duckdb 1.5.0.dev86__cp314-cp314-macosx_10_15_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of duckdb might be problematic. Click here for more details.
- _duckdb-stubs/__init__.pyi +1443 -0
- _duckdb-stubs/_func.pyi +46 -0
- _duckdb-stubs/_sqltypes.pyi +75 -0
- _duckdb.cpython-314-darwin.so +0 -0
- adbc_driver_duckdb/__init__.py +50 -0
- adbc_driver_duckdb/dbapi.py +115 -0
- duckdb/__init__.py +381 -0
- duckdb/_dbapi_type_object.py +231 -0
- duckdb/_version.py +22 -0
- duckdb/bytes_io_wrapper.py +69 -0
- duckdb/experimental/__init__.py +3 -0
- duckdb/experimental/spark/LICENSE +260 -0
- duckdb/experimental/spark/__init__.py +6 -0
- duckdb/experimental/spark/_globals.py +77 -0
- duckdb/experimental/spark/_typing.py +46 -0
- duckdb/experimental/spark/conf.py +46 -0
- duckdb/experimental/spark/context.py +180 -0
- duckdb/experimental/spark/errors/__init__.py +70 -0
- duckdb/experimental/spark/errors/error_classes.py +918 -0
- duckdb/experimental/spark/errors/exceptions/__init__.py +16 -0
- duckdb/experimental/spark/errors/exceptions/base.py +168 -0
- duckdb/experimental/spark/errors/utils.py +111 -0
- duckdb/experimental/spark/exception.py +18 -0
- duckdb/experimental/spark/sql/__init__.py +7 -0
- duckdb/experimental/spark/sql/_typing.py +86 -0
- duckdb/experimental/spark/sql/catalog.py +79 -0
- duckdb/experimental/spark/sql/column.py +361 -0
- duckdb/experimental/spark/sql/conf.py +24 -0
- duckdb/experimental/spark/sql/dataframe.py +1389 -0
- duckdb/experimental/spark/sql/functions.py +6195 -0
- duckdb/experimental/spark/sql/group.py +424 -0
- duckdb/experimental/spark/sql/readwriter.py +435 -0
- duckdb/experimental/spark/sql/session.py +297 -0
- duckdb/experimental/spark/sql/streaming.py +36 -0
- duckdb/experimental/spark/sql/type_utils.py +107 -0
- duckdb/experimental/spark/sql/types.py +1239 -0
- duckdb/experimental/spark/sql/udf.py +37 -0
- duckdb/filesystem.py +33 -0
- duckdb/func/__init__.py +3 -0
- duckdb/functional/__init__.py +13 -0
- duckdb/polars_io.py +284 -0
- duckdb/py.typed +0 -0
- duckdb/query_graph/__main__.py +358 -0
- duckdb/sqltypes/__init__.py +63 -0
- duckdb/typing/__init__.py +71 -0
- duckdb/udf.py +24 -0
- duckdb/value/__init__.py +1 -0
- duckdb/value/constant/__init__.py +270 -0
- duckdb-1.5.0.dev86.dist-info/METADATA +88 -0
- duckdb-1.5.0.dev86.dist-info/RECORD +52 -0
- duckdb-1.5.0.dev86.dist-info/WHEEL +6 -0
- duckdb-1.5.0.dev86.dist-info/licenses/LICENSE +7 -0
|
@@ -0,0 +1,424 @@
|
|
|
1
|
+
# # noqa: D100
|
|
2
|
+
# Licensed to the Apache Software Foundation (ASF) under one or more
|
|
3
|
+
# contributor license agreements. See the NOTICE file distributed with
|
|
4
|
+
# this work for additional information regarding copyright ownership.
|
|
5
|
+
# The ASF licenses this file to You under the Apache License, Version 2.0
|
|
6
|
+
# (the "License"); you may not use this file except in compliance with
|
|
7
|
+
# the License. You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
#
|
|
17
|
+
|
|
18
|
+
from typing import TYPE_CHECKING, Callable, Union, overload
|
|
19
|
+
|
|
20
|
+
from ..exception import ContributionsAcceptedError
|
|
21
|
+
from .column import Column
|
|
22
|
+
from .dataframe import DataFrame
|
|
23
|
+
from .functions import _to_column_expr
|
|
24
|
+
from .types import NumericType
|
|
25
|
+
|
|
26
|
+
# Only import symbols needed for type checking if something is type checking
|
|
27
|
+
if TYPE_CHECKING:
|
|
28
|
+
from ._typing import ColumnOrName
|
|
29
|
+
from .session import SparkSession
|
|
30
|
+
|
|
31
|
+
__all__ = ["GroupedData", "Grouping"]
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def _api_internal(self: "GroupedData", name: str, *cols: str) -> DataFrame:
|
|
35
|
+
expressions = ",".join(list(cols))
|
|
36
|
+
group_by = str(self._grouping) if self._grouping else ""
|
|
37
|
+
projections = self._grouping.get_columns()
|
|
38
|
+
jdf = self._df.relation.apply(
|
|
39
|
+
function_name=name, # aggregate function
|
|
40
|
+
function_aggr=expressions, # inputs to aggregate
|
|
41
|
+
group_expr=group_by, # groups
|
|
42
|
+
projected_columns=projections, # projections
|
|
43
|
+
)
|
|
44
|
+
return DataFrame(jdf, self.session)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def df_varargs_api(f: Callable[..., DataFrame]) -> Callable[..., DataFrame]:
|
|
48
|
+
def _api(self: "GroupedData", *cols: str) -> DataFrame:
|
|
49
|
+
name = f.__name__
|
|
50
|
+
return _api_internal(self, name, *cols)
|
|
51
|
+
|
|
52
|
+
_api.__name__ = f.__name__
|
|
53
|
+
_api.__doc__ = f.__doc__
|
|
54
|
+
return _api
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
class Grouping: # noqa: D101
|
|
58
|
+
def __init__(self, *cols: "ColumnOrName", **kwargs) -> None: # noqa: D107
|
|
59
|
+
self._type = ""
|
|
60
|
+
self._cols = [_to_column_expr(x) for x in cols]
|
|
61
|
+
if "special" in kwargs:
|
|
62
|
+
special = kwargs["special"]
|
|
63
|
+
accepted_special = ["cube", "rollup"]
|
|
64
|
+
assert special in accepted_special
|
|
65
|
+
self._type = special
|
|
66
|
+
|
|
67
|
+
def get_columns(self) -> str: # noqa: D102
|
|
68
|
+
columns = ",".join([str(x) for x in self._cols])
|
|
69
|
+
return columns
|
|
70
|
+
|
|
71
|
+
def __str__(self) -> str: # noqa: D105
|
|
72
|
+
columns = self.get_columns()
|
|
73
|
+
if self._type:
|
|
74
|
+
return self._type + "(" + columns + ")"
|
|
75
|
+
return columns
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class GroupedData:
|
|
79
|
+
"""A set of methods for aggregations on a :class:`DataFrame`,
|
|
80
|
+
created by :func:`DataFrame.groupBy`.
|
|
81
|
+
|
|
82
|
+
""" # noqa: D205
|
|
83
|
+
|
|
84
|
+
def __init__(self, grouping: Grouping, df: DataFrame) -> None: # noqa: D107
|
|
85
|
+
self._grouping = grouping
|
|
86
|
+
self._df = df
|
|
87
|
+
self.session: SparkSession = df.session
|
|
88
|
+
|
|
89
|
+
def __repr__(self) -> str: # noqa: D105
|
|
90
|
+
return str(self._df)
|
|
91
|
+
|
|
92
|
+
def count(self) -> DataFrame:
|
|
93
|
+
"""Counts the number of records for each group.
|
|
94
|
+
|
|
95
|
+
Examples:
|
|
96
|
+
--------
|
|
97
|
+
>>> df = spark.createDataFrame(
|
|
98
|
+
... [(2, "Alice"), (3, "Alice"), (5, "Bob"), (10, "Bob")], ["age", "name"]
|
|
99
|
+
... )
|
|
100
|
+
>>> df.show()
|
|
101
|
+
+---+-----+
|
|
102
|
+
|age| name|
|
|
103
|
+
+---+-----+
|
|
104
|
+
| 2|Alice|
|
|
105
|
+
| 3|Alice|
|
|
106
|
+
| 5| Bob|
|
|
107
|
+
| 10| Bob|
|
|
108
|
+
+---+-----+
|
|
109
|
+
|
|
110
|
+
Group-by name, and count each group.
|
|
111
|
+
|
|
112
|
+
>>> df.groupBy(df.name).count().sort("name").show()
|
|
113
|
+
+-----+-----+
|
|
114
|
+
| name|count|
|
|
115
|
+
+-----+-----+
|
|
116
|
+
|Alice| 2|
|
|
117
|
+
| Bob| 2|
|
|
118
|
+
+-----+-----+
|
|
119
|
+
"""
|
|
120
|
+
return _api_internal(self, "count").withColumnRenamed("count_star()", "count")
|
|
121
|
+
|
|
122
|
+
@df_varargs_api
|
|
123
|
+
def mean(self, *cols: str) -> DataFrame:
|
|
124
|
+
"""Computes average values for each numeric columns for each group.
|
|
125
|
+
|
|
126
|
+
:func:`mean` is an alias for :func:`avg`.
|
|
127
|
+
|
|
128
|
+
Parameters
|
|
129
|
+
----------
|
|
130
|
+
cols : str
|
|
131
|
+
column names. Non-numeric columns are ignored.
|
|
132
|
+
"""
|
|
133
|
+
|
|
134
|
+
def avg(self, *cols: str) -> DataFrame:
|
|
135
|
+
"""Computes average values for each numeric columns for each group.
|
|
136
|
+
|
|
137
|
+
:func:`mean` is an alias for :func:`avg`.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
cols : str
|
|
142
|
+
column names. Non-numeric columns are ignored.
|
|
143
|
+
|
|
144
|
+
Examples:
|
|
145
|
+
--------
|
|
146
|
+
>>> df = spark.createDataFrame(
|
|
147
|
+
... [(2, "Alice", 80), (3, "Alice", 100), (5, "Bob", 120), (10, "Bob", 140)],
|
|
148
|
+
... ["age", "name", "height"],
|
|
149
|
+
... )
|
|
150
|
+
>>> df.show()
|
|
151
|
+
+---+-----+------+
|
|
152
|
+
|age| name|height|
|
|
153
|
+
+---+-----+------+
|
|
154
|
+
| 2|Alice| 80|
|
|
155
|
+
| 3|Alice| 100|
|
|
156
|
+
| 5| Bob| 120|
|
|
157
|
+
| 10| Bob| 140|
|
|
158
|
+
+---+-----+------+
|
|
159
|
+
|
|
160
|
+
Group-by name, and calculate the mean of the age in each group.
|
|
161
|
+
|
|
162
|
+
>>> df.groupBy("name").avg("age").sort("name").show()
|
|
163
|
+
+-----+--------+
|
|
164
|
+
| name|avg(age)|
|
|
165
|
+
+-----+--------+
|
|
166
|
+
|Alice| 2.5|
|
|
167
|
+
| Bob| 7.5|
|
|
168
|
+
+-----+--------+
|
|
169
|
+
|
|
170
|
+
Calculate the mean of the age and height in all data.
|
|
171
|
+
|
|
172
|
+
>>> df.groupBy().avg("age", "height").show()
|
|
173
|
+
+--------+-----------+
|
|
174
|
+
|avg(age)|avg(height)|
|
|
175
|
+
+--------+-----------+
|
|
176
|
+
| 5.0| 110.0|
|
|
177
|
+
+--------+-----------+
|
|
178
|
+
"""
|
|
179
|
+
columns = list(cols)
|
|
180
|
+
if len(columns) == 0:
|
|
181
|
+
schema = self._df.schema
|
|
182
|
+
# Take only the numeric types of the relation
|
|
183
|
+
columns: list[str] = [x.name for x in schema.fields if isinstance(x.dataType, NumericType)]
|
|
184
|
+
return _api_internal(self, "avg", *columns)
|
|
185
|
+
|
|
186
|
+
@df_varargs_api
|
|
187
|
+
def max(self, *cols: str) -> DataFrame:
|
|
188
|
+
"""Computes the max value for each numeric columns for each group.
|
|
189
|
+
|
|
190
|
+
Examples:
|
|
191
|
+
--------
|
|
192
|
+
>>> df = spark.createDataFrame(
|
|
193
|
+
... [(2, "Alice", 80), (3, "Alice", 100), (5, "Bob", 120), (10, "Bob", 140)],
|
|
194
|
+
... ["age", "name", "height"],
|
|
195
|
+
... )
|
|
196
|
+
>>> df.show()
|
|
197
|
+
+---+-----+------+
|
|
198
|
+
|age| name|height|
|
|
199
|
+
+---+-----+------+
|
|
200
|
+
| 2|Alice| 80|
|
|
201
|
+
| 3|Alice| 100|
|
|
202
|
+
| 5| Bob| 120|
|
|
203
|
+
| 10| Bob| 140|
|
|
204
|
+
+---+-----+------+
|
|
205
|
+
|
|
206
|
+
Group-by name, and calculate the max of the age in each group.
|
|
207
|
+
|
|
208
|
+
>>> df.groupBy("name").max("age").sort("name").show()
|
|
209
|
+
+-----+--------+
|
|
210
|
+
| name|max(age)|
|
|
211
|
+
+-----+--------+
|
|
212
|
+
|Alice| 3|
|
|
213
|
+
| Bob| 10|
|
|
214
|
+
+-----+--------+
|
|
215
|
+
|
|
216
|
+
Calculate the max of the age and height in all data.
|
|
217
|
+
|
|
218
|
+
>>> df.groupBy().max("age", "height").show()
|
|
219
|
+
+--------+-----------+
|
|
220
|
+
|max(age)|max(height)|
|
|
221
|
+
+--------+-----------+
|
|
222
|
+
| 10| 140|
|
|
223
|
+
+--------+-----------+
|
|
224
|
+
"""
|
|
225
|
+
|
|
226
|
+
@df_varargs_api
|
|
227
|
+
def min(self, *cols: str) -> DataFrame:
|
|
228
|
+
"""Computes the min value for each numeric column for each group.
|
|
229
|
+
|
|
230
|
+
Parameters
|
|
231
|
+
----------
|
|
232
|
+
cols : str
|
|
233
|
+
column names. Non-numeric columns are ignored.
|
|
234
|
+
|
|
235
|
+
Examples:
|
|
236
|
+
--------
|
|
237
|
+
>>> df = spark.createDataFrame(
|
|
238
|
+
... [(2, "Alice", 80), (3, "Alice", 100), (5, "Bob", 120), (10, "Bob", 140)],
|
|
239
|
+
... ["age", "name", "height"],
|
|
240
|
+
... )
|
|
241
|
+
>>> df.show()
|
|
242
|
+
+---+-----+------+
|
|
243
|
+
|age| name|height|
|
|
244
|
+
+---+-----+------+
|
|
245
|
+
| 2|Alice| 80|
|
|
246
|
+
| 3|Alice| 100|
|
|
247
|
+
| 5| Bob| 120|
|
|
248
|
+
| 10| Bob| 140|
|
|
249
|
+
+---+-----+------+
|
|
250
|
+
|
|
251
|
+
Group-by name, and calculate the min of the age in each group.
|
|
252
|
+
|
|
253
|
+
>>> df.groupBy("name").min("age").sort("name").show()
|
|
254
|
+
+-----+--------+
|
|
255
|
+
| name|min(age)|
|
|
256
|
+
+-----+--------+
|
|
257
|
+
|Alice| 2|
|
|
258
|
+
| Bob| 5|
|
|
259
|
+
+-----+--------+
|
|
260
|
+
|
|
261
|
+
Calculate the min of the age and height in all data.
|
|
262
|
+
|
|
263
|
+
>>> df.groupBy().min("age", "height").show()
|
|
264
|
+
+--------+-----------+
|
|
265
|
+
|min(age)|min(height)|
|
|
266
|
+
+--------+-----------+
|
|
267
|
+
| 2| 80|
|
|
268
|
+
+--------+-----------+
|
|
269
|
+
"""
|
|
270
|
+
|
|
271
|
+
@df_varargs_api
|
|
272
|
+
def sum(self, *cols: str) -> DataFrame:
|
|
273
|
+
"""Computes the sum for each numeric columns for each group.
|
|
274
|
+
|
|
275
|
+
Parameters
|
|
276
|
+
----------
|
|
277
|
+
cols : str
|
|
278
|
+
column names. Non-numeric columns are ignored.
|
|
279
|
+
|
|
280
|
+
Examples:
|
|
281
|
+
--------
|
|
282
|
+
>>> df = spark.createDataFrame(
|
|
283
|
+
... [(2, "Alice", 80), (3, "Alice", 100), (5, "Bob", 120), (10, "Bob", 140)],
|
|
284
|
+
... ["age", "name", "height"],
|
|
285
|
+
... )
|
|
286
|
+
>>> df.show()
|
|
287
|
+
+---+-----+------+
|
|
288
|
+
|age| name|height|
|
|
289
|
+
+---+-----+------+
|
|
290
|
+
| 2|Alice| 80|
|
|
291
|
+
| 3|Alice| 100|
|
|
292
|
+
| 5| Bob| 120|
|
|
293
|
+
| 10| Bob| 140|
|
|
294
|
+
+---+-----+------+
|
|
295
|
+
|
|
296
|
+
Group-by name, and calculate the sum of the age in each group.
|
|
297
|
+
|
|
298
|
+
>>> df.groupBy("name").sum("age").sort("name").show()
|
|
299
|
+
+-----+--------+
|
|
300
|
+
| name|sum(age)|
|
|
301
|
+
+-----+--------+
|
|
302
|
+
|Alice| 5|
|
|
303
|
+
| Bob| 15|
|
|
304
|
+
+-----+--------+
|
|
305
|
+
|
|
306
|
+
Calculate the sum of the age and height in all data.
|
|
307
|
+
|
|
308
|
+
>>> df.groupBy().sum("age", "height").show()
|
|
309
|
+
+--------+-----------+
|
|
310
|
+
|sum(age)|sum(height)|
|
|
311
|
+
+--------+-----------+
|
|
312
|
+
| 20| 440|
|
|
313
|
+
+--------+-----------+
|
|
314
|
+
"""
|
|
315
|
+
|
|
316
|
+
@overload
|
|
317
|
+
def agg(self, *exprs: Column) -> DataFrame: ...
|
|
318
|
+
|
|
319
|
+
@overload
|
|
320
|
+
def agg(self, __exprs: dict[str, str]) -> DataFrame: ... # noqa: PYI063
|
|
321
|
+
|
|
322
|
+
def agg(self, *exprs: Union[Column, dict[str, str]]) -> DataFrame:
|
|
323
|
+
"""Compute aggregates and returns the result as a :class:`DataFrame`.
|
|
324
|
+
|
|
325
|
+
The available aggregate functions can be:
|
|
326
|
+
|
|
327
|
+
1. built-in aggregation functions, such as `avg`, `max`, `min`, `sum`, `count`
|
|
328
|
+
|
|
329
|
+
2. group aggregate pandas UDFs, created with :func:`pyspark.sql.functions.pandas_udf`
|
|
330
|
+
|
|
331
|
+
.. note:: There is no partial aggregation with group aggregate UDFs, i.e.,
|
|
332
|
+
a full shuffle is required. Also, all the data of a group will be loaded into
|
|
333
|
+
memory, so the user should be aware of the potential OOM risk if data is skewed
|
|
334
|
+
and certain groups are too large to fit in memory.
|
|
335
|
+
|
|
336
|
+
.. seealso:: :func:`pyspark.sql.functions.pandas_udf`
|
|
337
|
+
|
|
338
|
+
If ``exprs`` is a single :class:`dict` mapping from string to string, then the key
|
|
339
|
+
is the column to perform aggregation on, and the value is the aggregate function.
|
|
340
|
+
|
|
341
|
+
Alternatively, ``exprs`` can also be a list of aggregate :class:`Column` expressions.
|
|
342
|
+
|
|
343
|
+
.. versionadded:: 1.3.0
|
|
344
|
+
|
|
345
|
+
.. versionchanged:: 3.4.0
|
|
346
|
+
Supports Spark Connect.
|
|
347
|
+
|
|
348
|
+
Parameters
|
|
349
|
+
----------
|
|
350
|
+
exprs : dict
|
|
351
|
+
a dict mapping from column name (string) to aggregate functions (string),
|
|
352
|
+
or a list of :class:`Column`.
|
|
353
|
+
|
|
354
|
+
Notes:
|
|
355
|
+
-----
|
|
356
|
+
Built-in aggregation functions and group aggregate pandas UDFs cannot be mixed
|
|
357
|
+
in a single call to this function.
|
|
358
|
+
|
|
359
|
+
Examples:
|
|
360
|
+
--------
|
|
361
|
+
>>> from pyspark.sql import functions as F
|
|
362
|
+
>>> from pyspark.sql.functions import pandas_udf, PandasUDFType
|
|
363
|
+
>>> df = spark.createDataFrame(
|
|
364
|
+
... [(2, "Alice"), (3, "Alice"), (5, "Bob"), (10, "Bob")], ["age", "name"]
|
|
365
|
+
... )
|
|
366
|
+
>>> df.show()
|
|
367
|
+
+---+-----+
|
|
368
|
+
|age| name|
|
|
369
|
+
+---+-----+
|
|
370
|
+
| 2|Alice|
|
|
371
|
+
| 3|Alice|
|
|
372
|
+
| 5| Bob|
|
|
373
|
+
| 10| Bob|
|
|
374
|
+
+---+-----+
|
|
375
|
+
|
|
376
|
+
Group-by name, and count each group.
|
|
377
|
+
|
|
378
|
+
>>> df.groupBy(df.name)
|
|
379
|
+
GroupedData[grouping...: [name...], value: [age: bigint, name: string], type: GroupBy]
|
|
380
|
+
|
|
381
|
+
>>> df.groupBy(df.name).agg({"*": "count"}).sort("name").show()
|
|
382
|
+
+-----+--------+
|
|
383
|
+
| name|count(1)|
|
|
384
|
+
+-----+--------+
|
|
385
|
+
|Alice| 2|
|
|
386
|
+
| Bob| 2|
|
|
387
|
+
+-----+--------+
|
|
388
|
+
|
|
389
|
+
Group-by name, and calculate the minimum age.
|
|
390
|
+
|
|
391
|
+
>>> df.groupBy(df.name).agg(F.min(df.age)).sort("name").show()
|
|
392
|
+
+-----+--------+
|
|
393
|
+
| name|min(age)|
|
|
394
|
+
+-----+--------+
|
|
395
|
+
|Alice| 2|
|
|
396
|
+
| Bob| 5|
|
|
397
|
+
+-----+--------+
|
|
398
|
+
|
|
399
|
+
Same as above but uses pandas UDF.
|
|
400
|
+
|
|
401
|
+
>>> @pandas_udf("int", PandasUDFType.GROUPED_AGG) # doctest: +SKIP
|
|
402
|
+
... def min_udf(v):
|
|
403
|
+
... return v.min()
|
|
404
|
+
>>> df.groupBy(df.name).agg(min_udf(df.age)).sort("name").show() # doctest: +SKIP
|
|
405
|
+
+-----+------------+
|
|
406
|
+
| name|min_udf(age)|
|
|
407
|
+
+-----+------------+
|
|
408
|
+
|Alice| 2|
|
|
409
|
+
| Bob| 5|
|
|
410
|
+
+-----+------------+
|
|
411
|
+
"""
|
|
412
|
+
assert exprs, "exprs should not be empty"
|
|
413
|
+
if len(exprs) == 1 and isinstance(exprs[0], dict):
|
|
414
|
+
raise ContributionsAcceptedError
|
|
415
|
+
else:
|
|
416
|
+
# Columns
|
|
417
|
+
assert all(isinstance(c, Column) for c in exprs), "all exprs should be Column"
|
|
418
|
+
expressions = list(self._grouping._cols)
|
|
419
|
+
expressions.extend([x.expr for x in exprs])
|
|
420
|
+
group_by = str(self._grouping)
|
|
421
|
+
rel = self._df.relation.select(*expressions, groups=group_by)
|
|
422
|
+
return DataFrame(rel, self.session)
|
|
423
|
+
|
|
424
|
+
# TODO: add 'pivot' # noqa: TD002, TD003
|