dukascript 0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dukascript/__init__.py +423 -0
- dukascript/_instrument_generator.py +278 -0
- dukascript/instruments.py +1380 -0
- dukascript-0.0.0.dist-info/METADATA +44 -0
- dukascript-0.0.0.dist-info/RECORD +8 -0
- dukascript-0.0.0.dist-info/WHEEL +5 -0
- dukascript-0.0.0.dist-info/licenses/LICENSE +21 -0
- dukascript-0.0.0.dist-info/top_level.txt +1 -0
dukascript/__init__.py
ADDED
@@ -0,0 +1,423 @@
|
|
1
|
+
import pandas as pd
|
2
|
+
import requests
|
3
|
+
from datetime import datetime, timedelta
|
4
|
+
import json
|
5
|
+
import random
|
6
|
+
import string
|
7
|
+
from time import sleep
|
8
|
+
import logging
|
9
|
+
|
10
|
+
from .instruments import *
|
11
|
+
|
12
|
+
TIME_UNIT_MONTH = "MONTH"
|
13
|
+
TIME_UNIT_WEEK = "WEEK"
|
14
|
+
TIME_UNIT_DAY = "DAY"
|
15
|
+
TIME_UNIT_HOUR = "HOUR"
|
16
|
+
TIME_UNIT_MIN = "MIN"
|
17
|
+
TIME_UNIT_SEC = "SEC"
|
18
|
+
TIME_UNIT_TICK = "TICK"
|
19
|
+
|
20
|
+
INTERVAL_MONTH_1 = f"1{TIME_UNIT_MONTH}"
|
21
|
+
INTERVAL_WEEK_1 = f"1{TIME_UNIT_WEEK}"
|
22
|
+
INTERVAL_DAY_1 = f"1{TIME_UNIT_DAY}"
|
23
|
+
INTERVAL_HOUR_4 = f"4{TIME_UNIT_HOUR}"
|
24
|
+
INTERVAL_HOUR_1 = f"1{TIME_UNIT_HOUR}"
|
25
|
+
INTERVAL_MIN_30 = f"30{TIME_UNIT_MIN}"
|
26
|
+
INTERVAL_MIN_15 = f"15{TIME_UNIT_MIN}"
|
27
|
+
INTERVAL_MIN_10 = f"10{TIME_UNIT_MIN}"
|
28
|
+
INTERVAL_MIN_5 = f"5{TIME_UNIT_MIN}"
|
29
|
+
INTERVAL_MIN_1 = f"1{TIME_UNIT_MIN}"
|
30
|
+
INTERVAL_SEC_30 = f"30{TIME_UNIT_SEC}"
|
31
|
+
INTERVAL_SEC_10 = f"10{TIME_UNIT_SEC}"
|
32
|
+
INTERVAL_SEC_1 = f"1{TIME_UNIT_SEC}"
|
33
|
+
INTERVAL_TICK = TIME_UNIT_TICK
|
34
|
+
|
35
|
+
INTERVALS_SET = {
|
36
|
+
INTERVAL_MONTH_1,
|
37
|
+
INTERVAL_WEEK_1,
|
38
|
+
INTERVAL_DAY_1,
|
39
|
+
INTERVAL_HOUR_4,
|
40
|
+
INTERVAL_HOUR_1,
|
41
|
+
INTERVAL_MIN_30,
|
42
|
+
INTERVAL_MIN_15,
|
43
|
+
INTERVAL_MIN_10,
|
44
|
+
INTERVAL_MIN_5,
|
45
|
+
INTERVAL_MIN_1,
|
46
|
+
INTERVAL_SEC_30,
|
47
|
+
INTERVAL_SEC_10,
|
48
|
+
INTERVAL_SEC_1,
|
49
|
+
}
|
50
|
+
|
51
|
+
OFFER_SIDE_BID = "B"
|
52
|
+
OFFER_SIDE_ASK = "A"
|
53
|
+
|
54
|
+
|
55
|
+
def _get_custom_logger(debug=False):
|
56
|
+
logger = logging.getLogger("DUKASCRIPT")
|
57
|
+
logger.setLevel(logging.DEBUG if debug else logging.INFO)
|
58
|
+
|
59
|
+
if not logger.handlers:
|
60
|
+
# Formatter
|
61
|
+
formatter = logging.Formatter("[%(levelname)s] %(message)s")
|
62
|
+
|
63
|
+
# Console Handler
|
64
|
+
ch = logging.StreamHandler()
|
65
|
+
ch.setLevel(logging.DEBUG if debug else logging.INFO)
|
66
|
+
ch.setFormatter(formatter)
|
67
|
+
|
68
|
+
logger.addHandler(ch)
|
69
|
+
|
70
|
+
return logger
|
71
|
+
|
72
|
+
|
73
|
+
def _is_valid_api_interval(interval):
|
74
|
+
return True if interval in INTERVALS_SET else False
|
75
|
+
|
76
|
+
|
77
|
+
def _resample_to_nearest(
|
78
|
+
timestamp: datetime,
|
79
|
+
time_unit: str,
|
80
|
+
interval_value: int,
|
81
|
+
) -> datetime:
|
82
|
+
# Round to the nearest time unit based on the interval value
|
83
|
+
if time_unit == TIME_UNIT_SEC:
|
84
|
+
subtraction = timestamp.second % interval_value
|
85
|
+
return timestamp - timedelta(
|
86
|
+
seconds=subtraction,
|
87
|
+
microseconds=timestamp.microsecond,
|
88
|
+
)
|
89
|
+
elif time_unit == TIME_UNIT_MIN:
|
90
|
+
subtraction = timestamp.minute % interval_value
|
91
|
+
return timestamp - timedelta(
|
92
|
+
minutes=subtraction,
|
93
|
+
seconds=timestamp.second,
|
94
|
+
microseconds=timestamp.microsecond,
|
95
|
+
)
|
96
|
+
elif time_unit == TIME_UNIT_HOUR:
|
97
|
+
subtraction = timestamp.hour % interval_value
|
98
|
+
return timestamp - timedelta(
|
99
|
+
hours=subtraction,
|
100
|
+
minutes=timestamp.minute,
|
101
|
+
seconds=timestamp.second,
|
102
|
+
microseconds=timestamp.microsecond,
|
103
|
+
)
|
104
|
+
elif time_unit == TIME_UNIT_DAY:
|
105
|
+
subtraction = timestamp.day % interval_value
|
106
|
+
return timestamp - timedelta(
|
107
|
+
days=subtraction,
|
108
|
+
hours=timestamp.hour,
|
109
|
+
minutes=timestamp.minute,
|
110
|
+
seconds=timestamp.second,
|
111
|
+
microseconds=timestamp.microsecond,
|
112
|
+
)
|
113
|
+
elif time_unit == TIME_UNIT_WEEK:
|
114
|
+
subtraction = (timestamp.weekday() + 1) % (interval_value * 7)
|
115
|
+
return timestamp - timedelta(
|
116
|
+
days=subtraction,
|
117
|
+
hours=timestamp.hour,
|
118
|
+
minutes=timestamp.minute,
|
119
|
+
seconds=timestamp.second,
|
120
|
+
microseconds=timestamp.microsecond,
|
121
|
+
)
|
122
|
+
elif time_unit == TIME_UNIT_MONTH:
|
123
|
+
month = (timestamp.month // interval_value) + 1
|
124
|
+
return datetime(timestamp.year, month, 1, 0, 0, 0, 0, timestamp.tzinfo)
|
125
|
+
elif time_unit == TIME_UNIT_TICK:
|
126
|
+
return timestamp
|
127
|
+
|
128
|
+
raise NotImplementedError(f"resampling not implemented for {time_unit}")
|
129
|
+
|
130
|
+
|
131
|
+
def _get_dataframe_columns_for_timeunit(time_unit: str) -> list[str]:
|
132
|
+
|
133
|
+
ohlc_df = ["timestamp", "open", "high", "low", "close", "volume"]
|
134
|
+
tick_df = ["timestamp", "bidPrice", "askPrice", "bidVolume", "askVolume"]
|
135
|
+
|
136
|
+
df = {
|
137
|
+
TIME_UNIT_DAY: ohlc_df,
|
138
|
+
TIME_UNIT_HOUR: ohlc_df,
|
139
|
+
TIME_UNIT_MIN: ohlc_df,
|
140
|
+
TIME_UNIT_MONTH: ohlc_df,
|
141
|
+
TIME_UNIT_SEC: ohlc_df,
|
142
|
+
TIME_UNIT_TICK: tick_df,
|
143
|
+
TIME_UNIT_WEEK: ohlc_df,
|
144
|
+
}[time_unit]
|
145
|
+
|
146
|
+
return df
|
147
|
+
|
148
|
+
|
149
|
+
def _fetch(
|
150
|
+
instrument: str,
|
151
|
+
interval: str,
|
152
|
+
offer_side: str,
|
153
|
+
last_update: int,
|
154
|
+
logger: logging.Logger = logging.getLogger(),
|
155
|
+
limit: int = None,
|
156
|
+
):
|
157
|
+
characters = string.ascii_letters + string.digits
|
158
|
+
jsonp = f"_callbacks____{''.join(random.choices(characters, k=9))}"
|
159
|
+
|
160
|
+
query_params = {
|
161
|
+
"path": "chart/json3",
|
162
|
+
"splits": "true",
|
163
|
+
"stocks": "true",
|
164
|
+
"time_direction": "N",
|
165
|
+
"jsonp": jsonp,
|
166
|
+
"last_update": f"{int(last_update)}",
|
167
|
+
"offer_side": f"{offer_side}",
|
168
|
+
"instrument": f"{instrument}",
|
169
|
+
"interval": f"{interval}",
|
170
|
+
}
|
171
|
+
|
172
|
+
if limit is not None:
|
173
|
+
# max limit is 30_000
|
174
|
+
query_params["limit"] = f"{int(limit)}"
|
175
|
+
|
176
|
+
base_url = "https://freeserv.dukascopy.com/2.0/index.php"
|
177
|
+
|
178
|
+
headers = {
|
179
|
+
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/135.0.0.0 Safari/537.36 Edg/135.0.0.0",
|
180
|
+
"Host": "freeserv.dukascopy.com",
|
181
|
+
"Referer": "https://freeserv.dukascopy.com/2.0/?path=chart/index&showUI=true&showTabs=true&showParameterToolbar=true&showOfferSide=true&allowInstrumentChange=true&allowPeriodChange=true&allowOfferSideChange=true&showAdditionalToolbar=true&showExportImportWorkspace=true&allowSocialSharing=true&showUndoRedoButtons=true&showDetachButton=true&presentationType=candle&axisX=true&axisY=true&legend=true&timeline=true&showDateSeparators=true&showZoom=true&showScrollButtons=true&showAutoShiftButton=true&crosshair=true&borders=false&freeMode=false&theme=Pastelle&uiColor=%23000&availableInstruments=l%3A&instrument=EUR/USD&period=5&offerSide=BID&timezone=0&live=true&allowPan=true&width=100%25&height=700&adv=popup&lang=en",
|
182
|
+
}
|
183
|
+
|
184
|
+
logger.debug("query params: %s", query_params)
|
185
|
+
|
186
|
+
response = requests.get(base_url, headers=headers, params=query_params)
|
187
|
+
|
188
|
+
jsonText = response.text.removeprefix(f"{jsonp}(").removesuffix(");")
|
189
|
+
|
190
|
+
return json.loads(jsonText)
|
191
|
+
|
192
|
+
|
193
|
+
def _stream(
|
194
|
+
instrument: str,
|
195
|
+
interval: str,
|
196
|
+
offer_side: str,
|
197
|
+
start: datetime,
|
198
|
+
end: datetime = None,
|
199
|
+
max_retries: int = 7,
|
200
|
+
limit: int = None,
|
201
|
+
logger: logging.Logger = logging.getLogger(),
|
202
|
+
):
|
203
|
+
no_of_retries = 0
|
204
|
+
cursor = int(start.timestamp() * 1000)
|
205
|
+
end_timestamp = None
|
206
|
+
if end is not None:
|
207
|
+
end_timestamp = end.timestamp() * 1000
|
208
|
+
|
209
|
+
is_first_iteration = True
|
210
|
+
|
211
|
+
logging.info(f"Start Date :{start.isoformat()}")
|
212
|
+
logging.info(f"End Date :{'' if end is None else end.isoformat()}")
|
213
|
+
|
214
|
+
while True:
|
215
|
+
try:
|
216
|
+
|
217
|
+
lastUpdates = _fetch(
|
218
|
+
instrument=instrument,
|
219
|
+
interval=interval,
|
220
|
+
offer_side=offer_side,
|
221
|
+
last_update=cursor,
|
222
|
+
limit=limit,
|
223
|
+
)
|
224
|
+
|
225
|
+
if not is_first_iteration and lastUpdates[0][0] == cursor:
|
226
|
+
lastUpdates = lastUpdates[1:]
|
227
|
+
|
228
|
+
if len(lastUpdates) < 1:
|
229
|
+
if end is not None:
|
230
|
+
break
|
231
|
+
else:
|
232
|
+
continue
|
233
|
+
|
234
|
+
for row in lastUpdates:
|
235
|
+
if end_timestamp is not None and row[0] > end_timestamp:
|
236
|
+
return
|
237
|
+
if interval == INTERVAL_TICK:
|
238
|
+
row[-1] = row[-1] / 1_000_000
|
239
|
+
row[-2] = row[-2] / 1_000_000
|
240
|
+
yield row
|
241
|
+
cursor = row[0]
|
242
|
+
|
243
|
+
logger.info(
|
244
|
+
f"current timestamp :{datetime.fromtimestamp(cursor/1000).isoformat()}"
|
245
|
+
)
|
246
|
+
|
247
|
+
no_of_retries = 0
|
248
|
+
is_first_iteration = False
|
249
|
+
|
250
|
+
except Exception as e:
|
251
|
+
import traceback
|
252
|
+
|
253
|
+
stacktrace = traceback.format_exc()
|
254
|
+
no_of_retries += 1
|
255
|
+
if max_retries is not None and (no_of_retries - 1) > max_retries:
|
256
|
+
logger.debug("error fetching")
|
257
|
+
logger.debug(e, stacktrace)
|
258
|
+
raise e
|
259
|
+
else:
|
260
|
+
logger.debug("an error occured", e)
|
261
|
+
logger.debug(e, stacktrace)
|
262
|
+
logger.debug("retrying")
|
263
|
+
sleep(1)
|
264
|
+
continue
|
265
|
+
|
266
|
+
|
267
|
+
def fetch(
|
268
|
+
instrument: str,
|
269
|
+
interval_value: str,
|
270
|
+
time_unit: str,
|
271
|
+
offer_side: str,
|
272
|
+
start: datetime,
|
273
|
+
end: datetime,
|
274
|
+
max_retries: int = 7,
|
275
|
+
limit: int = 30_000, # max 30_000
|
276
|
+
debug=False,
|
277
|
+
):
|
278
|
+
logger = _get_custom_logger(debug)
|
279
|
+
columns = _get_dataframe_columns_for_timeunit(time_unit)
|
280
|
+
|
281
|
+
data = []
|
282
|
+
|
283
|
+
interval = (
|
284
|
+
time_unit if time_unit == TIME_UNIT_TICK else f"{interval_value}{time_unit}"
|
285
|
+
)
|
286
|
+
|
287
|
+
if not _is_valid_api_interval(interval):
|
288
|
+
raise ValueError("allowed intervals ", INTERVALS_SET)
|
289
|
+
|
290
|
+
datafeed = _stream(
|
291
|
+
instrument=instrument,
|
292
|
+
interval=interval,
|
293
|
+
offer_side=offer_side,
|
294
|
+
start=start,
|
295
|
+
end=end,
|
296
|
+
max_retries=max_retries,
|
297
|
+
limit=limit,
|
298
|
+
logger=logger,
|
299
|
+
)
|
300
|
+
|
301
|
+
for row in datafeed:
|
302
|
+
data.append(row)
|
303
|
+
|
304
|
+
df = pd.DataFrame(data=data, columns=columns)
|
305
|
+
df["timestamp"] = pd.to_datetime(
|
306
|
+
df["timestamp"],
|
307
|
+
unit="ms",
|
308
|
+
utc=True,
|
309
|
+
)
|
310
|
+
df = df.set_index("timestamp")
|
311
|
+
return df
|
312
|
+
|
313
|
+
|
314
|
+
def live_fetch(
|
315
|
+
instrument: str,
|
316
|
+
interval_value: int,
|
317
|
+
time_unit: str,
|
318
|
+
offer_side: str,
|
319
|
+
start: datetime,
|
320
|
+
end: datetime,
|
321
|
+
max_retries: int = 7,
|
322
|
+
limit: int = 30_000, # max 30_000
|
323
|
+
debug=False,
|
324
|
+
):
|
325
|
+
logger = _get_custom_logger(debug)
|
326
|
+
|
327
|
+
# validate time unit
|
328
|
+
_resample_to_nearest(
|
329
|
+
datetime.now(),
|
330
|
+
time_unit,
|
331
|
+
interval_value,
|
332
|
+
)
|
333
|
+
|
334
|
+
open, high, low, close, volume = None, 0, 0, 0, 0
|
335
|
+
|
336
|
+
price_index = {
|
337
|
+
OFFER_SIDE_BID: 1,
|
338
|
+
OFFER_SIDE_ASK: 2,
|
339
|
+
}[offer_side]
|
340
|
+
|
341
|
+
volume_index = {
|
342
|
+
OFFER_SIDE_BID: -2,
|
343
|
+
OFFER_SIDE_ASK: -1,
|
344
|
+
}[offer_side]
|
345
|
+
|
346
|
+
last_timestamp = None
|
347
|
+
|
348
|
+
columns = _get_dataframe_columns_for_timeunit(time_unit)
|
349
|
+
df = pd.DataFrame(columns=columns)
|
350
|
+
df["timestamp"] = pd.to_datetime(
|
351
|
+
df["timestamp"],
|
352
|
+
unit="ms",
|
353
|
+
utc=True,
|
354
|
+
)
|
355
|
+
df = df.set_index("timestamp")
|
356
|
+
|
357
|
+
datafeed = _stream(
|
358
|
+
instrument=instrument,
|
359
|
+
interval=INTERVAL_TICK,
|
360
|
+
offer_side=offer_side,
|
361
|
+
start=start,
|
362
|
+
end=end,
|
363
|
+
max_retries=max_retries,
|
364
|
+
limit=limit,
|
365
|
+
logger=logger,
|
366
|
+
)
|
367
|
+
|
368
|
+
for row in datafeed:
|
369
|
+
|
370
|
+
timestamp = _resample_to_nearest(
|
371
|
+
pd.to_datetime(
|
372
|
+
row[0],
|
373
|
+
unit="ms",
|
374
|
+
utc=True,
|
375
|
+
),
|
376
|
+
time_unit,
|
377
|
+
interval_value,
|
378
|
+
)
|
379
|
+
|
380
|
+
if time_unit == TIME_UNIT_TICK:
|
381
|
+
df.loc[timestamp] = [
|
382
|
+
*row[1:],
|
383
|
+
]
|
384
|
+
yield df
|
385
|
+
continue
|
386
|
+
|
387
|
+
if last_timestamp == None:
|
388
|
+
last_timestamp = timestamp.timestamp()
|
389
|
+
|
390
|
+
if timestamp.timestamp() != last_timestamp:
|
391
|
+
if open is not None:
|
392
|
+
df.loc[timestamp] = [
|
393
|
+
open,
|
394
|
+
high,
|
395
|
+
low,
|
396
|
+
close,
|
397
|
+
volume,
|
398
|
+
]
|
399
|
+
|
400
|
+
yield df
|
401
|
+
last_timestamp = timestamp.timestamp()
|
402
|
+
open = None
|
403
|
+
|
404
|
+
if open is None:
|
405
|
+
open = row[price_index]
|
406
|
+
close = open
|
407
|
+
low = open
|
408
|
+
high = open
|
409
|
+
volume = 0
|
410
|
+
|
411
|
+
close = row[price_index]
|
412
|
+
high = max(high, close)
|
413
|
+
low = min(low, close)
|
414
|
+
volume += row[volume_index]
|
415
|
+
|
416
|
+
df.loc[timestamp] = [
|
417
|
+
open,
|
418
|
+
high,
|
419
|
+
low,
|
420
|
+
close,
|
421
|
+
volume,
|
422
|
+
]
|
423
|
+
yield df
|