dukascript 0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
dukascript/__init__.py ADDED
@@ -0,0 +1,423 @@
1
+ import pandas as pd
2
+ import requests
3
+ from datetime import datetime, timedelta
4
+ import json
5
+ import random
6
+ import string
7
+ from time import sleep
8
+ import logging
9
+
10
+ from .instruments import *
11
+
12
+ TIME_UNIT_MONTH = "MONTH"
13
+ TIME_UNIT_WEEK = "WEEK"
14
+ TIME_UNIT_DAY = "DAY"
15
+ TIME_UNIT_HOUR = "HOUR"
16
+ TIME_UNIT_MIN = "MIN"
17
+ TIME_UNIT_SEC = "SEC"
18
+ TIME_UNIT_TICK = "TICK"
19
+
20
+ INTERVAL_MONTH_1 = f"1{TIME_UNIT_MONTH}"
21
+ INTERVAL_WEEK_1 = f"1{TIME_UNIT_WEEK}"
22
+ INTERVAL_DAY_1 = f"1{TIME_UNIT_DAY}"
23
+ INTERVAL_HOUR_4 = f"4{TIME_UNIT_HOUR}"
24
+ INTERVAL_HOUR_1 = f"1{TIME_UNIT_HOUR}"
25
+ INTERVAL_MIN_30 = f"30{TIME_UNIT_MIN}"
26
+ INTERVAL_MIN_15 = f"15{TIME_UNIT_MIN}"
27
+ INTERVAL_MIN_10 = f"10{TIME_UNIT_MIN}"
28
+ INTERVAL_MIN_5 = f"5{TIME_UNIT_MIN}"
29
+ INTERVAL_MIN_1 = f"1{TIME_UNIT_MIN}"
30
+ INTERVAL_SEC_30 = f"30{TIME_UNIT_SEC}"
31
+ INTERVAL_SEC_10 = f"10{TIME_UNIT_SEC}"
32
+ INTERVAL_SEC_1 = f"1{TIME_UNIT_SEC}"
33
+ INTERVAL_TICK = TIME_UNIT_TICK
34
+
35
+ INTERVALS_SET = {
36
+ INTERVAL_MONTH_1,
37
+ INTERVAL_WEEK_1,
38
+ INTERVAL_DAY_1,
39
+ INTERVAL_HOUR_4,
40
+ INTERVAL_HOUR_1,
41
+ INTERVAL_MIN_30,
42
+ INTERVAL_MIN_15,
43
+ INTERVAL_MIN_10,
44
+ INTERVAL_MIN_5,
45
+ INTERVAL_MIN_1,
46
+ INTERVAL_SEC_30,
47
+ INTERVAL_SEC_10,
48
+ INTERVAL_SEC_1,
49
+ }
50
+
51
+ OFFER_SIDE_BID = "B"
52
+ OFFER_SIDE_ASK = "A"
53
+
54
+
55
+ def _get_custom_logger(debug=False):
56
+ logger = logging.getLogger("DUKASCRIPT")
57
+ logger.setLevel(logging.DEBUG if debug else logging.INFO)
58
+
59
+ if not logger.handlers:
60
+ # Formatter
61
+ formatter = logging.Formatter("[%(levelname)s] %(message)s")
62
+
63
+ # Console Handler
64
+ ch = logging.StreamHandler()
65
+ ch.setLevel(logging.DEBUG if debug else logging.INFO)
66
+ ch.setFormatter(formatter)
67
+
68
+ logger.addHandler(ch)
69
+
70
+ return logger
71
+
72
+
73
+ def _is_valid_api_interval(interval):
74
+ return True if interval in INTERVALS_SET else False
75
+
76
+
77
+ def _resample_to_nearest(
78
+ timestamp: datetime,
79
+ time_unit: str,
80
+ interval_value: int,
81
+ ) -> datetime:
82
+ # Round to the nearest time unit based on the interval value
83
+ if time_unit == TIME_UNIT_SEC:
84
+ subtraction = timestamp.second % interval_value
85
+ return timestamp - timedelta(
86
+ seconds=subtraction,
87
+ microseconds=timestamp.microsecond,
88
+ )
89
+ elif time_unit == TIME_UNIT_MIN:
90
+ subtraction = timestamp.minute % interval_value
91
+ return timestamp - timedelta(
92
+ minutes=subtraction,
93
+ seconds=timestamp.second,
94
+ microseconds=timestamp.microsecond,
95
+ )
96
+ elif time_unit == TIME_UNIT_HOUR:
97
+ subtraction = timestamp.hour % interval_value
98
+ return timestamp - timedelta(
99
+ hours=subtraction,
100
+ minutes=timestamp.minute,
101
+ seconds=timestamp.second,
102
+ microseconds=timestamp.microsecond,
103
+ )
104
+ elif time_unit == TIME_UNIT_DAY:
105
+ subtraction = timestamp.day % interval_value
106
+ return timestamp - timedelta(
107
+ days=subtraction,
108
+ hours=timestamp.hour,
109
+ minutes=timestamp.minute,
110
+ seconds=timestamp.second,
111
+ microseconds=timestamp.microsecond,
112
+ )
113
+ elif time_unit == TIME_UNIT_WEEK:
114
+ subtraction = (timestamp.weekday() + 1) % (interval_value * 7)
115
+ return timestamp - timedelta(
116
+ days=subtraction,
117
+ hours=timestamp.hour,
118
+ minutes=timestamp.minute,
119
+ seconds=timestamp.second,
120
+ microseconds=timestamp.microsecond,
121
+ )
122
+ elif time_unit == TIME_UNIT_MONTH:
123
+ month = (timestamp.month // interval_value) + 1
124
+ return datetime(timestamp.year, month, 1, 0, 0, 0, 0, timestamp.tzinfo)
125
+ elif time_unit == TIME_UNIT_TICK:
126
+ return timestamp
127
+
128
+ raise NotImplementedError(f"resampling not implemented for {time_unit}")
129
+
130
+
131
+ def _get_dataframe_columns_for_timeunit(time_unit: str) -> list[str]:
132
+
133
+ ohlc_df = ["timestamp", "open", "high", "low", "close", "volume"]
134
+ tick_df = ["timestamp", "bidPrice", "askPrice", "bidVolume", "askVolume"]
135
+
136
+ df = {
137
+ TIME_UNIT_DAY: ohlc_df,
138
+ TIME_UNIT_HOUR: ohlc_df,
139
+ TIME_UNIT_MIN: ohlc_df,
140
+ TIME_UNIT_MONTH: ohlc_df,
141
+ TIME_UNIT_SEC: ohlc_df,
142
+ TIME_UNIT_TICK: tick_df,
143
+ TIME_UNIT_WEEK: ohlc_df,
144
+ }[time_unit]
145
+
146
+ return df
147
+
148
+
149
+ def _fetch(
150
+ instrument: str,
151
+ interval: str,
152
+ offer_side: str,
153
+ last_update: int,
154
+ logger: logging.Logger = logging.getLogger(),
155
+ limit: int = None,
156
+ ):
157
+ characters = string.ascii_letters + string.digits
158
+ jsonp = f"_callbacks____{''.join(random.choices(characters, k=9))}"
159
+
160
+ query_params = {
161
+ "path": "chart/json3",
162
+ "splits": "true",
163
+ "stocks": "true",
164
+ "time_direction": "N",
165
+ "jsonp": jsonp,
166
+ "last_update": f"{int(last_update)}",
167
+ "offer_side": f"{offer_side}",
168
+ "instrument": f"{instrument}",
169
+ "interval": f"{interval}",
170
+ }
171
+
172
+ if limit is not None:
173
+ # max limit is 30_000
174
+ query_params["limit"] = f"{int(limit)}"
175
+
176
+ base_url = "https://freeserv.dukascopy.com/2.0/index.php"
177
+
178
+ headers = {
179
+ "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/135.0.0.0 Safari/537.36 Edg/135.0.0.0",
180
+ "Host": "freeserv.dukascopy.com",
181
+ "Referer": "https://freeserv.dukascopy.com/2.0/?path=chart/index&showUI=true&showTabs=true&showParameterToolbar=true&showOfferSide=true&allowInstrumentChange=true&allowPeriodChange=true&allowOfferSideChange=true&showAdditionalToolbar=true&showExportImportWorkspace=true&allowSocialSharing=true&showUndoRedoButtons=true&showDetachButton=true&presentationType=candle&axisX=true&axisY=true&legend=true&timeline=true&showDateSeparators=true&showZoom=true&showScrollButtons=true&showAutoShiftButton=true&crosshair=true&borders=false&freeMode=false&theme=Pastelle&uiColor=%23000&availableInstruments=l%3A&instrument=EUR/USD&period=5&offerSide=BID&timezone=0&live=true&allowPan=true&width=100%25&height=700&adv=popup&lang=en",
182
+ }
183
+
184
+ logger.debug("query params: %s", query_params)
185
+
186
+ response = requests.get(base_url, headers=headers, params=query_params)
187
+
188
+ jsonText = response.text.removeprefix(f"{jsonp}(").removesuffix(");")
189
+
190
+ return json.loads(jsonText)
191
+
192
+
193
+ def _stream(
194
+ instrument: str,
195
+ interval: str,
196
+ offer_side: str,
197
+ start: datetime,
198
+ end: datetime = None,
199
+ max_retries: int = 7,
200
+ limit: int = None,
201
+ logger: logging.Logger = logging.getLogger(),
202
+ ):
203
+ no_of_retries = 0
204
+ cursor = int(start.timestamp() * 1000)
205
+ end_timestamp = None
206
+ if end is not None:
207
+ end_timestamp = end.timestamp() * 1000
208
+
209
+ is_first_iteration = True
210
+
211
+ logging.info(f"Start Date :{start.isoformat()}")
212
+ logging.info(f"End Date :{'' if end is None else end.isoformat()}")
213
+
214
+ while True:
215
+ try:
216
+
217
+ lastUpdates = _fetch(
218
+ instrument=instrument,
219
+ interval=interval,
220
+ offer_side=offer_side,
221
+ last_update=cursor,
222
+ limit=limit,
223
+ )
224
+
225
+ if not is_first_iteration and lastUpdates[0][0] == cursor:
226
+ lastUpdates = lastUpdates[1:]
227
+
228
+ if len(lastUpdates) < 1:
229
+ if end is not None:
230
+ break
231
+ else:
232
+ continue
233
+
234
+ for row in lastUpdates:
235
+ if end_timestamp is not None and row[0] > end_timestamp:
236
+ return
237
+ if interval == INTERVAL_TICK:
238
+ row[-1] = row[-1] / 1_000_000
239
+ row[-2] = row[-2] / 1_000_000
240
+ yield row
241
+ cursor = row[0]
242
+
243
+ logger.info(
244
+ f"current timestamp :{datetime.fromtimestamp(cursor/1000).isoformat()}"
245
+ )
246
+
247
+ no_of_retries = 0
248
+ is_first_iteration = False
249
+
250
+ except Exception as e:
251
+ import traceback
252
+
253
+ stacktrace = traceback.format_exc()
254
+ no_of_retries += 1
255
+ if max_retries is not None and (no_of_retries - 1) > max_retries:
256
+ logger.debug("error fetching")
257
+ logger.debug(e, stacktrace)
258
+ raise e
259
+ else:
260
+ logger.debug("an error occured", e)
261
+ logger.debug(e, stacktrace)
262
+ logger.debug("retrying")
263
+ sleep(1)
264
+ continue
265
+
266
+
267
+ def fetch(
268
+ instrument: str,
269
+ interval_value: str,
270
+ time_unit: str,
271
+ offer_side: str,
272
+ start: datetime,
273
+ end: datetime,
274
+ max_retries: int = 7,
275
+ limit: int = 30_000, # max 30_000
276
+ debug=False,
277
+ ):
278
+ logger = _get_custom_logger(debug)
279
+ columns = _get_dataframe_columns_for_timeunit(time_unit)
280
+
281
+ data = []
282
+
283
+ interval = (
284
+ time_unit if time_unit == TIME_UNIT_TICK else f"{interval_value}{time_unit}"
285
+ )
286
+
287
+ if not _is_valid_api_interval(interval):
288
+ raise ValueError("allowed intervals ", INTERVALS_SET)
289
+
290
+ datafeed = _stream(
291
+ instrument=instrument,
292
+ interval=interval,
293
+ offer_side=offer_side,
294
+ start=start,
295
+ end=end,
296
+ max_retries=max_retries,
297
+ limit=limit,
298
+ logger=logger,
299
+ )
300
+
301
+ for row in datafeed:
302
+ data.append(row)
303
+
304
+ df = pd.DataFrame(data=data, columns=columns)
305
+ df["timestamp"] = pd.to_datetime(
306
+ df["timestamp"],
307
+ unit="ms",
308
+ utc=True,
309
+ )
310
+ df = df.set_index("timestamp")
311
+ return df
312
+
313
+
314
+ def live_fetch(
315
+ instrument: str,
316
+ interval_value: int,
317
+ time_unit: str,
318
+ offer_side: str,
319
+ start: datetime,
320
+ end: datetime,
321
+ max_retries: int = 7,
322
+ limit: int = 30_000, # max 30_000
323
+ debug=False,
324
+ ):
325
+ logger = _get_custom_logger(debug)
326
+
327
+ # validate time unit
328
+ _resample_to_nearest(
329
+ datetime.now(),
330
+ time_unit,
331
+ interval_value,
332
+ )
333
+
334
+ open, high, low, close, volume = None, 0, 0, 0, 0
335
+
336
+ price_index = {
337
+ OFFER_SIDE_BID: 1,
338
+ OFFER_SIDE_ASK: 2,
339
+ }[offer_side]
340
+
341
+ volume_index = {
342
+ OFFER_SIDE_BID: -2,
343
+ OFFER_SIDE_ASK: -1,
344
+ }[offer_side]
345
+
346
+ last_timestamp = None
347
+
348
+ columns = _get_dataframe_columns_for_timeunit(time_unit)
349
+ df = pd.DataFrame(columns=columns)
350
+ df["timestamp"] = pd.to_datetime(
351
+ df["timestamp"],
352
+ unit="ms",
353
+ utc=True,
354
+ )
355
+ df = df.set_index("timestamp")
356
+
357
+ datafeed = _stream(
358
+ instrument=instrument,
359
+ interval=INTERVAL_TICK,
360
+ offer_side=offer_side,
361
+ start=start,
362
+ end=end,
363
+ max_retries=max_retries,
364
+ limit=limit,
365
+ logger=logger,
366
+ )
367
+
368
+ for row in datafeed:
369
+
370
+ timestamp = _resample_to_nearest(
371
+ pd.to_datetime(
372
+ row[0],
373
+ unit="ms",
374
+ utc=True,
375
+ ),
376
+ time_unit,
377
+ interval_value,
378
+ )
379
+
380
+ if time_unit == TIME_UNIT_TICK:
381
+ df.loc[timestamp] = [
382
+ *row[1:],
383
+ ]
384
+ yield df
385
+ continue
386
+
387
+ if last_timestamp == None:
388
+ last_timestamp = timestamp.timestamp()
389
+
390
+ if timestamp.timestamp() != last_timestamp:
391
+ if open is not None:
392
+ df.loc[timestamp] = [
393
+ open,
394
+ high,
395
+ low,
396
+ close,
397
+ volume,
398
+ ]
399
+
400
+ yield df
401
+ last_timestamp = timestamp.timestamp()
402
+ open = None
403
+
404
+ if open is None:
405
+ open = row[price_index]
406
+ close = open
407
+ low = open
408
+ high = open
409
+ volume = 0
410
+
411
+ close = row[price_index]
412
+ high = max(high, close)
413
+ low = min(low, close)
414
+ volume += row[volume_index]
415
+
416
+ df.loc[timestamp] = [
417
+ open,
418
+ high,
419
+ low,
420
+ close,
421
+ volume,
422
+ ]
423
+ yield df