dtlpy 1.115.44__py3-none-any.whl → 1.116.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (238) hide show
  1. dtlpy/__init__.py +491 -491
  2. dtlpy/__version__.py +1 -1
  3. dtlpy/assets/__init__.py +26 -26
  4. dtlpy/assets/code_server/config.yaml +2 -2
  5. dtlpy/assets/code_server/installation.sh +24 -24
  6. dtlpy/assets/code_server/launch.json +13 -13
  7. dtlpy/assets/code_server/settings.json +2 -2
  8. dtlpy/assets/main.py +53 -53
  9. dtlpy/assets/main_partial.py +18 -18
  10. dtlpy/assets/mock.json +11 -11
  11. dtlpy/assets/model_adapter.py +83 -83
  12. dtlpy/assets/package.json +61 -61
  13. dtlpy/assets/package_catalog.json +29 -29
  14. dtlpy/assets/package_gitignore +307 -307
  15. dtlpy/assets/service_runners/__init__.py +33 -33
  16. dtlpy/assets/service_runners/converter.py +96 -96
  17. dtlpy/assets/service_runners/multi_method.py +49 -49
  18. dtlpy/assets/service_runners/multi_method_annotation.py +54 -54
  19. dtlpy/assets/service_runners/multi_method_dataset.py +55 -55
  20. dtlpy/assets/service_runners/multi_method_item.py +52 -52
  21. dtlpy/assets/service_runners/multi_method_json.py +52 -52
  22. dtlpy/assets/service_runners/single_method.py +37 -37
  23. dtlpy/assets/service_runners/single_method_annotation.py +43 -43
  24. dtlpy/assets/service_runners/single_method_dataset.py +43 -43
  25. dtlpy/assets/service_runners/single_method_item.py +41 -41
  26. dtlpy/assets/service_runners/single_method_json.py +42 -42
  27. dtlpy/assets/service_runners/single_method_multi_input.py +45 -45
  28. dtlpy/assets/voc_annotation_template.xml +23 -23
  29. dtlpy/caches/base_cache.py +32 -32
  30. dtlpy/caches/cache.py +473 -473
  31. dtlpy/caches/dl_cache.py +201 -201
  32. dtlpy/caches/filesystem_cache.py +89 -89
  33. dtlpy/caches/redis_cache.py +84 -84
  34. dtlpy/dlp/__init__.py +20 -20
  35. dtlpy/dlp/cli_utilities.py +367 -367
  36. dtlpy/dlp/command_executor.py +764 -764
  37. dtlpy/dlp/dlp +1 -1
  38. dtlpy/dlp/dlp.bat +1 -1
  39. dtlpy/dlp/dlp.py +128 -128
  40. dtlpy/dlp/parser.py +651 -651
  41. dtlpy/entities/__init__.py +83 -83
  42. dtlpy/entities/analytic.py +347 -347
  43. dtlpy/entities/annotation.py +1879 -1879
  44. dtlpy/entities/annotation_collection.py +699 -699
  45. dtlpy/entities/annotation_definitions/__init__.py +20 -20
  46. dtlpy/entities/annotation_definitions/base_annotation_definition.py +100 -100
  47. dtlpy/entities/annotation_definitions/box.py +195 -195
  48. dtlpy/entities/annotation_definitions/classification.py +67 -67
  49. dtlpy/entities/annotation_definitions/comparison.py +72 -72
  50. dtlpy/entities/annotation_definitions/cube.py +204 -204
  51. dtlpy/entities/annotation_definitions/cube_3d.py +149 -149
  52. dtlpy/entities/annotation_definitions/description.py +32 -32
  53. dtlpy/entities/annotation_definitions/ellipse.py +124 -124
  54. dtlpy/entities/annotation_definitions/free_text.py +62 -62
  55. dtlpy/entities/annotation_definitions/gis.py +69 -69
  56. dtlpy/entities/annotation_definitions/note.py +139 -139
  57. dtlpy/entities/annotation_definitions/point.py +117 -117
  58. dtlpy/entities/annotation_definitions/polygon.py +182 -182
  59. dtlpy/entities/annotation_definitions/polyline.py +111 -111
  60. dtlpy/entities/annotation_definitions/pose.py +92 -92
  61. dtlpy/entities/annotation_definitions/ref_image.py +86 -86
  62. dtlpy/entities/annotation_definitions/segmentation.py +240 -240
  63. dtlpy/entities/annotation_definitions/subtitle.py +34 -34
  64. dtlpy/entities/annotation_definitions/text.py +85 -85
  65. dtlpy/entities/annotation_definitions/undefined_annotation.py +74 -74
  66. dtlpy/entities/app.py +220 -220
  67. dtlpy/entities/app_module.py +107 -107
  68. dtlpy/entities/artifact.py +174 -174
  69. dtlpy/entities/assignment.py +399 -399
  70. dtlpy/entities/base_entity.py +214 -214
  71. dtlpy/entities/bot.py +113 -113
  72. dtlpy/entities/codebase.py +292 -292
  73. dtlpy/entities/collection.py +38 -38
  74. dtlpy/entities/command.py +169 -169
  75. dtlpy/entities/compute.py +449 -449
  76. dtlpy/entities/dataset.py +1299 -1299
  77. dtlpy/entities/directory_tree.py +44 -44
  78. dtlpy/entities/dpk.py +470 -470
  79. dtlpy/entities/driver.py +235 -235
  80. dtlpy/entities/execution.py +397 -397
  81. dtlpy/entities/feature.py +124 -124
  82. dtlpy/entities/feature_set.py +145 -145
  83. dtlpy/entities/filters.py +798 -798
  84. dtlpy/entities/gis_item.py +107 -107
  85. dtlpy/entities/integration.py +184 -184
  86. dtlpy/entities/item.py +959 -959
  87. dtlpy/entities/label.py +123 -123
  88. dtlpy/entities/links.py +85 -85
  89. dtlpy/entities/message.py +175 -175
  90. dtlpy/entities/model.py +684 -684
  91. dtlpy/entities/node.py +1005 -1005
  92. dtlpy/entities/ontology.py +810 -803
  93. dtlpy/entities/organization.py +287 -287
  94. dtlpy/entities/package.py +657 -657
  95. dtlpy/entities/package_defaults.py +5 -5
  96. dtlpy/entities/package_function.py +185 -185
  97. dtlpy/entities/package_module.py +113 -113
  98. dtlpy/entities/package_slot.py +118 -118
  99. dtlpy/entities/paged_entities.py +299 -299
  100. dtlpy/entities/pipeline.py +624 -624
  101. dtlpy/entities/pipeline_execution.py +279 -279
  102. dtlpy/entities/project.py +394 -394
  103. dtlpy/entities/prompt_item.py +505 -505
  104. dtlpy/entities/recipe.py +301 -301
  105. dtlpy/entities/reflect_dict.py +102 -102
  106. dtlpy/entities/resource_execution.py +138 -138
  107. dtlpy/entities/service.py +963 -963
  108. dtlpy/entities/service_driver.py +117 -117
  109. dtlpy/entities/setting.py +294 -294
  110. dtlpy/entities/task.py +495 -495
  111. dtlpy/entities/time_series.py +143 -143
  112. dtlpy/entities/trigger.py +426 -426
  113. dtlpy/entities/user.py +118 -118
  114. dtlpy/entities/webhook.py +124 -124
  115. dtlpy/examples/__init__.py +19 -19
  116. dtlpy/examples/add_labels.py +135 -135
  117. dtlpy/examples/add_metadata_to_item.py +21 -21
  118. dtlpy/examples/annotate_items_using_model.py +65 -65
  119. dtlpy/examples/annotate_video_using_model_and_tracker.py +75 -75
  120. dtlpy/examples/annotations_convert_to_voc.py +9 -9
  121. dtlpy/examples/annotations_convert_to_yolo.py +9 -9
  122. dtlpy/examples/convert_annotation_types.py +51 -51
  123. dtlpy/examples/converter.py +143 -143
  124. dtlpy/examples/copy_annotations.py +22 -22
  125. dtlpy/examples/copy_folder.py +31 -31
  126. dtlpy/examples/create_annotations.py +51 -51
  127. dtlpy/examples/create_video_annotations.py +83 -83
  128. dtlpy/examples/delete_annotations.py +26 -26
  129. dtlpy/examples/filters.py +113 -113
  130. dtlpy/examples/move_item.py +23 -23
  131. dtlpy/examples/play_video_annotation.py +13 -13
  132. dtlpy/examples/show_item_and_mask.py +53 -53
  133. dtlpy/examples/triggers.py +49 -49
  134. dtlpy/examples/upload_batch_of_items.py +20 -20
  135. dtlpy/examples/upload_items_and_custom_format_annotations.py +55 -55
  136. dtlpy/examples/upload_items_with_modalities.py +43 -43
  137. dtlpy/examples/upload_segmentation_annotations_from_mask_image.py +44 -44
  138. dtlpy/examples/upload_yolo_format_annotations.py +70 -70
  139. dtlpy/exceptions.py +125 -125
  140. dtlpy/miscellaneous/__init__.py +20 -20
  141. dtlpy/miscellaneous/dict_differ.py +95 -95
  142. dtlpy/miscellaneous/git_utils.py +217 -217
  143. dtlpy/miscellaneous/json_utils.py +14 -14
  144. dtlpy/miscellaneous/list_print.py +105 -105
  145. dtlpy/miscellaneous/zipping.py +130 -130
  146. dtlpy/ml/__init__.py +20 -20
  147. dtlpy/ml/base_feature_extractor_adapter.py +27 -27
  148. dtlpy/ml/base_model_adapter.py +1257 -1230
  149. dtlpy/ml/metrics.py +461 -461
  150. dtlpy/ml/predictions_utils.py +274 -274
  151. dtlpy/ml/summary_writer.py +57 -57
  152. dtlpy/ml/train_utils.py +60 -60
  153. dtlpy/new_instance.py +252 -252
  154. dtlpy/repositories/__init__.py +56 -56
  155. dtlpy/repositories/analytics.py +85 -85
  156. dtlpy/repositories/annotations.py +916 -916
  157. dtlpy/repositories/apps.py +383 -383
  158. dtlpy/repositories/artifacts.py +452 -452
  159. dtlpy/repositories/assignments.py +599 -599
  160. dtlpy/repositories/bots.py +213 -213
  161. dtlpy/repositories/codebases.py +559 -559
  162. dtlpy/repositories/collections.py +332 -332
  163. dtlpy/repositories/commands.py +152 -152
  164. dtlpy/repositories/compositions.py +61 -61
  165. dtlpy/repositories/computes.py +439 -439
  166. dtlpy/repositories/datasets.py +1504 -1504
  167. dtlpy/repositories/downloader.py +976 -923
  168. dtlpy/repositories/dpks.py +433 -433
  169. dtlpy/repositories/drivers.py +482 -482
  170. dtlpy/repositories/executions.py +815 -815
  171. dtlpy/repositories/feature_sets.py +226 -226
  172. dtlpy/repositories/features.py +255 -255
  173. dtlpy/repositories/integrations.py +484 -484
  174. dtlpy/repositories/items.py +912 -912
  175. dtlpy/repositories/messages.py +94 -94
  176. dtlpy/repositories/models.py +1000 -1000
  177. dtlpy/repositories/nodes.py +80 -80
  178. dtlpy/repositories/ontologies.py +511 -511
  179. dtlpy/repositories/organizations.py +525 -525
  180. dtlpy/repositories/packages.py +1941 -1941
  181. dtlpy/repositories/pipeline_executions.py +451 -451
  182. dtlpy/repositories/pipelines.py +640 -640
  183. dtlpy/repositories/projects.py +539 -539
  184. dtlpy/repositories/recipes.py +419 -399
  185. dtlpy/repositories/resource_executions.py +137 -137
  186. dtlpy/repositories/schema.py +120 -120
  187. dtlpy/repositories/service_drivers.py +213 -213
  188. dtlpy/repositories/services.py +1704 -1704
  189. dtlpy/repositories/settings.py +339 -339
  190. dtlpy/repositories/tasks.py +1477 -1477
  191. dtlpy/repositories/times_series.py +278 -278
  192. dtlpy/repositories/triggers.py +536 -536
  193. dtlpy/repositories/upload_element.py +257 -257
  194. dtlpy/repositories/uploader.py +661 -661
  195. dtlpy/repositories/webhooks.py +249 -249
  196. dtlpy/services/__init__.py +22 -22
  197. dtlpy/services/aihttp_retry.py +131 -131
  198. dtlpy/services/api_client.py +1785 -1785
  199. dtlpy/services/api_reference.py +40 -40
  200. dtlpy/services/async_utils.py +133 -133
  201. dtlpy/services/calls_counter.py +44 -44
  202. dtlpy/services/check_sdk.py +68 -68
  203. dtlpy/services/cookie.py +115 -115
  204. dtlpy/services/create_logger.py +156 -156
  205. dtlpy/services/events.py +84 -84
  206. dtlpy/services/logins.py +235 -235
  207. dtlpy/services/reporter.py +256 -256
  208. dtlpy/services/service_defaults.py +91 -91
  209. dtlpy/utilities/__init__.py +20 -20
  210. dtlpy/utilities/annotations/__init__.py +16 -16
  211. dtlpy/utilities/annotations/annotation_converters.py +269 -269
  212. dtlpy/utilities/base_package_runner.py +285 -264
  213. dtlpy/utilities/converter.py +1650 -1650
  214. dtlpy/utilities/dataset_generators/__init__.py +1 -1
  215. dtlpy/utilities/dataset_generators/dataset_generator.py +670 -670
  216. dtlpy/utilities/dataset_generators/dataset_generator_tensorflow.py +23 -23
  217. dtlpy/utilities/dataset_generators/dataset_generator_torch.py +21 -21
  218. dtlpy/utilities/local_development/__init__.py +1 -1
  219. dtlpy/utilities/local_development/local_session.py +179 -179
  220. dtlpy/utilities/reports/__init__.py +2 -2
  221. dtlpy/utilities/reports/figures.py +343 -343
  222. dtlpy/utilities/reports/report.py +71 -71
  223. dtlpy/utilities/videos/__init__.py +17 -17
  224. dtlpy/utilities/videos/video_player.py +598 -598
  225. dtlpy/utilities/videos/videos.py +470 -470
  226. {dtlpy-1.115.44.data → dtlpy-1.116.6.data}/scripts/dlp +1 -1
  227. dtlpy-1.116.6.data/scripts/dlp.bat +2 -0
  228. {dtlpy-1.115.44.data → dtlpy-1.116.6.data}/scripts/dlp.py +128 -128
  229. {dtlpy-1.115.44.dist-info → dtlpy-1.116.6.dist-info}/METADATA +186 -186
  230. dtlpy-1.116.6.dist-info/RECORD +239 -0
  231. {dtlpy-1.115.44.dist-info → dtlpy-1.116.6.dist-info}/WHEEL +1 -1
  232. {dtlpy-1.115.44.dist-info → dtlpy-1.116.6.dist-info}/licenses/LICENSE +200 -200
  233. tests/features/environment.py +551 -551
  234. dtlpy/assets/__pycache__/__init__.cpython-310.pyc +0 -0
  235. dtlpy-1.115.44.data/scripts/dlp.bat +0 -2
  236. dtlpy-1.115.44.dist-info/RECORD +0 -240
  237. {dtlpy-1.115.44.dist-info → dtlpy-1.116.6.dist-info}/entry_points.txt +0 -0
  238. {dtlpy-1.115.44.dist-info → dtlpy-1.116.6.dist-info}/top_level.txt +0 -0
@@ -1,135 +1,135 @@
1
- def main(project_name, dataset_name):
2
- # Imports the SDK package
3
- import dtlpy as dl
4
-
5
- """
6
- Label dictionary format:
7
-
8
- {
9
- 'label_name': 'dog',
10
- 'displayLabel': 'Dog',
11
- 'attributes': ['list of attributes'],
12
- 'color': (34, 6, 231),
13
- 'children': ['list of label dictionaries']
14
- }
15
-
16
- """
17
-
18
- # prep
19
- project = dl.projects.get(project_name=project_name)
20
- dataset = project.datasets.get(dataset_name=dataset_name)
21
-
22
- #########################
23
- # View dataset's labels #
24
- #########################
25
- # as objects
26
- labels = dataset.labels
27
-
28
- # as instance map
29
- labels = dataset.instance_map
30
-
31
- ###############################
32
- # add label to dataset entity #
33
- ###############################
34
- dataset.add_label(label_name='Horse', color=(2, 43, 123))
35
-
36
- #############################
37
- # add label with sub-labels #
38
- #############################
39
- dataset.add_label(label_name='CEO', color=(2, 43, 123),
40
- children=[{'label_name': 'Manager',
41
- 'children': [{'label_name': 'Employee'}]}])
42
-
43
- ################################
44
- # add labels to dataset entity #
45
- ################################
46
- labels = [
47
- {'label_name': 'Dog',
48
- 'color': (34, 6, 231),
49
- 'children': [{'label_name': 'Puppy',
50
- 'color': (24, 16, 130)}]},
51
- {'label_name': 'Cat',
52
- 'color': (24, 25, 31),
53
- 'children': [{'label_name': 'Kitten',
54
- 'color': (124, 116, 140)}]}
55
- ]
56
- dataset.add_labels(label_list=labels)
57
-
58
- #################
59
- # Delete Labels #
60
- #################
61
- dataset.delete_labels(label_names=['Cat', 'Dog'])
62
-
63
- ########################################
64
- # Copy dataset labels to a new dataset #
65
- ########################################
66
- new_dataset = project.datasets.create(dataset_name='new_dataset_with_labels',
67
- labels=dataset.labels)
68
-
69
- ##########################################
70
- # Copy dataset ontology to a new dataset #
71
- ##########################################
72
- new_dataset = project.datasets.create(dataset_name='new_dataset_with_ontology',
73
- ontology_ids=dataset.ontology_ids)
74
-
75
- ##############################################
76
- # Copy dataset labels to an existing dataset #
77
- ##############################################
78
- new_dataset = project.datasets.create(dataset_name='new_dataset_without_labels')
79
-
80
- # Get from a list or recipes
81
- recipe = new_dataset.recipes.list()[0]
82
- # Or get recipe by id
83
- # recipe = new_dataset.recipes.get(recipe_id='recipe_id')
84
-
85
- # Get from the list of ontologies
86
- ontology = recipe.ontologies.list()[0]
87
- # Or get ontology by id
88
- # ontology = recipe.ontologies.get(ontology='ontology_id')
89
-
90
- # Add the labels to the dataset
91
- ontology.add_labels(label_list=dataset.labels)
92
- ontology.update()
93
-
94
- #########################################################
95
- # Copy dataset ontology to an existing dataset's recipe #
96
- #########################################################
97
- new_dataset = project.datasets.create(dataset_name='new_dataset_without_ontology')
98
- # get recipe
99
- new_dataset_recipe = new_dataset.recipes.list()[0]
100
- # Copy from a different dataset
101
- new_dataset_recipe.ontology_ids = dataset.ontology_ids
102
- # Update the new dataset
103
- new_dataset_recipe.update()
104
-
105
- ##########################
106
- # update existing recipe #
107
- ##########################
108
- # Get recipe from list
109
- recipe = dataset.recipes.list()[0]
110
- # Or get specific recipe:
111
- # recipe = dataset.recipes.get(recipe_id='id')
112
-
113
- # Get ontology from list
114
- ontology = recipe.ontologies.list()[0]
115
- # Or get specific ontology:
116
- # ontology = recipe.ontologies.get(ontology_id='id')
117
-
118
- # Add one label
119
- ontology.add_label(label_name='Lion', color=(35, 234, 123))
120
-
121
- # Add a list of labels
122
- labels = [{'label_name': 'Shark', 'color': (1, 1, 1)}, {'label_name': 'Whale', 'color': (34, 56, 7)},
123
- {'label_name': 'Dolphin', 'color': (100, 14, 150)}]
124
- ontology.add_labels(label_list=labels)
125
-
126
- # After adding - update ontology
127
- ontology.update()
128
-
129
- #####################
130
- # Create new recipe #
131
- #####################
132
- # Label list
133
- labels = [{'tag': 'Donkey', 'color': (1, 1, 1)}, {'tag': 'Mammoth', 'color': (34, 56, 7)},
134
- {'tag': 'Bird', 'color': (100, 14, 150)}]
135
- recipe = dataset.recipes.create(recipe_name='My Recipe', labels=labels)
1
+ def main(project_name, dataset_name):
2
+ # Imports the SDK package
3
+ import dtlpy as dl
4
+
5
+ """
6
+ Label dictionary format:
7
+
8
+ {
9
+ 'label_name': 'dog',
10
+ 'displayLabel': 'Dog',
11
+ 'attributes': ['list of attributes'],
12
+ 'color': (34, 6, 231),
13
+ 'children': ['list of label dictionaries']
14
+ }
15
+
16
+ """
17
+
18
+ # prep
19
+ project = dl.projects.get(project_name=project_name)
20
+ dataset = project.datasets.get(dataset_name=dataset_name)
21
+
22
+ #########################
23
+ # View dataset's labels #
24
+ #########################
25
+ # as objects
26
+ labels = dataset.labels
27
+
28
+ # as instance map
29
+ labels = dataset.instance_map
30
+
31
+ ###############################
32
+ # add label to dataset entity #
33
+ ###############################
34
+ dataset.add_label(label_name='Horse', color=(2, 43, 123))
35
+
36
+ #############################
37
+ # add label with sub-labels #
38
+ #############################
39
+ dataset.add_label(label_name='CEO', color=(2, 43, 123),
40
+ children=[{'label_name': 'Manager',
41
+ 'children': [{'label_name': 'Employee'}]}])
42
+
43
+ ################################
44
+ # add labels to dataset entity #
45
+ ################################
46
+ labels = [
47
+ {'label_name': 'Dog',
48
+ 'color': (34, 6, 231),
49
+ 'children': [{'label_name': 'Puppy',
50
+ 'color': (24, 16, 130)}]},
51
+ {'label_name': 'Cat',
52
+ 'color': (24, 25, 31),
53
+ 'children': [{'label_name': 'Kitten',
54
+ 'color': (124, 116, 140)}]}
55
+ ]
56
+ dataset.add_labels(label_list=labels)
57
+
58
+ #################
59
+ # Delete Labels #
60
+ #################
61
+ dataset.delete_labels(label_names=['Cat', 'Dog'])
62
+
63
+ ########################################
64
+ # Copy dataset labels to a new dataset #
65
+ ########################################
66
+ new_dataset = project.datasets.create(dataset_name='new_dataset_with_labels',
67
+ labels=dataset.labels)
68
+
69
+ ##########################################
70
+ # Copy dataset ontology to a new dataset #
71
+ ##########################################
72
+ new_dataset = project.datasets.create(dataset_name='new_dataset_with_ontology',
73
+ ontology_ids=dataset.ontology_ids)
74
+
75
+ ##############################################
76
+ # Copy dataset labels to an existing dataset #
77
+ ##############################################
78
+ new_dataset = project.datasets.create(dataset_name='new_dataset_without_labels')
79
+
80
+ # Get from a list or recipes
81
+ recipe = new_dataset.recipes.list()[0]
82
+ # Or get recipe by id
83
+ # recipe = new_dataset.recipes.get(recipe_id='recipe_id')
84
+
85
+ # Get from the list of ontologies
86
+ ontology = recipe.ontologies.list()[0]
87
+ # Or get ontology by id
88
+ # ontology = recipe.ontologies.get(ontology='ontology_id')
89
+
90
+ # Add the labels to the dataset
91
+ ontology.add_labels(label_list=dataset.labels)
92
+ ontology.update()
93
+
94
+ #########################################################
95
+ # Copy dataset ontology to an existing dataset's recipe #
96
+ #########################################################
97
+ new_dataset = project.datasets.create(dataset_name='new_dataset_without_ontology')
98
+ # get recipe
99
+ new_dataset_recipe = new_dataset.recipes.list()[0]
100
+ # Copy from a different dataset
101
+ new_dataset_recipe.ontology_ids = dataset.ontology_ids
102
+ # Update the new dataset
103
+ new_dataset_recipe.update()
104
+
105
+ ##########################
106
+ # update existing recipe #
107
+ ##########################
108
+ # Get recipe from list
109
+ recipe = dataset.recipes.list()[0]
110
+ # Or get specific recipe:
111
+ # recipe = dataset.recipes.get(recipe_id='id')
112
+
113
+ # Get ontology from list
114
+ ontology = recipe.ontologies.list()[0]
115
+ # Or get specific ontology:
116
+ # ontology = recipe.ontologies.get(ontology_id='id')
117
+
118
+ # Add one label
119
+ ontology.add_label(label_name='Lion', color=(35, 234, 123))
120
+
121
+ # Add a list of labels
122
+ labels = [{'label_name': 'Shark', 'color': (1, 1, 1)}, {'label_name': 'Whale', 'color': (34, 56, 7)},
123
+ {'label_name': 'Dolphin', 'color': (100, 14, 150)}]
124
+ ontology.add_labels(label_list=labels)
125
+
126
+ # After adding - update ontology
127
+ ontology.update()
128
+
129
+ #####################
130
+ # Create new recipe #
131
+ #####################
132
+ # Label list
133
+ labels = [{'tag': 'Donkey', 'color': (1, 1, 1)}, {'tag': 'Mammoth', 'color': (34, 56, 7)},
134
+ {'tag': 'Bird', 'color': (100, 14, 150)}]
135
+ recipe = dataset.recipes.create(recipe_name='My Recipe', labels=labels)
@@ -1,21 +1,21 @@
1
- def main(project_name, dataset_name, item_path):
2
- """
3
- Add any metadata to item
4
- :return:
5
- """
6
- # import Dataloop SDK
7
- import dtlpy as dl
8
-
9
- # get dataset
10
- dataset = dl.projects.get(project_name=project_name).datasets.get(dataset_name=dataset_name)
11
-
12
- # upload and claim item
13
- item = dataset.items.upload(local_path=item_path)
14
-
15
- # modify metadata
16
- item.metadata['user'] = dict()
17
- item.metadata['user']['MyKey'] = 'MyVal'
18
- # update and reclaim item
19
- item = item.update()
20
-
21
- # item in platform should have section 'user' in metadata with field 'MyKey' and value 'MyVal'
1
+ def main(project_name, dataset_name, item_path):
2
+ """
3
+ Add any metadata to item
4
+ :return:
5
+ """
6
+ # import Dataloop SDK
7
+ import dtlpy as dl
8
+
9
+ # get dataset
10
+ dataset = dl.projects.get(project_name=project_name).datasets.get(dataset_name=dataset_name)
11
+
12
+ # upload and claim item
13
+ item = dataset.items.upload(local_path=item_path)
14
+
15
+ # modify metadata
16
+ item.metadata['user'] = dict()
17
+ item.metadata['user']['MyKey'] = 'MyVal'
18
+ # update and reclaim item
19
+ item = item.update()
20
+
21
+ # item in platform should have section 'user' in metadata with field 'MyKey' and value 'MyVal'
@@ -1,65 +1,65 @@
1
- def main():
2
- """
3
- Annotate a batch of images using a model and upload to platform
4
- :return:
5
- """
6
- import numpy as np
7
- from PIL import Image
8
- from keras.applications.imagenet_utils import decode_predictions
9
- from keras.applications.inception_v3 import InceptionV3, preprocess_input
10
- import dtlpy as dl
11
-
12
- ##############
13
- # load model #
14
- ##############
15
- model = InceptionV3()
16
-
17
- ##########################
18
- # init platform instance #
19
- ##########################
20
- project = dl.projects.get(project_name='ImageNet')
21
- dataset = project.datasets.get(dataset_name='sample')
22
-
23
- # get pages of images from dataset
24
- pages = dataset.items.list()
25
- ####################
26
- # start annotating #
27
- ####################
28
- for page in pages:
29
- for item in page:
30
- if item.type == 'dir':
31
- continue
32
- img_batch = [item.download(save_locally=False)]
33
- # load images
34
- img_batch = [Image.open(buf) for buf in img_batch]
35
- # get original images shapes before reshaping for model
36
- orig_img_shape = [img.size[::-1] for img in img_batch]
37
- # reshape and load images
38
- batch = np.array([np.array(img.resize((299, 299))) for img in img_batch])
39
- # preprocess batch
40
- batch = preprocess_input(batch)
41
- # inference the model
42
- predictions = model.predict(batch)
43
- # get ImageNet labels
44
- labels = decode_predictions(predictions, top=1)
45
- # create platform annotations instance
46
- builder = item.annotations.builder()
47
- for i_pred, label in enumerate(labels):
48
-
49
- # add the class labels
50
- ##############################
51
- # If model is classification #
52
- ##############################
53
- builder.add(annotation_definition=dl.Classification(label=label[0][1]))
54
- #############################
55
- # If model outputs polygons #
56
- #############################
57
- builder.add(annotation_definition=dl.Polyline(geo=pred['polygon_pts'],
58
- label=labels[i_pred][0][1]))
59
- #########################
60
- # If model outputs mask #
61
- #########################
62
- builder.add(annotation_definition=dl.Segmentation(geo=pred['mask'],
63
- label=labels[i_pred][0][1]))
64
- # upload a annotations to matching items in platform
65
- builder.upload()
1
+ def main():
2
+ """
3
+ Annotate a batch of images using a model and upload to platform
4
+ :return:
5
+ """
6
+ import numpy as np
7
+ from PIL import Image
8
+ from keras.applications.imagenet_utils import decode_predictions
9
+ from keras.applications.inception_v3 import InceptionV3, preprocess_input
10
+ import dtlpy as dl
11
+
12
+ ##############
13
+ # load model #
14
+ ##############
15
+ model = InceptionV3()
16
+
17
+ ##########################
18
+ # init platform instance #
19
+ ##########################
20
+ project = dl.projects.get(project_name='ImageNet')
21
+ dataset = project.datasets.get(dataset_name='sample')
22
+
23
+ # get pages of images from dataset
24
+ pages = dataset.items.list()
25
+ ####################
26
+ # start annotating #
27
+ ####################
28
+ for page in pages:
29
+ for item in page:
30
+ if item.type == 'dir':
31
+ continue
32
+ img_batch = [item.download(save_locally=False)]
33
+ # load images
34
+ img_batch = [Image.open(buf) for buf in img_batch]
35
+ # get original images shapes before reshaping for model
36
+ orig_img_shape = [img.size[::-1] for img in img_batch]
37
+ # reshape and load images
38
+ batch = np.array([np.array(img.resize((299, 299))) for img in img_batch])
39
+ # preprocess batch
40
+ batch = preprocess_input(batch)
41
+ # inference the model
42
+ predictions = model.predict(batch)
43
+ # get ImageNet labels
44
+ labels = decode_predictions(predictions, top=1)
45
+ # create platform annotations instance
46
+ builder = item.annotations.builder()
47
+ for i_pred, label in enumerate(labels):
48
+
49
+ # add the class labels
50
+ ##############################
51
+ # If model is classification #
52
+ ##############################
53
+ builder.add(annotation_definition=dl.Classification(label=label[0][1]))
54
+ #############################
55
+ # If model outputs polygons #
56
+ #############################
57
+ builder.add(annotation_definition=dl.Polyline(geo=pred['polygon_pts'],
58
+ label=labels[i_pred][0][1]))
59
+ #########################
60
+ # If model outputs mask #
61
+ #########################
62
+ builder.add(annotation_definition=dl.Segmentation(geo=pred['mask'],
63
+ label=labels[i_pred][0][1]))
64
+ # upload a annotations to matching items in platform
65
+ builder.upload()
@@ -1,75 +1,75 @@
1
- def main():
2
- """
3
- Detect and track (using model and some tracker) and upload annotation to platform
4
- :return:
5
- """
6
- import cv2
7
- import dtlpy as dl
8
-
9
- ##########################
10
- # Load model and tracker #
11
- ##########################
12
- # load your model for detection
13
- model = load_some_model()
14
- # load any tracking algorithm to track detected elements
15
- tracker = load_some_tracker()
16
-
17
- ##############
18
- # load video #
19
- ##############
20
- video_path = 'some/video/path'
21
-
22
- vid = cv2.VideoCapture(video_path)
23
- if not vid.isOpened():
24
- raise IOError("Couldn't open webcam or video")
25
- video_fps = vid.get(cv2.CAP_PROP_FPS)
26
- video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
27
- int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
28
- video_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
29
-
30
- ############
31
- # Platform #
32
- ###########
33
- # get the item from platform
34
- item = dl.projects.get(project_name='MyProject') \
35
- .datasets.get(dataset_name='MyDataset') \
36
- .items.get(filepath='/path/to/video.mp4')
37
- builder = item.annotations.builder()
38
-
39
- #######
40
- # Run #
41
- #######
42
- frame_num = 0
43
- while True:
44
- # get new frame from video
45
- return_value, frame = vid.read()
46
- if not return_value:
47
- break
48
-
49
- # get detection
50
- detections = model.predict(frame)
51
-
52
- # update tracker
53
- tracked_elements = tracker.update(detections, frame)
54
-
55
- # update annotations object
56
- for element in tracked_elements:
57
- # element.bb - format of the bounding box is 2 points in 1 array - [x_left, y_top, x_right, y_bottom])
58
- # tracking id of each element is in element.id. to keep the ids of the detected elements
59
- left, top, bottom, right = element.bb # points bounding box annotation
60
- builder.add(annotation_definition=dl.Box(top=top,
61
- left=left,
62
- right=right,
63
- bottom=bottom,
64
- label=element.label),
65
- object_id=element.id,
66
- frame_num=frame_num)
67
- # increase frame number
68
- frame_num += 1
69
- if cv2.waitKey(1) & 0xFF == ord('q'):
70
- break
71
-
72
- ##################################
73
- # Upload annotations to platform #
74
- ##################################
75
- item.annotations.upload(builder.to_platform())
1
+ def main():
2
+ """
3
+ Detect and track (using model and some tracker) and upload annotation to platform
4
+ :return:
5
+ """
6
+ import cv2
7
+ import dtlpy as dl
8
+
9
+ ##########################
10
+ # Load model and tracker #
11
+ ##########################
12
+ # load your model for detection
13
+ model = load_some_model()
14
+ # load any tracking algorithm to track detected elements
15
+ tracker = load_some_tracker()
16
+
17
+ ##############
18
+ # load video #
19
+ ##############
20
+ video_path = 'some/video/path'
21
+
22
+ vid = cv2.VideoCapture(video_path)
23
+ if not vid.isOpened():
24
+ raise IOError("Couldn't open webcam or video")
25
+ video_fps = vid.get(cv2.CAP_PROP_FPS)
26
+ video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
27
+ int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
28
+ video_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
29
+
30
+ ############
31
+ # Platform #
32
+ ###########
33
+ # get the item from platform
34
+ item = dl.projects.get(project_name='MyProject') \
35
+ .datasets.get(dataset_name='MyDataset') \
36
+ .items.get(filepath='/path/to/video.mp4')
37
+ builder = item.annotations.builder()
38
+
39
+ #######
40
+ # Run #
41
+ #######
42
+ frame_num = 0
43
+ while True:
44
+ # get new frame from video
45
+ return_value, frame = vid.read()
46
+ if not return_value:
47
+ break
48
+
49
+ # get detection
50
+ detections = model.predict(frame)
51
+
52
+ # update tracker
53
+ tracked_elements = tracker.update(detections, frame)
54
+
55
+ # update annotations object
56
+ for element in tracked_elements:
57
+ # element.bb - format of the bounding box is 2 points in 1 array - [x_left, y_top, x_right, y_bottom])
58
+ # tracking id of each element is in element.id. to keep the ids of the detected elements
59
+ left, top, bottom, right = element.bb # points bounding box annotation
60
+ builder.add(annotation_definition=dl.Box(top=top,
61
+ left=left,
62
+ right=right,
63
+ bottom=bottom,
64
+ label=element.label),
65
+ object_id=element.id,
66
+ frame_num=frame_num)
67
+ # increase frame number
68
+ frame_num += 1
69
+ if cv2.waitKey(1) & 0xFF == ord('q'):
70
+ break
71
+
72
+ ##################################
73
+ # Upload annotations to platform #
74
+ ##################################
75
+ item.annotations.upload(builder.to_platform())
@@ -1,9 +1,9 @@
1
- def main():
2
- import dtlpy as dl
3
-
4
- project = dl.projects.get(project_name='Ocean')
5
- dataset = project.datasets.get(dataset_name='Sharks')
6
-
7
- converter = dl.Converter()
8
- converter.convert_dataset(dataset=dataset, to_format='voc',
9
- local_path='home/voc_annotations/sharks')
1
+ def main():
2
+ import dtlpy as dl
3
+
4
+ project = dl.projects.get(project_name='Ocean')
5
+ dataset = project.datasets.get(dataset_name='Sharks')
6
+
7
+ converter = dl.Converter()
8
+ converter.convert_dataset(dataset=dataset, to_format='voc',
9
+ local_path='home/voc_annotations/sharks')
@@ -1,9 +1,9 @@
1
- def main():
2
- import dtlpy as dl
3
-
4
- project = dl.projects.get(project_name='Jungle')
5
- dataset = project.datasets.get(dataset_name='Tigers')
6
-
7
- converter = dl.Converter()
8
- converter.convert_dataset(dataset=dataset, to_format='yolo',
9
- local_path='home/yolo_annotations/tigers')
1
+ def main():
2
+ import dtlpy as dl
3
+
4
+ project = dl.projects.get(project_name='Jungle')
5
+ dataset = project.datasets.get(dataset_name='Tigers')
6
+
7
+ converter = dl.Converter()
8
+ converter.convert_dataset(dataset=dataset, to_format='yolo',
9
+ local_path='home/yolo_annotations/tigers')