duckdb 1.4.1.dev135__cp312-cp312-macosx_10_13_universal2.whl → 1.5.0.dev44__cp312-cp312-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of duckdb might be problematic. Click here for more details.

Files changed (57) hide show
  1. _duckdb.cpython-312-darwin.so +0 -0
  2. duckdb/__init__.py +435 -341
  3. duckdb/__init__.pyi +713 -0
  4. duckdb/bytes_io_wrapper.py +9 -12
  5. duckdb/experimental/__init__.py +1 -2
  6. duckdb/experimental/spark/__init__.py +4 -3
  7. duckdb/experimental/spark/_globals.py +8 -8
  8. duckdb/experimental/spark/_typing.py +9 -7
  9. duckdb/experimental/spark/conf.py +15 -16
  10. duckdb/experimental/spark/context.py +44 -60
  11. duckdb/experimental/spark/errors/__init__.py +35 -33
  12. duckdb/experimental/spark/errors/error_classes.py +1 -1
  13. duckdb/experimental/spark/errors/exceptions/__init__.py +1 -1
  14. duckdb/experimental/spark/errors/exceptions/base.py +88 -39
  15. duckdb/experimental/spark/errors/utils.py +16 -11
  16. duckdb/experimental/spark/exception.py +6 -9
  17. duckdb/experimental/spark/sql/__init__.py +5 -5
  18. duckdb/experimental/spark/sql/_typing.py +15 -8
  19. duckdb/experimental/spark/sql/catalog.py +20 -21
  20. duckdb/experimental/spark/sql/column.py +55 -48
  21. duckdb/experimental/spark/sql/conf.py +8 -9
  22. duckdb/experimental/spark/sql/dataframe.py +233 -185
  23. duckdb/experimental/spark/sql/functions.py +1248 -1222
  24. duckdb/experimental/spark/sql/group.py +52 -56
  25. duckdb/experimental/spark/sql/readwriter.py +94 -80
  26. duckdb/experimental/spark/sql/session.py +59 -64
  27. duckdb/experimental/spark/sql/streaming.py +10 -9
  28. duckdb/experimental/spark/sql/type_utils.py +65 -67
  29. duckdb/experimental/spark/sql/types.py +345 -309
  30. duckdb/experimental/spark/sql/udf.py +6 -6
  31. duckdb/filesystem.py +16 -26
  32. duckdb/functional/__init__.py +16 -12
  33. duckdb/functional/__init__.pyi +31 -0
  34. duckdb/polars_io.py +82 -124
  35. duckdb/query_graph/__main__.py +96 -91
  36. duckdb/typing/__init__.py +8 -18
  37. duckdb/typing/__init__.pyi +36 -0
  38. duckdb/udf.py +5 -10
  39. duckdb/value/__init__.py +0 -1
  40. duckdb/value/constant/__init__.py +60 -62
  41. duckdb/value/constant/__init__.pyi +115 -0
  42. duckdb-1.5.0.dev44.dist-info/METADATA +80 -0
  43. duckdb-1.5.0.dev44.dist-info/RECORD +47 -0
  44. _duckdb-stubs/__init__.pyi +0 -1443
  45. _duckdb-stubs/_func.pyi +0 -46
  46. _duckdb-stubs/_sqltypes.pyi +0 -75
  47. adbc_driver_duckdb/__init__.py +0 -50
  48. adbc_driver_duckdb/dbapi.py +0 -115
  49. duckdb/_dbapi_type_object.py +0 -231
  50. duckdb/_version.py +0 -22
  51. duckdb/func/__init__.py +0 -3
  52. duckdb/sqltypes/__init__.py +0 -63
  53. duckdb-1.4.1.dev135.dist-info/METADATA +0 -326
  54. duckdb-1.4.1.dev135.dist-info/RECORD +0 -52
  55. /duckdb/{py.typed → value/__init__.pyi} +0 -0
  56. {duckdb-1.4.1.dev135.dist-info → duckdb-1.5.0.dev44.dist-info}/WHEEL +0 -0
  57. {duckdb-1.4.1.dev135.dist-info → duckdb-1.5.0.dev44.dist-info}/licenses/LICENSE +0 -0
@@ -1,4 +1,4 @@
1
- # https://sparkbyexamples.com/pyspark/pyspark-udf-user-defined-function/ # noqa: D100
1
+ # https://sparkbyexamples.com/pyspark/pyspark-udf-user-defined-function/
2
2
  from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union
3
3
 
4
4
  from .types import DataType
@@ -10,11 +10,11 @@ DataTypeOrString = Union[DataType, str]
10
10
  UserDefinedFunctionLike = TypeVar("UserDefinedFunctionLike")
11
11
 
12
12
 
13
- class UDFRegistration: # noqa: D101
14
- def __init__(self, sparkSession: "SparkSession") -> None: # noqa: D107
13
+ class UDFRegistration:
14
+ def __init__(self, sparkSession: "SparkSession"):
15
15
  self.sparkSession = sparkSession
16
16
 
17
- def register( # noqa: D102
17
+ def register(
18
18
  self,
19
19
  name: str,
20
20
  f: Union[Callable[..., Any], "UserDefinedFunctionLike"],
@@ -22,7 +22,7 @@ class UDFRegistration: # noqa: D101
22
22
  ) -> "UserDefinedFunctionLike":
23
23
  self.sparkSession.conn.create_function(name, f, return_type=returnType)
24
24
 
25
- def registerJavaFunction( # noqa: D102
25
+ def registerJavaFunction(
26
26
  self,
27
27
  name: str,
28
28
  javaClassName: str,
@@ -30,7 +30,7 @@ class UDFRegistration: # noqa: D101
30
30
  ) -> None:
31
31
  raise NotImplementedError
32
32
 
33
- def registerJavaUDAF(self, name: str, javaClassName: str) -> None: # noqa: D102
33
+ def registerJavaUDAF(self, name: str, javaClassName: str) -> None:
34
34
  raise NotImplementedError
35
35
 
36
36
 
duckdb/filesystem.py CHANGED
@@ -1,33 +1,23 @@
1
- """In-memory filesystem to store ephemeral dependencies.
2
-
3
- Warning: Not for external use. May change at any moment. Likely to be made internal.
4
- """
5
-
6
- from __future__ import annotations
7
-
8
- import io
9
- import typing
10
-
11
- from fsspec import AbstractFileSystem
12
- from fsspec.implementations.memory import MemoryFile, MemoryFileSystem
13
-
1
+ from fsspec import filesystem, AbstractFileSystem
2
+ from fsspec.implementations.memory import MemoryFileSystem, MemoryFile
14
3
  from .bytes_io_wrapper import BytesIOWrapper
4
+ from io import TextIOBase
15
5
 
6
+ def is_file_like(obj):
7
+ # We only care that we can read from the file
8
+ return hasattr(obj, "read") and hasattr(obj, "seek")
16
9
 
17
- class ModifiedMemoryFileSystem(MemoryFileSystem):
18
- """In-memory filesystem implementation that uses its own protocol."""
19
10
 
20
- protocol = ("DUCKDB_INTERNAL_OBJECTSTORE",)
11
+ class ModifiedMemoryFileSystem(MemoryFileSystem):
12
+ protocol = ('DUCKDB_INTERNAL_OBJECTSTORE',)
21
13
  # defer to the original implementation that doesn't hardcode the protocol
22
- _strip_protocol: typing.Callable[[str], str] = classmethod(AbstractFileSystem._strip_protocol.__func__) # type: ignore[assignment]
14
+ _strip_protocol = classmethod(AbstractFileSystem._strip_protocol.__func__)
23
15
 
24
- def add_file(self, obj: io.IOBase | BytesIOWrapper | object, path: str) -> None:
25
- """Add a file to the filesystem."""
26
- if not (hasattr(obj, "read") and hasattr(obj, "seek")):
27
- msg = "Can not read from a non file-like object"
28
- raise TypeError(msg)
29
- if isinstance(obj, io.TextIOBase):
30
- # Wrap this so that we can return a bytes object from 'read'
31
- obj = BytesIOWrapper(obj)
16
+ def add_file(self, object, path):
17
+ if not is_file_like(object):
18
+ raise ValueError("Can not read from a non file-like object")
32
19
  path = self._strip_protocol(path)
33
- self.store[path] = MemoryFile(self, path, obj.read())
20
+ if isinstance(object, TextIOBase):
21
+ # Wrap this so that we can return a bytes object from 'read'
22
+ object = BytesIOWrapper(object)
23
+ self.store[path] = MemoryFile(self, path, object.read())
@@ -1,13 +1,17 @@
1
- """DuckDB function constants and types. DEPRECATED: please use `duckdb.func` instead."""
2
-
3
- import warnings
4
-
5
- from duckdb.func import ARROW, DEFAULT, NATIVE, SPECIAL, FunctionNullHandling, PythonUDFType
6
-
7
- __all__ = ["ARROW", "DEFAULT", "NATIVE", "SPECIAL", "FunctionNullHandling", "PythonUDFType"]
8
-
9
- warnings.warn(
10
- "`duckdb.functional` is deprecated and will be removed in a future version. Please use `duckdb.func` instead.",
11
- DeprecationWarning,
12
- stacklevel=2,
1
+ from _duckdb.functional import (
2
+ FunctionNullHandling,
3
+ PythonUDFType,
4
+ SPECIAL,
5
+ DEFAULT,
6
+ NATIVE,
7
+ ARROW
13
8
  )
9
+
10
+ __all__ = [
11
+ "FunctionNullHandling",
12
+ "PythonUDFType",
13
+ "SPECIAL",
14
+ "DEFAULT",
15
+ "NATIVE",
16
+ "ARROW"
17
+ ]
@@ -0,0 +1,31 @@
1
+ from typing import Dict
2
+
3
+ SPECIAL: FunctionNullHandling
4
+ DEFAULT: FunctionNullHandling
5
+
6
+ NATIVE: PythonUDFType
7
+ ARROW: PythonUDFType
8
+
9
+ class FunctionNullHandling:
10
+ DEFAULT: FunctionNullHandling
11
+ SPECIAL: FunctionNullHandling
12
+ def __int__(self) -> int: ...
13
+ def __index__(self) -> int: ...
14
+ @property
15
+ def __members__(self) -> Dict[str, FunctionNullHandling]: ...
16
+ @property
17
+ def name(self) -> str: ...
18
+ @property
19
+ def value(self) -> int: ...
20
+
21
+ class PythonUDFType:
22
+ NATIVE: PythonUDFType
23
+ ARROW: PythonUDFType
24
+ def __int__(self) -> int: ...
25
+ def __index__(self) -> int: ...
26
+ @property
27
+ def __members__(self) -> Dict[str, PythonUDFType]: ...
28
+ @property
29
+ def name(self) -> str: ...
30
+ @property
31
+ def value(self) -> int: ...
duckdb/polars_io.py CHANGED
@@ -1,29 +1,20 @@
1
- from __future__ import annotations # noqa: D100
1
+ import duckdb
2
+ import polars as pl
3
+ from typing import Iterator, Optional
2
4
 
3
- import datetime
5
+ from polars.io.plugins import register_io_source
6
+ from duckdb import SQLExpression
4
7
  import json
5
- import typing
6
8
  from decimal import Decimal
9
+ import datetime
7
10
 
8
- import polars as pl
9
- from polars.io.plugins import register_io_source
10
-
11
- import duckdb
12
-
13
- if typing.TYPE_CHECKING:
14
- from collections.abc import Iterator
15
-
16
- import typing_extensions
17
-
18
- _ExpressionTree: typing_extensions.TypeAlias = typing.Dict[str, typing.Union[str, int, "_ExpressionTree", typing.Any]] # noqa: UP006
19
-
20
-
21
- def _predicate_to_expression(predicate: pl.Expr) -> duckdb.Expression | None:
22
- """Convert a Polars predicate expression to a DuckDB-compatible SQL expression.
23
-
11
+ def _predicate_to_expression(predicate: pl.Expr) -> Optional[SQLExpression]:
12
+ """
13
+ Convert a Polars predicate expression to a DuckDB-compatible SQL expression.
14
+
24
15
  Parameters:
25
16
  predicate (pl.Expr): A Polars expression (e.g., col("foo") > 5)
26
-
17
+
27
18
  Returns:
28
19
  SQLExpression: A DuckDB SQL expression string equivalent.
29
20
  None: If conversion fails.
@@ -34,19 +25,20 @@ def _predicate_to_expression(predicate: pl.Expr) -> duckdb.Expression | None:
34
25
  """
35
26
  # Serialize the Polars expression tree to JSON
36
27
  tree = json.loads(predicate.meta.serialize(format="json"))
37
-
28
+
38
29
  try:
39
30
  # Convert the tree to SQL
40
31
  sql_filter = _pl_tree_to_sql(tree)
41
- return duckdb.SQLExpression(sql_filter)
42
- except Exception:
32
+ return SQLExpression(sql_filter)
33
+ except:
43
34
  # If the conversion fails, we return None
44
35
  return None
45
36
 
46
37
 
47
38
  def _pl_operation_to_sql(op: str) -> str:
48
- """Map Polars binary operation strings to SQL equivalents.
49
-
39
+ """
40
+ Map Polars binary operation strings to SQL equivalents.
41
+
50
42
  Example:
51
43
  >>> _pl_operation_to_sql("Eq")
52
44
  '='
@@ -63,11 +55,12 @@ def _pl_operation_to_sql(op: str) -> str:
63
55
  "Or": "OR",
64
56
  }[op]
65
57
  except KeyError:
66
- raise NotImplementedError(op) # noqa: B904
58
+ raise NotImplementedError(op)
67
59
 
68
60
 
69
61
  def _escape_sql_identifier(identifier: str) -> str:
70
- """Escape SQL identifiers by doubling any double quotes and wrapping in double quotes.
62
+ """
63
+ Escape SQL identifiers by doubling any double quotes and wrapping in double quotes.
71
64
 
72
65
  Example:
73
66
  >>> _escape_sql_identifier('column"name')
@@ -77,15 +70,16 @@ def _escape_sql_identifier(identifier: str) -> str:
77
70
  return f'"{escaped}"'
78
71
 
79
72
 
80
- def _pl_tree_to_sql(tree: _ExpressionTree) -> str:
81
- """Recursively convert a Polars expression tree (as JSON) to a SQL string.
82
-
73
+ def _pl_tree_to_sql(tree: dict) -> str:
74
+ """
75
+ Recursively convert a Polars expression tree (as JSON) to a SQL string.
76
+
83
77
  Parameters:
84
78
  tree (dict): JSON-deserialized expression tree from Polars
85
-
79
+
86
80
  Returns:
87
81
  str: SQL expression string
88
-
82
+
89
83
  Example:
90
84
  Input tree:
91
85
  {
@@ -98,51 +92,36 @@ def _pl_tree_to_sql(tree: _ExpressionTree) -> str:
98
92
  Output: "(foo > 5)"
99
93
  """
100
94
  [node_type] = tree.keys()
95
+ subtree = tree[node_type]
101
96
 
102
97
  if node_type == "BinaryExpr":
103
98
  # Binary expressions: left OP right
104
- bin_expr_tree = tree[node_type]
105
- assert isinstance(bin_expr_tree, dict), f"A {node_type} should be a dict but got {type(bin_expr_tree)}"
106
- lhs, op, rhs = bin_expr_tree["left"], bin_expr_tree["op"], bin_expr_tree["right"]
107
- assert isinstance(lhs, dict), f"LHS of a {node_type} should be a dict but got {type(lhs)}"
108
- assert isinstance(op, str), f"The op of a {node_type} should be a str but got {type(op)}"
109
- assert isinstance(rhs, dict), f"RHS of a {node_type} should be a dict but got {type(rhs)}"
110
- return f"({_pl_tree_to_sql(lhs)} {_pl_operation_to_sql(op)} {_pl_tree_to_sql(rhs)})"
99
+ return (
100
+ "(" +
101
+ " ".join((
102
+ _pl_tree_to_sql(subtree['left']),
103
+ _pl_operation_to_sql(subtree['op']),
104
+ _pl_tree_to_sql(subtree['right'])
105
+ )) +
106
+ ")"
107
+ )
111
108
  if node_type == "Column":
112
109
  # A reference to a column name
113
110
  # Wrap in quotes to handle special characters
114
- col_name = tree[node_type]
115
- assert isinstance(col_name, str), f"The col name of a {node_type} should be a str but got {type(col_name)}"
116
- return _escape_sql_identifier(col_name)
111
+ return _escape_sql_identifier(subtree)
117
112
 
118
113
  if node_type in ("Literal", "Dyn"):
119
114
  # Recursively process dynamic or literal values
120
- val_tree = tree[node_type]
121
- assert isinstance(val_tree, dict), f"A {node_type} should be a dict but got {type(val_tree)}"
122
- return _pl_tree_to_sql(val_tree)
115
+ return _pl_tree_to_sql(subtree)
123
116
 
124
117
  if node_type == "Int":
125
118
  # Direct integer literals
126
- int_literal = tree[node_type]
127
- assert isinstance(int_literal, (int, str)), (
128
- f"The value of an Int should be an int or str but got {type(int_literal)}"
129
- )
130
- return str(int_literal)
119
+ return str(subtree)
131
120
 
132
121
  if node_type == "Function":
133
122
  # Handle boolean functions like IsNull, IsNotNull
134
- func_tree = tree[node_type]
135
- assert isinstance(func_tree, dict), f"A {node_type} should be a dict but got {type(func_tree)}"
136
- inputs = func_tree["input"]
137
- assert isinstance(inputs, list), f"A {node_type} should have a list of dicts as input but got {type(inputs)}"
138
- input_tree = inputs[0]
139
- assert isinstance(input_tree, dict), (
140
- f"A {node_type} should have a list of dicts as input but got {type(input_tree)}"
141
- )
142
- func_dict = func_tree["function"]
143
- assert isinstance(func_dict, dict), (
144
- f"A {node_type} should have a function dict as input but got {type(func_dict)}"
145
- )
123
+ inputs = subtree["input"]
124
+ func_dict = subtree["function"]
146
125
 
147
126
  if "Boolean" in func_dict:
148
127
  func = func_dict["Boolean"]
@@ -152,104 +131,80 @@ def _pl_tree_to_sql(tree: _ExpressionTree) -> str:
152
131
  return f"({arg_sql} IS NULL)"
153
132
  if func == "IsNotNull":
154
133
  return f"({arg_sql} IS NOT NULL)"
155
- msg = f"Boolean function not supported: {func}"
156
- raise NotImplementedError(msg)
134
+ raise NotImplementedError(f"Boolean function not supported: {func}")
157
135
 
158
- msg = f"Unsupported function type: {func_dict}"
159
- raise NotImplementedError(msg)
136
+ raise NotImplementedError(f"Unsupported function type: {func_dict}")
160
137
 
161
138
  if node_type == "Scalar":
162
139
  # Detect format: old style (dtype/value) or new style (direct type key)
163
- scalar_tree = tree[node_type]
164
- assert isinstance(scalar_tree, dict), f"A {node_type} should be a dict but got {type(scalar_tree)}"
165
- if "dtype" in scalar_tree and "value" in scalar_tree:
166
- dtype = str(scalar_tree["dtype"])
167
- value = scalar_tree["value"]
140
+ if "dtype" in subtree and "value" in subtree:
141
+ dtype = str(subtree["dtype"])
142
+ value = subtree["value"]
168
143
  else:
169
144
  # New style: dtype is the single key in the dict
170
- dtype = next(iter(scalar_tree.keys()))
171
- value = scalar_tree
172
- assert isinstance(dtype, str), f"A {node_type} should have a str dtype but got {type(dtype)}"
173
- assert isinstance(value, dict), f"A {node_type} should have a dict value but got {type(value)}"
145
+ dtype = next(iter(subtree.keys()))
146
+ value = subtree
174
147
 
175
148
  # Decimal support
176
149
  if dtype.startswith("{'Decimal'") or dtype == "Decimal":
177
- decimal_value = value["Decimal"]
178
- assert isinstance(decimal_value, list), (
179
- f"A {dtype} should be a two member list but got {type(decimal_value)}"
180
- )
181
- return str(Decimal(decimal_value[0]) / Decimal(10 ** decimal_value[1]))
150
+ decimal_value = value['Decimal']
151
+ decimal_value = Decimal(decimal_value[0]) / Decimal(10 ** decimal_value[1])
152
+ return str(decimal_value)
182
153
 
183
154
  # Datetime with microseconds since epoch
184
155
  if dtype.startswith("{'Datetime'") or dtype == "Datetime":
185
- micros = value["Datetime"]
186
- assert isinstance(micros, list), f"A {dtype} should be a one member list but got {type(micros)}"
187
- dt_timestamp = datetime.datetime.fromtimestamp(micros[0] / 1_000_000, tz=datetime.timezone.utc)
188
- return f"'{dt_timestamp!s}'::TIMESTAMP"
156
+ micros = value['Datetime'][0]
157
+ dt_timestamp = datetime.datetime.fromtimestamp(micros / 1_000_000, tz=datetime.UTC)
158
+ return f"'{str(dt_timestamp)}'::TIMESTAMP"
189
159
 
190
160
  # Match simple numeric/boolean types
191
- if dtype in (
192
- "Int8",
193
- "Int16",
194
- "Int32",
195
- "Int64",
196
- "UInt8",
197
- "UInt16",
198
- "UInt32",
199
- "UInt64",
200
- "Float32",
201
- "Float64",
202
- "Boolean",
203
- ):
161
+ if dtype in ("Int8", "Int16", "Int32", "Int64",
162
+ "UInt8", "UInt16", "UInt32", "UInt64",
163
+ "Float32", "Float64", "Boolean"):
204
164
  return str(value[dtype])
205
165
 
206
166
  # Time type
207
167
  if dtype == "Time":
208
168
  nanoseconds = value["Time"]
209
- assert isinstance(nanoseconds, int), f"A {dtype} should be an int but got {type(nanoseconds)}"
210
169
  seconds = nanoseconds // 1_000_000_000
211
170
  microseconds = (nanoseconds % 1_000_000_000) // 1_000
212
- dt_time = (datetime.datetime.min + datetime.timedelta(seconds=seconds, microseconds=microseconds)).time()
171
+ dt_time = (datetime.datetime.min + datetime.timedelta(
172
+ seconds=seconds, microseconds=microseconds
173
+ )).time()
213
174
  return f"'{dt_time}'::TIME"
214
175
 
215
176
  # Date type
216
177
  if dtype == "Date":
217
178
  days_since_epoch = value["Date"]
218
- assert isinstance(days_since_epoch, (float, int)), (
219
- f"A {dtype} should be a number but got {type(days_since_epoch)}"
220
- )
221
179
  date = datetime.date(1970, 1, 1) + datetime.timedelta(days=days_since_epoch)
222
180
  return f"'{date}'::DATE"
223
181
 
224
182
  # Binary type
225
183
  if dtype == "Binary":
226
- bin_value = value["Binary"]
227
- assert isinstance(bin_value, list), f"A {dtype} should be a list but got {type(bin_value)}"
228
- binary_data = bytes(bin_value)
229
- escaped = "".join(f"\\x{b:02x}" for b in binary_data)
184
+ binary_data = bytes(value["Binary"])
185
+ escaped = ''.join(f'\\x{b:02x}' for b in binary_data)
230
186
  return f"'{escaped}'::BLOB"
231
187
 
232
188
  # String type
233
189
  if dtype == "String" or dtype == "StringOwned":
234
190
  # Some new formats may store directly under StringOwned
235
- string_val: object | None = value.get("StringOwned", value.get("String", None))
191
+ string_val = value.get("StringOwned", value.get("String", None))
236
192
  return f"'{string_val}'"
237
193
 
238
- msg = f"Unsupported scalar type {dtype!s}, with value {value}"
239
- raise NotImplementedError(msg)
240
194
 
241
- msg = f"Node type: {node_type} is not implemented. {tree[node_type]}"
242
- raise NotImplementedError(msg)
195
+ raise NotImplementedError(f"Unsupported scalar type {str(dtype)}, with value {value}")
243
196
 
197
+ raise NotImplementedError(f"Node type: {node_type} is not implemented. {subtree}")
244
198
 
245
199
  def duckdb_source(relation: duckdb.DuckDBPyRelation, schema: pl.schema.Schema) -> pl.LazyFrame:
246
- """A polars IO plugin for DuckDB."""
247
-
200
+ """
201
+ A polars IO plugin for DuckDB.
202
+ """
248
203
  def source_generator(
249
- with_columns: list[str] | None,
250
- predicate: pl.Expr | None,
251
- n_rows: int | None,
252
- batch_size: int | None,
204
+ with_columns: Optional[list[str]],
205
+ predicate: Optional[pl.Expr],
206
+ n_rows: Optional[int],
207
+ batch_size: Optional[int],
253
208
  ) -> Iterator[pl.DataFrame]:
254
209
  duck_predicate = None
255
210
  relation_final = relation
@@ -268,12 +223,15 @@ def duckdb_source(relation: duckdb.DuckDBPyRelation, schema: pl.schema.Schema) -
268
223
  results = relation_final.fetch_arrow_reader()
269
224
  else:
270
225
  results = relation_final.fetch_arrow_reader(batch_size)
271
-
272
- for record_batch in iter(results.read_next_batch, None):
273
- if predicate is not None and duck_predicate is None:
274
- # We have a predicate, but did not manage to push it down, we fallback here
275
- yield pl.from_arrow(record_batch).filter(predicate) # type: ignore[arg-type,misc]
276
- else:
277
- yield pl.from_arrow(record_batch) # type: ignore[misc]
226
+ while True:
227
+ try:
228
+ record_batch = results.read_next_batch()
229
+ if predicate is not None and duck_predicate is None:
230
+ # We have a predicate, but did not manage to push it down, we fallback here
231
+ yield pl.from_arrow(record_batch).filter(predicate)
232
+ else:
233
+ yield pl.from_arrow(record_batch)
234
+ except StopIteration:
235
+ break
278
236
 
279
237
  return register_io_source(source_generator, schema=schema)