.py,sha256=VhslESPnYIeVbmnQTzmlZPV35TH49duxYTvJe0epNnE,7850
|
|
282
286
|
pipecat/services/whisper/stt.py,sha256=9Qd56vWMzg3LtHikQnfgyMtl4odE6BCHDbpAn3HSWjw,17480
|
|
@@ -332,7 +336,7 @@ pipecat/utils/tracing/service_decorators.py,sha256=HwDCqLGijhYD3F8nxDuQmEw-YkRw0
|
|
|
332
336
|
pipecat/utils/tracing/setup.py,sha256=7TEgPNpq6M8lww8OQvf0P9FzYc5A30xICGklVA-fua0,2892
|
|
333
337
|
pipecat/utils/tracing/turn_context_provider.py,sha256=ikon3plFOx0XbMrH6DdeHttNpb-U0gzMZIm3bWLc9eI,2485
|
|
334
338
|
pipecat/utils/tracing/turn_trace_observer.py,sha256=dma16SBJpYSOE58YDWy89QzHyQFc_9gQZszKeWixuwc,9725
|
|
335
|
-
dv_pipecat_ai-0.0.
|
|
336
|
-
dv_pipecat_ai-0.0.
|
|
337
|
-
dv_pipecat_ai-0.0.
|
|
338
|
-
dv_pipecat_ai-0.0.
|
|
339
|
+
dv_pipecat_ai-0.0.82.dev807.dist-info/METADATA,sha256=KiRlQndV2W1crKYJlr_ksFAeOJOee9sac40jX_hbyHg,32457
|
|
340
|
+
dv_pipecat_ai-0.0.82.dev807.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
341
|
+
dv_pipecat_ai-0.0.82.dev807.dist-info/top_level.txt,sha256=kQzG20CxGf-nSsHmtXHx3hY2-8zHA3jYg8jk0TajqXc,8
|
|
342
|
+
dv_pipecat_ai-0.0.82.dev807.dist-info/RECORD,,
|
|
Binary file
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
import base64
|
|
2
|
+
import json
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
from pydantic import BaseModel
|
|
6
|
+
|
|
7
|
+
from pipecat.audio.utils import create_default_resampler, pcm_to_ulaw, ulaw_to_pcm
|
|
8
|
+
from pipecat.frames.frames import (
|
|
9
|
+
AudioRawFrame,
|
|
10
|
+
Frame,
|
|
11
|
+
InputAudioRawFrame,
|
|
12
|
+
InputDTMFFrame,
|
|
13
|
+
KeypadEntry,
|
|
14
|
+
StartFrame,
|
|
15
|
+
StartInterruptionFrame,
|
|
16
|
+
TransportMessageFrame,
|
|
17
|
+
TransportMessageUrgentFrame,
|
|
18
|
+
)
|
|
19
|
+
from pipecat.serializers.base_serializer import FrameSerializer, FrameSerializerType
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class GenesysFrameSerializer(FrameSerializer):
|
|
23
|
+
class InputParams(BaseModel):
|
|
24
|
+
genesys_sample_rate: int = 8000 # Default Genesys rate (8kHz)
|
|
25
|
+
sample_rate: Optional[int] = None # Pipeline input rate
|
|
26
|
+
|
|
27
|
+
def __init__(self, session_id: str, params: InputParams = InputParams()):
|
|
28
|
+
self._session_id = session_id
|
|
29
|
+
self._params = params
|
|
30
|
+
self._genesys_sample_rate = self._params.genesys_sample_rate
|
|
31
|
+
self._sample_rate = 0 # Pipeline input rate
|
|
32
|
+
self._resampler = create_default_resampler()
|
|
33
|
+
self._seq = 1 # Sequence number for outgoing messages
|
|
34
|
+
|
|
35
|
+
@property
|
|
36
|
+
def type(self) -> FrameSerializerType:
|
|
37
|
+
return FrameSerializerType.TEXT
|
|
38
|
+
|
|
39
|
+
async def setup(self, frame: StartFrame):
|
|
40
|
+
self._sample_rate = self._params.sample_rate or frame.audio_in_sample_rate
|
|
41
|
+
|
|
42
|
+
async def serialize(self, frame: Frame) -> str | bytes | None:
|
|
43
|
+
if isinstance(frame, StartInterruptionFrame):
|
|
44
|
+
answer = {
|
|
45
|
+
"version": "2",
|
|
46
|
+
"type": "clearAudio", # Or appropriate event for interruption
|
|
47
|
+
"seq": self._seq,
|
|
48
|
+
"id": self._session_id,
|
|
49
|
+
}
|
|
50
|
+
self._seq += 1
|
|
51
|
+
return json.dumps(answer)
|
|
52
|
+
elif isinstance(frame, AudioRawFrame):
|
|
53
|
+
data = frame.audio
|
|
54
|
+
# Convert PCM to 8kHz μ-law for Genesys
|
|
55
|
+
serialized_data = await pcm_to_ulaw(
|
|
56
|
+
data, frame.sample_rate, self._genesys_sample_rate, self._resampler
|
|
57
|
+
)
|
|
58
|
+
payload = base64.b64encode(serialized_data).decode("utf-8")
|
|
59
|
+
answer = {
|
|
60
|
+
"version": "2",
|
|
61
|
+
"type": "audio",
|
|
62
|
+
"seq": self._seq,
|
|
63
|
+
"id": self._session_id,
|
|
64
|
+
"media": {
|
|
65
|
+
"payload": payload,
|
|
66
|
+
"format": "PCMU",
|
|
67
|
+
"rate": self._genesys_sample_rate,
|
|
68
|
+
},
|
|
69
|
+
}
|
|
70
|
+
self._seq += 1
|
|
71
|
+
return json.dumps(answer)
|
|
72
|
+
elif isinstance(frame, (TransportMessageFrame, TransportMessageUrgentFrame)):
|
|
73
|
+
return json.dumps(frame.message)
|
|
74
|
+
|
|
75
|
+
async def deserialize(self, data: str | bytes) -> Frame | None:
|
|
76
|
+
message = json.loads(data)
|
|
77
|
+
if message.get("type") == "audio":
|
|
78
|
+
payload_base64 = message["media"]["payload"]
|
|
79
|
+
payload = base64.b64decode(payload_base64)
|
|
80
|
+
# Convert Genesys 8kHz μ-law to PCM at pipeline input rate
|
|
81
|
+
deserialized_data = await ulaw_to_pcm(
|
|
82
|
+
payload, self._genesys_sample_rate, self._sample_rate, self._resampler
|
|
83
|
+
)
|
|
84
|
+
audio_frame = InputAudioRawFrame(
|
|
85
|
+
audio=deserialized_data, num_channels=1, sample_rate=self._sample_rate
|
|
86
|
+
)
|
|
87
|
+
return audio_frame
|
|
88
|
+
elif message.get("type") == "dtmf":
|
|
89
|
+
digit = message.get("dtmf", {}).get("digit")
|
|
90
|
+
try:
|
|
91
|
+
return InputDTMFFrame(KeypadEntry(digit))
|
|
92
|
+
except ValueError:
|
|
93
|
+
return None
|
|
94
|
+
else:
|
|
95
|
+
return None
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
from pipecat.frames.frames import TTSAudioRawFrame
|
|
5
|
+
from pipecat.services.google.tts import GoogleTTSService
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
async def test_chirp_tts():
|
|
9
|
+
# Get credentials from environment variable
|
|
10
|
+
credentials_path = (
|
|
11
|
+
"/Users/kalicharanvemuru/Documents/Code/pipecat/examples/ringg-chatbot/creds.json"
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
if not credentials_path or not os.path.exists(credentials_path):
|
|
15
|
+
raise ValueError(
|
|
16
|
+
"Please set GOOGLE_APPLICATION_CREDENTIALS environment variable to your service account key file"
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
# Initialize the TTS service with Chirp voice
|
|
20
|
+
tts = GoogleTTSService(
|
|
21
|
+
credentials_path=credentials_path,
|
|
22
|
+
voice_id="en-US-Chirp3-HD-Charon", # Using Chirp3 HD Charon voice
|
|
23
|
+
sample_rate=24000,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
# Test text
|
|
27
|
+
test_text = "Hello, this is a test of the Google TTS service with Chirp voice."
|
|
28
|
+
|
|
29
|
+
print(f"Testing TTS with text: {test_text}")
|
|
30
|
+
|
|
31
|
+
# Generate speech
|
|
32
|
+
try:
|
|
33
|
+
async for frame in tts.run_tts(test_text):
|
|
34
|
+
if isinstance(frame, TTSAudioRawFrame):
|
|
35
|
+
print(f"Received audio chunk of size: {len(frame.audio)} bytes")
|
|
36
|
+
else:
|
|
37
|
+
print(f"Received frame: {frame.__class__.__name__}")
|
|
38
|
+
|
|
39
|
+
print("TTS generation completed successfully!")
|
|
40
|
+
except Exception as e:
|
|
41
|
+
print(f"Error during TTS generation: {str(e)}")
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
if __name__ == "__main__":
|
|
45
|
+
asyncio.run(test_chirp_tts())
|
|
@@ -0,0 +1,377 @@
|
|
|
1
|
+
"""Vistaar LLM Service implementation."""
|
|
2
|
+
|
|
3
|
+
import asyncio
|
|
4
|
+
import json
|
|
5
|
+
import time
|
|
6
|
+
import uuid
|
|
7
|
+
from dataclasses import dataclass
|
|
8
|
+
from typing import Any, AsyncGenerator, Dict, Optional
|
|
9
|
+
from urllib.parse import urlencode
|
|
10
|
+
|
|
11
|
+
import httpx
|
|
12
|
+
from loguru import logger
|
|
13
|
+
from pydantic import BaseModel, Field
|
|
14
|
+
|
|
15
|
+
from pipecat.frames.frames import (
|
|
16
|
+
Frame,
|
|
17
|
+
LLMFullResponseEndFrame,
|
|
18
|
+
LLMFullResponseStartFrame,
|
|
19
|
+
LLMMessagesFrame,
|
|
20
|
+
LLMTextFrame,
|
|
21
|
+
LLMUpdateSettingsFrame,
|
|
22
|
+
StartInterruptionFrame,
|
|
23
|
+
StopInterruptionFrame,
|
|
24
|
+
)
|
|
25
|
+
from pipecat.processors.aggregators.llm_response import (
|
|
26
|
+
LLMAssistantAggregatorParams,
|
|
27
|
+
LLMUserAggregatorParams,
|
|
28
|
+
)
|
|
29
|
+
from pipecat.processors.aggregators.openai_llm_context import (
|
|
30
|
+
OpenAILLMContext,
|
|
31
|
+
OpenAILLMContextFrame,
|
|
32
|
+
)
|
|
33
|
+
from pipecat.services.openai.llm import (
|
|
34
|
+
OpenAIAssistantContextAggregator,
|
|
35
|
+
OpenAIContextAggregatorPair,
|
|
36
|
+
OpenAIUserContextAggregator,
|
|
37
|
+
)
|
|
38
|
+
from pipecat.processors.frame_processor import FrameDirection
|
|
39
|
+
from pipecat.services.llm_service import LLMService
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class VistaarLLMService(LLMService):
|
|
43
|
+
"""A service for interacting with Vistaar's voice API using Server-Sent Events.
|
|
44
|
+
|
|
45
|
+
This service handles text generation through Vistaar's SSE endpoint which
|
|
46
|
+
streams responses in real-time. Vistaar maintains all conversation context
|
|
47
|
+
server-side via session_id, so we only send the latest user message.
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
class InputParams(BaseModel):
|
|
51
|
+
"""Input parameters for Vistaar model configuration.
|
|
52
|
+
|
|
53
|
+
Parameters:
|
|
54
|
+
source_lang: Source language code (e.g., 'mr' for Marathi, 'hi' for Hindi).
|
|
55
|
+
target_lang: Target language code for responses.
|
|
56
|
+
session_id: Session ID for maintaining conversation context.
|
|
57
|
+
extra: Additional model-specific parameters.
|
|
58
|
+
"""
|
|
59
|
+
|
|
60
|
+
source_lang: Optional[str] = Field(default="mr")
|
|
61
|
+
target_lang: Optional[str] = Field(default="mr")
|
|
62
|
+
session_id: Optional[str] = Field(default=None)
|
|
63
|
+
extra: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
|
64
|
+
|
|
65
|
+
def __init__(
|
|
66
|
+
self,
|
|
67
|
+
*,
|
|
68
|
+
base_url: str = "https://vistaar.kenpath.ai/api",
|
|
69
|
+
params: Optional[InputParams] = None,
|
|
70
|
+
timeout: float = 30.0,
|
|
71
|
+
**kwargs,
|
|
72
|
+
):
|
|
73
|
+
"""Initialize Vistaar LLM service.
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
base_url: The base URL for Vistaar API. Defaults to "https://vistaar.kenpath.ai/api".
|
|
77
|
+
params: Input parameters for model configuration and behavior.
|
|
78
|
+
timeout: Request timeout in seconds. Defaults to 30.0 seconds.
|
|
79
|
+
**kwargs: Additional arguments passed to the parent LLMService.
|
|
80
|
+
"""
|
|
81
|
+
super().__init__(**kwargs)
|
|
82
|
+
|
|
83
|
+
params = params or VistaarLLMService.InputParams()
|
|
84
|
+
|
|
85
|
+
self._base_url = base_url.rstrip("/")
|
|
86
|
+
self._source_lang = params.source_lang
|
|
87
|
+
self._target_lang = params.target_lang
|
|
88
|
+
self._session_id = params.session_id or str(uuid.uuid4())
|
|
89
|
+
self._extra = params.extra if isinstance(params.extra, dict) else {}
|
|
90
|
+
self._timeout = timeout
|
|
91
|
+
|
|
92
|
+
# Create an async HTTP client
|
|
93
|
+
self._client = httpx.AsyncClient(timeout=httpx.Timeout(self._timeout))
|
|
94
|
+
|
|
95
|
+
# Interruption handling state
|
|
96
|
+
self._current_response = None # Track current HTTP response stream
|
|
97
|
+
self._is_interrupted = False # Track if current generation was interrupted
|
|
98
|
+
self._partial_response = [] # Track what was actually sent before interruption
|
|
99
|
+
|
|
100
|
+
logger.info(
|
|
101
|
+
f"Vistaar LLM initialized - Base URL: {self._base_url}, Session ID: {self._session_id}, Source Lang: {self._source_lang}, Target Lang: {self._target_lang}, Timeout: {self._timeout}s"
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
async def _extract_messages_to_query(self, context: OpenAILLMContext) -> str:
|
|
105
|
+
"""Extract only the last user message from context.
|
|
106
|
+
|
|
107
|
+
Since Vistaar maintains context server-side via session_id,
|
|
108
|
+
we only need to send the most recent user message.
|
|
109
|
+
|
|
110
|
+
As a fallback for context synchronization, we can optionally include
|
|
111
|
+
information about interrupted responses.
|
|
112
|
+
|
|
113
|
+
Args:
|
|
114
|
+
context: The OpenAI LLM context containing messages.
|
|
115
|
+
|
|
116
|
+
Returns:
|
|
117
|
+
The last user message as a query string, optionally with context hints.
|
|
118
|
+
"""
|
|
119
|
+
messages = context.get_messages()
|
|
120
|
+
query_parts = []
|
|
121
|
+
|
|
122
|
+
# Include interrupted response context as a hint (optional fallback strategy)
|
|
123
|
+
if hasattr(self, "_last_interrupted_response"):
|
|
124
|
+
interrupted_text = self._last_interrupted_response[:100] # Limit length
|
|
125
|
+
query_parts.append(
|
|
126
|
+
f"[Context: I was previously saying '{interrupted_text}...' when interrupted]"
|
|
127
|
+
)
|
|
128
|
+
# Clear the interrupted response after using it
|
|
129
|
+
delattr(self, "_last_interrupted_response")
|
|
130
|
+
|
|
131
|
+
# Find the last user message (iterate in reverse for efficiency)
|
|
132
|
+
for message in reversed(messages):
|
|
133
|
+
if message.get("role") == "user":
|
|
134
|
+
content = message.get("content", "")
|
|
135
|
+
|
|
136
|
+
# Handle content that might be a list (for multimodal messages)
|
|
137
|
+
if isinstance(content, list):
|
|
138
|
+
text_parts = [
|
|
139
|
+
item.get("text", "") for item in content if item.get("type") == "text"
|
|
140
|
+
]
|
|
141
|
+
content = " ".join(text_parts)
|
|
142
|
+
|
|
143
|
+
if isinstance(content, str):
|
|
144
|
+
query_parts.append(content.strip())
|
|
145
|
+
break
|
|
146
|
+
|
|
147
|
+
# If no user message found, return empty string or just context
|
|
148
|
+
return " ".join(query_parts) if query_parts else ""
|
|
149
|
+
|
|
150
|
+
async def _handle_interruption(self):
|
|
151
|
+
"""Handle interruption by cancelling ongoing stream."""
|
|
152
|
+
logger.debug("Handling interruption for Vistaar LLM")
|
|
153
|
+
|
|
154
|
+
# Set interruption flag
|
|
155
|
+
self._is_interrupted = True
|
|
156
|
+
|
|
157
|
+
# Cancel ongoing HTTP response stream if active
|
|
158
|
+
if self._current_response:
|
|
159
|
+
try:
|
|
160
|
+
await self._current_response.aclose()
|
|
161
|
+
logger.debug("Closed active Vistaar response stream")
|
|
162
|
+
except Exception as e:
|
|
163
|
+
logger.warning(f"Error closing Vistaar response stream: {e}")
|
|
164
|
+
finally:
|
|
165
|
+
self._current_response = None
|
|
166
|
+
|
|
167
|
+
# Store partial response for potential inclusion in next query
|
|
168
|
+
if self._partial_response:
|
|
169
|
+
partial_text = "".join(self._partial_response)
|
|
170
|
+
logger.debug(f"Storing interrupted response: {partial_text[:100]}...")
|
|
171
|
+
# Store the interrupted response for next query context
|
|
172
|
+
self._last_interrupted_response = partial_text
|
|
173
|
+
|
|
174
|
+
# Clear current partial response
|
|
175
|
+
self._partial_response = []
|
|
176
|
+
|
|
177
|
+
async def _stream_response(self, query: str) -> AsyncGenerator[str, None]:
|
|
178
|
+
"""Stream response from Vistaar API using Server-Sent Events.
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
query: The user's query to send to the API.
|
|
182
|
+
|
|
183
|
+
Yields:
|
|
184
|
+
Text chunks from the streaming response.
|
|
185
|
+
"""
|
|
186
|
+
# Prepare query parameters
|
|
187
|
+
params = {
|
|
188
|
+
"query": query,
|
|
189
|
+
"session_id": self._session_id,
|
|
190
|
+
"source_lang": self._source_lang,
|
|
191
|
+
"target_lang": self._target_lang,
|
|
192
|
+
}
|
|
193
|
+
|
|
194
|
+
# Add any extra parameters
|
|
195
|
+
params.update(self._extra)
|
|
196
|
+
|
|
197
|
+
# Construct the full URL with query parameters
|
|
198
|
+
url = f"{self._base_url}/voice/?{urlencode(params)}"
|
|
199
|
+
|
|
200
|
+
logger.info(
|
|
201
|
+
f"Vistaar API request - URL: {self._base_url}/voice/, Session: {self._session_id}, Query: {query[:100]}..."
|
|
202
|
+
)
|
|
203
|
+
logger.debug(f"Full URL with params: {url}")
|
|
204
|
+
|
|
205
|
+
# Reset interruption state and partial response for new request
|
|
206
|
+
self._is_interrupted = False
|
|
207
|
+
self._partial_response = []
|
|
208
|
+
|
|
209
|
+
try:
|
|
210
|
+
# Use httpx to handle SSE streaming
|
|
211
|
+
async with self._client.stream("GET", url) as response:
|
|
212
|
+
self._current_response = response # Store for potential cancellation
|
|
213
|
+
response.raise_for_status()
|
|
214
|
+
|
|
215
|
+
# Process the SSE stream
|
|
216
|
+
async for line in response.aiter_lines():
|
|
217
|
+
# Check for interruption before processing each line
|
|
218
|
+
if self._is_interrupted:
|
|
219
|
+
logger.debug("Stream interrupted, stopping processing")
|
|
220
|
+
break
|
|
221
|
+
|
|
222
|
+
if not line:
|
|
223
|
+
continue
|
|
224
|
+
|
|
225
|
+
self._partial_response.append(line) # Track what we're sending
|
|
226
|
+
yield line
|
|
227
|
+
|
|
228
|
+
except httpx.HTTPStatusError as e:
|
|
229
|
+
logger.error(
|
|
230
|
+
f"Vistaar HTTP error - Status: {e.response.status_code}, URL: {url}, Response: {e.response.text if hasattr(e.response, 'text') else 'N/A'}"
|
|
231
|
+
)
|
|
232
|
+
raise
|
|
233
|
+
except httpx.TimeoutException as e:
|
|
234
|
+
logger.error(f"Vistaar timeout error - URL: {url}, Timeout: {self._timeout}s")
|
|
235
|
+
raise
|
|
236
|
+
except Exception as e:
|
|
237
|
+
logger.error(
|
|
238
|
+
f"Vistaar unexpected error - Type: {type(e).__name__}, Message: {str(e)}, URL: {url}"
|
|
239
|
+
)
|
|
240
|
+
raise
|
|
241
|
+
finally:
|
|
242
|
+
# Clean up response reference
|
|
243
|
+
self._current_response = None
|
|
244
|
+
|
|
245
|
+
async def _process_context(self, context: OpenAILLMContext):
|
|
246
|
+
"""Process the LLM context and generate streaming response.
|
|
247
|
+
|
|
248
|
+
Args:
|
|
249
|
+
context: The OpenAI LLM context containing messages to process.
|
|
250
|
+
"""
|
|
251
|
+
logger.info(f"Vistaar processing context - Session: {self._session_id}")
|
|
252
|
+
try:
|
|
253
|
+
# Extract query from context
|
|
254
|
+
query = await self._extract_messages_to_query(context)
|
|
255
|
+
|
|
256
|
+
if not query:
|
|
257
|
+
logger.warning(
|
|
258
|
+
f"Vistaar: No query extracted from context - Session: {self._session_id}"
|
|
259
|
+
)
|
|
260
|
+
return
|
|
261
|
+
|
|
262
|
+
logger.info(f"Vistaar extracted query: {query}")
|
|
263
|
+
|
|
264
|
+
logger.debug(f"Processing query: {query[:100]}...")
|
|
265
|
+
|
|
266
|
+
# Start response
|
|
267
|
+
await self.push_frame(LLMFullResponseStartFrame())
|
|
268
|
+
await self.start_processing_metrics()
|
|
269
|
+
await self.start_ttfb_metrics()
|
|
270
|
+
|
|
271
|
+
first_chunk = True
|
|
272
|
+
full_response = []
|
|
273
|
+
|
|
274
|
+
# Stream the response
|
|
275
|
+
async for text_chunk in self._stream_response(query):
|
|
276
|
+
if first_chunk:
|
|
277
|
+
await self.stop_ttfb_metrics()
|
|
278
|
+
first_chunk = False
|
|
279
|
+
|
|
280
|
+
# Push each text chunk as it arrives
|
|
281
|
+
await self.push_frame(LLMTextFrame(text=text_chunk))
|
|
282
|
+
full_response.append(text_chunk)
|
|
283
|
+
|
|
284
|
+
# No need to update context - Vistaar maintains all context server-side
|
|
285
|
+
# The response has already been sent via LLMTextFrame chunks
|
|
286
|
+
|
|
287
|
+
except Exception as e:
|
|
288
|
+
logger.error(
|
|
289
|
+
f"Vistaar context processing error - Session: {self._session_id}, Error: {type(e).__name__}: {str(e)}"
|
|
290
|
+
)
|
|
291
|
+
import traceback
|
|
292
|
+
|
|
293
|
+
logger.error(f"Vistaar traceback: {traceback.format_exc()}")
|
|
294
|
+
raise
|
|
295
|
+
finally:
|
|
296
|
+
await self.stop_processing_metrics()
|
|
297
|
+
await self.push_frame(LLMFullResponseEndFrame())
|
|
298
|
+
|
|
299
|
+
async def process_frame(self, frame: Frame, direction: FrameDirection):
|
|
300
|
+
"""Process frames for LLM completion requests.
|
|
301
|
+
|
|
302
|
+
Handles OpenAILLMContextFrame, LLMMessagesFrame, and LLMUpdateSettingsFrame
|
|
303
|
+
to trigger LLM completions and manage settings.
|
|
304
|
+
|
|
305
|
+
Args:
|
|
306
|
+
frame: The frame to process.
|
|
307
|
+
direction: The direction of frame processing.
|
|
308
|
+
"""
|
|
309
|
+
await super().process_frame(frame, direction)
|
|
310
|
+
context = None
|
|
311
|
+
if isinstance(frame, StartInterruptionFrame):
|
|
312
|
+
await self._handle_interruption()
|
|
313
|
+
await self.push_frame(frame, direction)
|
|
314
|
+
return
|
|
315
|
+
elif isinstance(frame, OpenAILLMContextFrame):
|
|
316
|
+
context = frame.context
|
|
317
|
+
elif isinstance(frame, LLMMessagesFrame):
|
|
318
|
+
context = OpenAILLMContext.from_messages(frame.messages)
|
|
319
|
+
elif isinstance(frame, LLMUpdateSettingsFrame):
|
|
320
|
+
# Update settings if needed
|
|
321
|
+
settings = frame.settings
|
|
322
|
+
if "source_lang" in settings:
|
|
323
|
+
self._source_lang = settings["source_lang"]
|
|
324
|
+
if "target_lang" in settings:
|
|
325
|
+
self._target_lang = settings["target_lang"]
|
|
326
|
+
if "session_id" in settings:
|
|
327
|
+
self._session_id = settings["session_id"]
|
|
328
|
+
logger.debug(f"Updated Vistaar settings: {settings}")
|
|
329
|
+
else:
|
|
330
|
+
await self.push_frame(frame, direction)
|
|
331
|
+
|
|
332
|
+
if context:
|
|
333
|
+
try:
|
|
334
|
+
await self._process_context(context)
|
|
335
|
+
except httpx.TimeoutException:
|
|
336
|
+
logger.error("Timeout while processing Vistaar request")
|
|
337
|
+
await self._call_event_handler("on_completion_timeout")
|
|
338
|
+
except Exception as e:
|
|
339
|
+
logger.error(f"Error processing Vistaar request: {e}")
|
|
340
|
+
raise
|
|
341
|
+
|
|
342
|
+
def create_context_aggregator(
|
|
343
|
+
self,
|
|
344
|
+
context: OpenAILLMContext,
|
|
345
|
+
*,
|
|
346
|
+
user_params: LLMUserAggregatorParams = LLMUserAggregatorParams(),
|
|
347
|
+
assistant_params: LLMAssistantAggregatorParams = LLMAssistantAggregatorParams(),
|
|
348
|
+
) -> OpenAIContextAggregatorPair:
|
|
349
|
+
"""Create context aggregators for Vistaar LLM.
|
|
350
|
+
|
|
351
|
+
Since Vistaar uses OpenAI-compatible message format, we reuse OpenAI's
|
|
352
|
+
context aggregators directly, similar to how Groq and Azure services work.
|
|
353
|
+
|
|
354
|
+
Args:
|
|
355
|
+
context: The LLM context to create aggregators for.
|
|
356
|
+
user_params: Parameters for user message aggregation.
|
|
357
|
+
assistant_params: Parameters for assistant message aggregation.
|
|
358
|
+
|
|
359
|
+
Returns:
|
|
360
|
+
OpenAIContextAggregatorPair: A pair of OpenAI context aggregators,
|
|
361
|
+
compatible with Vistaar's OpenAI-like message format.
|
|
362
|
+
"""
|
|
363
|
+
context.set_llm_adapter(self.get_llm_adapter())
|
|
364
|
+
user = OpenAIUserContextAggregator(context, params=user_params)
|
|
365
|
+
assistant = OpenAIAssistantContextAggregator(context, params=assistant_params)
|
|
366
|
+
return OpenAIContextAggregatorPair(_user=user, _assistant=assistant)
|
|
367
|
+
|
|
368
|
+
async def close(self):
|
|
369
|
+
"""Close the HTTP client when the service is destroyed."""
|
|
370
|
+
await self._client.aclose()
|
|
371
|
+
|
|
372
|
+
def __del__(self):
|
|
373
|
+
"""Ensure the client is closed on deletion."""
|
|
374
|
+
try:
|
|
375
|
+
asyncio.create_task(self._client.aclose())
|
|
376
|
+
except:
|
|
377
|
+
pass
|
|
File without changes
|
{dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|
{dv_pipecat_ai-0.0.75.dev870.dist-info → dv_pipecat_ai-0.0.82.dev807.dist-info}/top_level.txt
RENAMED
|
File without changes
|