duckrun 0.2.16.dev2__py3-none-any.whl → 0.2.19.dev5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- duckrun/__init__.py +4 -2
- duckrun/core.py +276 -47
- duckrun/notebook.py +324 -0
- duckrun/rle.py +860 -0
- duckrun/semantic_model.py +143 -17
- duckrun/stats.py +202 -67
- {duckrun-0.2.16.dev2.dist-info → duckrun-0.2.19.dev5.dist-info}/METADATA +2 -2
- duckrun-0.2.19.dev5.dist-info/RECORD +16 -0
- duckrun-0.2.16.dev2.dist-info/RECORD +0 -14
- {duckrun-0.2.16.dev2.dist-info → duckrun-0.2.19.dev5.dist-info}/WHEEL +0 -0
- {duckrun-0.2.16.dev2.dist-info → duckrun-0.2.19.dev5.dist-info}/licenses/LICENSE +0 -0
- {duckrun-0.2.16.dev2.dist-info → duckrun-0.2.19.dev5.dist-info}/top_level.txt +0 -0
duckrun/__init__.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
"""Duckrun - Lakehouse task runner powered by DuckDB"""
|
|
2
2
|
|
|
3
3
|
from duckrun.core import Duckrun
|
|
4
|
+
from duckrun.notebook import import_notebook_from_web, import_notebook
|
|
5
|
+
from duckrun import rle
|
|
4
6
|
|
|
5
|
-
__version__ = "0.2.
|
|
7
|
+
__version__ = "0.2.18"
|
|
6
8
|
|
|
7
9
|
# Expose unified connect method at module level
|
|
8
10
|
connect = Duckrun.connect
|
|
9
11
|
|
|
10
|
-
__all__ = ["Duckrun", "connect"]
|
|
12
|
+
__all__ = ["Duckrun", "connect", "import_notebook_from_web", "import_notebook", "rle"]
|
duckrun/core.py
CHANGED
|
@@ -12,7 +12,71 @@ from .runner import run as _run
|
|
|
12
12
|
from .files import copy as _copy, download as _download
|
|
13
13
|
from .writer import QueryResult
|
|
14
14
|
|
|
15
|
-
|
|
15
|
+
|
|
16
|
+
class WorkspaceOperationsMixin:
|
|
17
|
+
"""
|
|
18
|
+
Mixin class for workspace-level operations that work for both
|
|
19
|
+
full Duckrun connections and workspace-only connections.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def import_notebook_from_web(self, url: str,
|
|
23
|
+
notebook_name: Optional[str] = None,
|
|
24
|
+
overwrite: bool = False) -> dict:
|
|
25
|
+
"""
|
|
26
|
+
Import a Jupyter notebook from a web URL into the workspace.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
url: URL to the notebook file (e.g., GitHub raw URL). Required.
|
|
30
|
+
notebook_name: Name for the imported notebook. Optional - derived from URL if not provided.
|
|
31
|
+
overwrite: Whether to overwrite if notebook already exists (default: False)
|
|
32
|
+
|
|
33
|
+
Returns:
|
|
34
|
+
Dictionary with import result
|
|
35
|
+
|
|
36
|
+
Examples:
|
|
37
|
+
con = duckrun.connect("workspace/lakehouse.lakehouse")
|
|
38
|
+
result = con.import_notebook_from_web(
|
|
39
|
+
url="https://raw.githubusercontent.com/user/repo/main/notebook.ipynb"
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
ws = duckrun.connect("workspace")
|
|
43
|
+
result = ws.import_notebook_from_web(
|
|
44
|
+
url="https://raw.githubusercontent.com/user/repo/main/notebook.ipynb"
|
|
45
|
+
)
|
|
46
|
+
"""
|
|
47
|
+
from .notebook import import_notebook_from_web as _import_notebook_from_web
|
|
48
|
+
|
|
49
|
+
# Get workspace name from either self.workspace or self.workspace_name
|
|
50
|
+
workspace_name = getattr(self, 'workspace', None) or getattr(self, 'workspace_name', None)
|
|
51
|
+
|
|
52
|
+
return _import_notebook_from_web(
|
|
53
|
+
url=url,
|
|
54
|
+
notebook_name=notebook_name,
|
|
55
|
+
overwrite=overwrite,
|
|
56
|
+
workspace_name=workspace_name
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
def _get_workspace_id_by_name(self, token: str, workspace_name: str) -> Optional[str]:
|
|
60
|
+
"""Helper method to get workspace ID from name"""
|
|
61
|
+
try:
|
|
62
|
+
url = "https://api.fabric.microsoft.com/v1/workspaces"
|
|
63
|
+
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}
|
|
64
|
+
|
|
65
|
+
response = requests.get(url, headers=headers)
|
|
66
|
+
response.raise_for_status()
|
|
67
|
+
|
|
68
|
+
workspaces = response.json().get("value", [])
|
|
69
|
+
for workspace in workspaces:
|
|
70
|
+
if workspace.get("displayName") == workspace_name:
|
|
71
|
+
return workspace.get("id")
|
|
72
|
+
|
|
73
|
+
return None
|
|
74
|
+
|
|
75
|
+
except Exception:
|
|
76
|
+
return None
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
class Duckrun(WorkspaceOperationsMixin):
|
|
16
80
|
"""
|
|
17
81
|
OneLake task runner with clean tuple-based API.
|
|
18
82
|
Supports lakehouses, warehouses, databases, and other OneLake items.
|
|
@@ -971,33 +1035,44 @@ class Duckrun:
|
|
|
971
1035
|
"""Get underlying DuckDB connection"""
|
|
972
1036
|
return self.con
|
|
973
1037
|
|
|
974
|
-
def get_stats(self, source: str):
|
|
1038
|
+
def get_stats(self, source: str = None, detailed = False):
|
|
975
1039
|
"""
|
|
976
1040
|
Get comprehensive statistics for Delta Lake tables.
|
|
977
1041
|
|
|
978
1042
|
Args:
|
|
979
|
-
source: Can be one of:
|
|
1043
|
+
source: Optional. Can be one of:
|
|
1044
|
+
- None: Use all tables in the connection's schema (default)
|
|
980
1045
|
- Table name: 'table_name' (uses current schema)
|
|
981
1046
|
- Schema.table: 'schema.table_name' (specific table in schema)
|
|
982
1047
|
- Schema only: 'schema' (all tables in schema)
|
|
1048
|
+
detailed: Optional. Controls the level of detail in statistics:
|
|
1049
|
+
- False (default): Aggregated table-level stats
|
|
1050
|
+
- True: Row group level statistics with compression details
|
|
983
1051
|
|
|
984
1052
|
Returns:
|
|
985
|
-
|
|
986
|
-
|
|
1053
|
+
DataFrame with statistics based on detailed parameter:
|
|
1054
|
+
- If detailed=False: Aggregated table-level summary
|
|
1055
|
+
- If detailed=True: Granular file and row group level stats
|
|
987
1056
|
|
|
988
1057
|
Examples:
|
|
989
1058
|
con = duckrun.connect("tmp/data.lakehouse/aemo")
|
|
990
1059
|
|
|
991
|
-
#
|
|
1060
|
+
# All tables in current schema (aemo) - aggregated
|
|
1061
|
+
stats = con.get_stats()
|
|
1062
|
+
|
|
1063
|
+
# Single table in current schema - aggregated
|
|
992
1064
|
stats = con.get_stats('price')
|
|
993
1065
|
|
|
1066
|
+
# Single table with detailed row group statistics
|
|
1067
|
+
stats_detailed = con.get_stats('price', detailed=True)
|
|
1068
|
+
|
|
994
1069
|
# Specific table in different schema
|
|
995
1070
|
stats = con.get_stats('aemo.price')
|
|
996
1071
|
|
|
997
1072
|
# All tables in a schema
|
|
998
1073
|
stats = con.get_stats('aemo')
|
|
999
1074
|
"""
|
|
1000
|
-
return _get_stats(self, source)
|
|
1075
|
+
return _get_stats(self, source, detailed)
|
|
1001
1076
|
|
|
1002
1077
|
def list_lakehouses(self) -> List[str]:
|
|
1003
1078
|
"""
|
|
@@ -1111,7 +1186,7 @@ class Duckrun:
|
|
|
1111
1186
|
return False
|
|
1112
1187
|
|
|
1113
1188
|
def deploy(self, bim_url: str, dataset_name: Optional[str] = None,
|
|
1114
|
-
wait_seconds: int = 5) -> int:
|
|
1189
|
+
wait_seconds: int = 5, refresh: str = "full") -> int:
|
|
1115
1190
|
"""
|
|
1116
1191
|
Deploy a semantic model from a BIM file using DirectLake mode.
|
|
1117
1192
|
|
|
@@ -1120,8 +1195,11 @@ class Duckrun:
|
|
|
1120
1195
|
- URL: "https://raw.githubusercontent.com/.../model.bim"
|
|
1121
1196
|
- Local file: "model.bim"
|
|
1122
1197
|
- Workspace/Model: "workspace_name/model_name"
|
|
1123
|
-
dataset_name: Name for the semantic model (default:
|
|
1198
|
+
dataset_name: Name for the semantic model (default: schema name)
|
|
1124
1199
|
wait_seconds: Seconds to wait for permission propagation (default: 5)
|
|
1200
|
+
refresh: Refresh strategy:
|
|
1201
|
+
- "full": Clear values and process full refresh (default)
|
|
1202
|
+
- "ignore": Skip refresh entirely
|
|
1125
1203
|
|
|
1126
1204
|
Returns:
|
|
1127
1205
|
1 for success, 0 for failure
|
|
@@ -1129,14 +1207,17 @@ class Duckrun:
|
|
|
1129
1207
|
Examples:
|
|
1130
1208
|
dr = Duckrun.connect("My Workspace/My Lakehouse.lakehouse/dbo")
|
|
1131
1209
|
|
|
1210
|
+
# Deploy with schema name as dataset name (dbo)
|
|
1211
|
+
dr.deploy("https://github.com/.../model.bim")
|
|
1212
|
+
|
|
1132
1213
|
# Deploy from workspace/model (uses same name by default)
|
|
1133
1214
|
dr.deploy("Source Workspace/Source Model") # Creates "Source Model"
|
|
1134
1215
|
|
|
1135
1216
|
# Deploy with custom name
|
|
1136
|
-
dr.deploy("
|
|
1217
|
+
dr.deploy("https://github.com/.../model.bim", dataset_name="Sales Model")
|
|
1137
1218
|
|
|
1138
|
-
# Deploy
|
|
1139
|
-
dr.deploy("https://
|
|
1219
|
+
# Deploy without refresh
|
|
1220
|
+
dr.deploy("https://github.com/.../model.bim", refresh="ignore")
|
|
1140
1221
|
"""
|
|
1141
1222
|
from .semantic_model import deploy_semantic_model
|
|
1142
1223
|
|
|
@@ -1148,9 +1229,9 @@ class Duckrun:
|
|
|
1148
1229
|
if len(parts) == 2:
|
|
1149
1230
|
dataset_name = parts[1] # Use the model name
|
|
1150
1231
|
else:
|
|
1151
|
-
dataset_name =
|
|
1232
|
+
dataset_name = self.schema # Use schema name
|
|
1152
1233
|
else:
|
|
1153
|
-
dataset_name =
|
|
1234
|
+
dataset_name = self.schema # Use schema name
|
|
1154
1235
|
|
|
1155
1236
|
# Call the deployment function (DirectLake only)
|
|
1156
1237
|
return deploy_semantic_model(
|
|
@@ -1159,36 +1240,203 @@ class Duckrun:
|
|
|
1159
1240
|
schema_name=self.schema,
|
|
1160
1241
|
dataset_name=dataset_name,
|
|
1161
1242
|
bim_url_or_path=bim_url,
|
|
1162
|
-
wait_seconds=wait_seconds
|
|
1243
|
+
wait_seconds=wait_seconds,
|
|
1244
|
+
refresh=refresh
|
|
1163
1245
|
)
|
|
1164
1246
|
|
|
1165
|
-
def
|
|
1166
|
-
|
|
1167
|
-
|
|
1168
|
-
|
|
1169
|
-
|
|
1247
|
+
def rle(self, table_name: str = None, mode = "natural",
|
|
1248
|
+
min_distinct_threshold: int = 2, max_cardinality_pct: float = 0.01,
|
|
1249
|
+
max_ordering_depth: int = 3, limit: int = None):
|
|
1250
|
+
"""
|
|
1251
|
+
Analyze RLE (Run-Length Encoding) compression potential for Delta Lake tables.
|
|
1252
|
+
|
|
1253
|
+
Args:
|
|
1254
|
+
table_name: Name of the table to analyze. Can be:
|
|
1255
|
+
- 'table_name' (uses current schema)
|
|
1256
|
+
- 'schema.table_name' (specific schema)
|
|
1257
|
+
mode: Analysis mode or column ordering:
|
|
1258
|
+
- "natural": Calculate RLE for natural order only (fastest)
|
|
1259
|
+
- "auto": Natural order + cardinality-based ordering (recommended)
|
|
1260
|
+
- "advanced": Natural + cardinality + greedy incremental search (most thorough)
|
|
1261
|
+
- List[str]: Specific column ordering to test, e.g., ['date', 'duid']
|
|
1262
|
+
min_distinct_threshold: Exclude columns with fewer distinct values (default: 2)
|
|
1263
|
+
max_cardinality_pct: Exclude columns with cardinality above this % (default: 0.01 = 1%)
|
|
1264
|
+
max_ordering_depth: Maximum depth for greedy search in "advanced" mode (default: 3)
|
|
1265
|
+
limit: Optional row limit for testing/development (default: None, analyzes all rows)
|
|
1266
|
+
|
|
1267
|
+
Returns:
|
|
1268
|
+
DataFrame with RLE analysis results
|
|
1269
|
+
|
|
1270
|
+
Examples:
|
|
1271
|
+
# Natural order only (baseline)
|
|
1272
|
+
con = duckrun.connect("workspace/lakehouse.lakehouse/schema")
|
|
1273
|
+
con.rle("mytable") # same as con.rle("mytable", "natural")
|
|
1170
1274
|
|
|
1171
|
-
|
|
1172
|
-
|
|
1275
|
+
# Auto optimization (natural + cardinality-based)
|
|
1276
|
+
con.rle("mytable", "auto")
|
|
1173
1277
|
|
|
1174
|
-
|
|
1175
|
-
|
|
1176
|
-
|
|
1177
|
-
|
|
1278
|
+
# Advanced optimization (greedy incremental search)
|
|
1279
|
+
con.rle("mytable", "advanced")
|
|
1280
|
+
|
|
1281
|
+
# Test specific column ordering
|
|
1282
|
+
con.rle("mytable", ["date", "duid"])
|
|
1283
|
+
con.rle("mytable", ["cutoff", "time", "DUID", "date"])
|
|
1178
1284
|
|
|
1285
|
+
# Advanced with custom depth
|
|
1286
|
+
con.rle("mytable", "advanced", max_ordering_depth=4)
|
|
1287
|
+
|
|
1288
|
+
# Analyze table from different schema
|
|
1289
|
+
con.rle("otherschema.mytable", "auto")
|
|
1290
|
+
|
|
1291
|
+
# Custom thresholds for small tables
|
|
1292
|
+
con.rle("mytable", "auto", max_cardinality_pct=0.05)
|
|
1293
|
+
|
|
1294
|
+
# Limit rows for testing
|
|
1295
|
+
con.rle("mytable", "auto", limit=10000)
|
|
1296
|
+
"""
|
|
1297
|
+
from .rle import (
|
|
1298
|
+
calculate_cardinality_ratio,
|
|
1299
|
+
test_column_orderings_smart,
|
|
1300
|
+
calculate_rle_for_columns
|
|
1301
|
+
)
|
|
1302
|
+
from deltalake import DeltaTable
|
|
1303
|
+
|
|
1304
|
+
# Parse table name and construct path
|
|
1305
|
+
if table_name is None:
|
|
1306
|
+
if mode != "summary":
|
|
1307
|
+
print("⚠️ Table name is required for 'smart' and 'full' modes")
|
|
1308
|
+
return None
|
|
1309
|
+
# TODO: Implement all-tables summary
|
|
1310
|
+
print("⚠️ All-tables summary not yet implemented. Please specify a table name.")
|
|
1179
1311
|
return None
|
|
1312
|
+
|
|
1313
|
+
# Parse schema.table or just table
|
|
1314
|
+
if '.' in table_name:
|
|
1315
|
+
schema_name, tbl = table_name.split('.', 1)
|
|
1316
|
+
else:
|
|
1317
|
+
schema_name = self.schema
|
|
1318
|
+
tbl = table_name
|
|
1319
|
+
|
|
1320
|
+
# Construct the full table path using the same logic as get_stats
|
|
1321
|
+
table_path = f"{self.table_base_url}{schema_name}/{tbl}"
|
|
1322
|
+
|
|
1323
|
+
# Verify table exists and is not empty
|
|
1324
|
+
print(f"📊 Analyzing table: {schema_name}.{tbl}")
|
|
1325
|
+
|
|
1326
|
+
try:
|
|
1327
|
+
dt = DeltaTable(table_path)
|
|
1328
|
+
delta_files = dt.files()
|
|
1180
1329
|
|
|
1181
|
-
|
|
1330
|
+
if not delta_files:
|
|
1331
|
+
print("⚠️ Table is empty (no files)")
|
|
1332
|
+
return None
|
|
1333
|
+
|
|
1334
|
+
except Exception as e:
|
|
1335
|
+
print(f"❌ Error accessing Delta table: {e}")
|
|
1182
1336
|
return None
|
|
1337
|
+
|
|
1338
|
+
# Check if mode is a list of columns (custom ordering)
|
|
1339
|
+
if isinstance(mode, list):
|
|
1340
|
+
# User wants to test a specific column ordering
|
|
1341
|
+
print(f"Testing custom column ordering: {', '.join(mode)}")
|
|
1342
|
+
|
|
1343
|
+
# Calculate cardinality for NDV values
|
|
1344
|
+
card_stats = calculate_cardinality_ratio(self.con, table_name if table_name else f"delta_scan('{table_path}')", is_parquet=False)
|
|
1345
|
+
|
|
1346
|
+
# Calculate RLE for the specified ordering
|
|
1347
|
+
rle_counts = calculate_rle_for_columns(self.con, table_path, mode, limit)
|
|
1348
|
+
|
|
1349
|
+
total_rle_all = sum(rle_counts.values())
|
|
1350
|
+
|
|
1351
|
+
print(f"\nResults:")
|
|
1352
|
+
print(f" Custom ordering: [{', '.join(mode)}]")
|
|
1353
|
+
print(f" Total RLE (all columns): {total_rle_all:,} runs")
|
|
1354
|
+
|
|
1355
|
+
# Return as DataFrame for consistency
|
|
1356
|
+
import pandas as pd
|
|
1357
|
+
results = [{
|
|
1358
|
+
'schema': schema_name,
|
|
1359
|
+
'table': tbl,
|
|
1360
|
+
'sort_order': 'custom',
|
|
1361
|
+
'columns_used': ', '.join(mode),
|
|
1362
|
+
'total_rle_all': total_rle_all,
|
|
1363
|
+
**rle_counts
|
|
1364
|
+
}]
|
|
1365
|
+
|
|
1366
|
+
df = pd.DataFrame(results)
|
|
1367
|
+
|
|
1368
|
+
# Transform to long format
|
|
1369
|
+
long_format_results = []
|
|
1370
|
+
|
|
1371
|
+
for _, row in df.iterrows():
|
|
1372
|
+
schema_val = row['schema']
|
|
1373
|
+
table_val = row['table']
|
|
1374
|
+
sort_order = row['sort_order']
|
|
1375
|
+
columns_used = row['columns_used']
|
|
1376
|
+
total_rle_all_val = row['total_rle_all']
|
|
1377
|
+
|
|
1378
|
+
# Get all column names except metadata columns
|
|
1379
|
+
metadata_cols = ['schema', 'table', 'sort_order', 'columns_used', 'total_rle_all']
|
|
1380
|
+
data_columns = [col for col in df.columns if col not in metadata_cols]
|
|
1381
|
+
|
|
1382
|
+
# Get total rows from card_stats if available
|
|
1383
|
+
total_rows = card_stats[data_columns[0]]['total_rows'] if card_stats and data_columns else None
|
|
1384
|
+
|
|
1385
|
+
# Parse the columns_used to get ordering
|
|
1386
|
+
sort_columns_list = [c.strip() for c in columns_used.split(',')]
|
|
1387
|
+
|
|
1388
|
+
# Create one row per data column
|
|
1389
|
+
for col in data_columns:
|
|
1390
|
+
rle_value = row[col]
|
|
1391
|
+
|
|
1392
|
+
# Get NDV from card_stats
|
|
1393
|
+
ndv_value = card_stats[col]['distinct_values'] if card_stats and col in card_stats else None
|
|
1394
|
+
|
|
1395
|
+
# Determine if column was included in the sort and its position
|
|
1396
|
+
is_in_sort = col in sort_columns_list
|
|
1397
|
+
order_position = sort_columns_list.index(col) + 1 if is_in_sort else None
|
|
1398
|
+
comment = '' if is_in_sort else 'not included in the sort'
|
|
1399
|
+
|
|
1400
|
+
long_format_results.append({
|
|
1401
|
+
'schema': schema_val,
|
|
1402
|
+
'table': table_val,
|
|
1403
|
+
'sort_type': sort_order,
|
|
1404
|
+
'column': col,
|
|
1405
|
+
'order': order_position,
|
|
1406
|
+
'RLE': rle_value,
|
|
1407
|
+
'NDV': ndv_value,
|
|
1408
|
+
'total_rows': total_rows,
|
|
1409
|
+
'total_RLE': total_rle_all_val,
|
|
1410
|
+
'comments': comment
|
|
1411
|
+
})
|
|
1412
|
+
|
|
1413
|
+
long_df = pd.DataFrame(long_format_results)
|
|
1414
|
+
|
|
1415
|
+
return long_df
|
|
1416
|
+
|
|
1417
|
+
# All modes now use test_column_orderings_smart with the mode parameter
|
|
1418
|
+
return test_column_orderings_smart(
|
|
1419
|
+
self.con,
|
|
1420
|
+
table_path,
|
|
1421
|
+
table_name=table_name, # Pass table name for cardinality calculation on full dataset
|
|
1422
|
+
mode=mode,
|
|
1423
|
+
limit=limit,
|
|
1424
|
+
min_distinct_threshold=min_distinct_threshold,
|
|
1425
|
+
max_cardinality_pct=max_cardinality_pct,
|
|
1426
|
+
max_ordering_depth=max_ordering_depth,
|
|
1427
|
+
schema_name=schema_name,
|
|
1428
|
+
table_display_name=tbl
|
|
1429
|
+
)
|
|
1183
1430
|
|
|
1184
1431
|
def close(self):
|
|
1185
1432
|
"""Close DuckDB connection"""
|
|
1433
|
+
|
|
1186
1434
|
if self.con:
|
|
1187
1435
|
self.con.close()
|
|
1188
1436
|
print("Connection closed")
|
|
1189
1437
|
|
|
1190
1438
|
|
|
1191
|
-
class WorkspaceConnection:
|
|
1439
|
+
class WorkspaceConnection(WorkspaceOperationsMixin):
|
|
1192
1440
|
"""
|
|
1193
1441
|
Simple workspace connection for lakehouse management operations.
|
|
1194
1442
|
"""
|
|
@@ -1428,23 +1676,4 @@ class WorkspaceConnection:
|
|
|
1428
1676
|
print(f"❌ Error downloading semantic model: {e}")
|
|
1429
1677
|
import traceback
|
|
1430
1678
|
traceback.print_exc()
|
|
1431
|
-
return None
|
|
1432
|
-
|
|
1433
|
-
def _get_workspace_id_by_name(self, token: str, workspace_name: str) -> Optional[str]:
|
|
1434
|
-
"""Helper method to get workspace ID from name"""
|
|
1435
|
-
try:
|
|
1436
|
-
url = "https://api.fabric.microsoft.com/v1/workspaces"
|
|
1437
|
-
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}
|
|
1438
|
-
|
|
1439
|
-
response = requests.get(url, headers=headers)
|
|
1440
|
-
response.raise_for_status()
|
|
1441
|
-
|
|
1442
|
-
workspaces = response.json().get("value", [])
|
|
1443
|
-
for workspace in workspaces:
|
|
1444
|
-
if workspace.get("displayName") == workspace_name:
|
|
1445
|
-
return workspace.get("id")
|
|
1446
|
-
|
|
1447
|
-
return None
|
|
1448
|
-
|
|
1449
|
-
except Exception:
|
|
1450
1679
|
return None
|