dsipts 1.1.12__py3-none-any.whl → 1.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dsipts might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dsipts
3
- Version: 1.1.12
3
+ Version: 1.1.15
4
4
  Summary: Unified library for timeseries modelling
5
5
  Author-email: Andrea Gobbi <agobbi@fbk.eu>
6
6
  Project-URL: Homepage, https://github.com/DSIP-FBK/DSIPTS
@@ -398,6 +398,8 @@ and then open the url (http://127.0.0.1:43800)[http://127.0.0.1:43800]. It will
398
398
 
399
399
 
400
400
  ## TODO
401
+ [ ] some models can not work in a non-autoregressive way (target past variable is required). Relax some constraints in the forward loop can help this
402
+
401
403
  [ ] reduce test time
402
404
 
403
405
  [ ] add pre-commit hook for code checking (`ruff check --ignore E501,E722 .`)
@@ -406,15 +408,12 @@ and then open the url (http://127.0.0.1:43800)[http://127.0.0.1:43800]. It will
406
408
 
407
409
  [ ] clean code and standardize documentation
408
410
 
409
- [ ] add more sintetic data
410
-
411
411
  [ ] check all the code in the README
412
412
 
413
413
  [ ] check architecture description (which model can be used under certain assumption)
414
414
 
415
415
  [ ] complete the classification part (loss function + inference step)
416
416
 
417
-
418
417
  [ ] check D3VAE, it seems broken in some configurations
419
418
 
420
419
  [ ] add hybrid models https://www.sciencedirect.com/science/article/pii/S138912862400118X
@@ -425,11 +424,60 @@ and then open the url (http://127.0.0.1:43800)[http://127.0.0.1:43800]. It will
425
424
 
426
425
  [ ] add https://github.com/decisionintelligence/pathformer
427
426
 
428
- [x] add Duet
427
+ [ ] in 1.1.5 we split the future and past categorical variables. D3VAE &^ Diffusion to be revised
428
+
429
+ [ ] all snippet of code and notebook must be review in 1.1.5 (categorical past and future, embedding layer parameters)
429
430
 
430
- [x] add categorical support to Crossformer, Samformer
431
431
 
432
- [ ] in 1.1.5 we split the future and past categorical variables. D3VAE, Diffusion, TTM need to be revised
433
432
 
434
- [ ] all snippet of code and notebook must be review in 1.1.5 (categorical past and future, embedding layer parameters)
433
+ ## 1.1.14 (2025-12-02)
434
+ - Add CHANGELOG to the pip page
435
+ - Bug fixing for non autoregressive models
436
+ - Added TimesNet, TimeKAN
437
+ - Added 0 shot and full shot TTM
438
+ - added more option parameter to define an experiment (`split_params`, `optim_config` and `train_config`)
439
+ ## 1.1.13 (2025-12-02)
440
+
441
+ - Added weight for the WeightedRandomSampler (only for the training part)
442
+ - Bug fixing when using groups in the categorical variables
443
+ - TTM fixed for working with zeropad for shorter sequences and future covariates
444
+
445
+ ## 1.1.12 (2025-11-07)
446
+ - Bug fixing dynamo stuff for `TTM`
447
+ - Bug fixing loading weights after training process ('dynamo module can not load weights`)
448
+ - Force to not compile some models (there are piece of code that are not aligned with dynamo)
449
+ - Bug fixing test configurations
435
450
 
451
+ ## 1.1.11 (2025-11-06)
452
+ - Added `torch.compile` for better performance on recent GPU
453
+ - Stable `TTM` model according to version 1.1.5, still under debug, use at your own risk
454
+ - Bux Fixing `cprs` inference (now produces 3 quantiles: `[0.05, 0.5, 0.95]`). The `persistence_weight` is the value of `alpha` in the paper (between 0 and 1)
455
+
456
+ ## 1.1.9 (2025-09-19)
457
+ - Added `cprs` https://arxiv.org/pdf/2412.15832v1 loss function. In this case use the quantile parameter to ask for the ensembles: `quantiles = [1,2,3,4,5,6,7,8,9,10]` will create 10 ensembles. For now the inference part will return just the mean, TODO: estimate a confidence interval with the ensembles
458
+ - Added `long_lag` the L1 error will be modulated with a linear weight depending on the lag in the future: the penalization goes from `1` to `persistence_weight`
459
+
460
+ ## 1.1.8 (2025-09-12)
461
+ - Added `Simple` model (just two linear layers)
462
+
463
+ ## 1.1.7 (2025-09-08)
464
+ - bug fixing `DilatedConv`
465
+ ## 1.1.5 (2025-08-29)
466
+ - rewriting most of the modules for handling different future and past categorical variables
467
+ - extension of categorical and future covariates in almost all the models
468
+ - `uv` full management of the package
469
+ - refactoring almost all the structure and documentation
470
+
471
+ ## 1.1.4 (2025-08-22)
472
+ - added `restart: true` tro model configuration to restart the training procedure: carefurl the max_epochs should be increased if you need to retrain
473
+
474
+ ## 1.1.4 (2025-07-29)
475
+ - bug fixing tuner learning rate
476
+ - added TTM model and TimeXer
477
+ - added compatibility with newer version of lightening and torch
478
+
479
+ ## 1.1.1
480
+ - added [SAM optimizer](https://arxiv.org/pdf/2402.10198)
481
+ ```bash
482
+ python train.py --config-dir=config_test --config-name=config architecture=itransformer dataset.path=/home/agobbi/Projects/ExpTS/data train_config.dirpath=tmp inference=tmp model_configs.optim=SAM +optim_config.rho=0.5
483
+ ```
@@ -1,11 +1,12 @@
1
- dsipts/__init__.py,sha256=UWmrBJ2LLoRCKLOyTBSJAw9n31o8ZwNjLoRAax5Wll8,1694
1
+ dsipts/__init__.py,sha256=2KK6XbUewsjmQQ6-zNMKIcFP01jtcXskcwr3qZwQToE,1822
2
+ dsipts/version.py,sha256=-YHzv8tja4CPgI4M3Z_0Bj8CLGmAigr5FWkvYuc_I64,22
2
3
  dsipts/data_management/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
4
  dsipts/data_management/monash.py,sha256=aZxq9FbIH6IsU8Lwou1hAokXjgOAK-wdl2VAeFg2k4M,13075
4
5
  dsipts/data_management/public_datasets.py,sha256=yXFzOZZ-X0ZG1DoqVU-zFmEGVMc2033YDQhRgYxY8ws,6793
5
6
  dsipts/data_structure/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- dsipts/data_structure/data_structure.py,sha256=KVkjTVjc7NznJIou4LYGzMbzE7ye-K3ll65GEgn2qKg,60814
7
+ dsipts/data_structure/data_structure.py,sha256=QO2z0gtR2lv1t9DuYF3S1LSz1Ecux0CjL1G9lT5lGaY,64928
7
8
  dsipts/data_structure/modifiers.py,sha256=qlry9dfw8pEE0GrvgwROZJkJ6oPpUnjEHPIG5qIetss,7948
8
- dsipts/data_structure/utils.py,sha256=QwfKPZgSy6DIw5n6ztOdPJIAnzo4EnlMTgRbpiWnyko,6593
9
+ dsipts/data_structure/utils.py,sha256=ZL-z_InmFUkge5kQoHSrev1t6nyve9sTYTVeA75Or-I,6689
9
10
  dsipts/models/Autoformer.py,sha256=nUQvPC_qtajLT1AHdNJmF_P3ZL01j3spkZ4ubxdGF3g,8497
10
11
  dsipts/models/CrossFormer.py,sha256=ClW6H_hrtLJH0iqTC7q_ya_Bwc_Xu-0lpAN5w2DSUYk,6526
11
12
  dsipts/models/D3VAE.py,sha256=d1aY6kGjBSxZncN-KPWpdUGunu182ng2QFInGFrKYQM,6903
@@ -17,19 +18,21 @@ dsipts/models/ITransformer.py,sha256=2WXqqEvnWH2DqRQyXfGm4Eg4_q32GFy2XnNeoTl-KmY
17
18
  dsipts/models/Informer.py,sha256=gxCdU2KkNhadyMujBA5A0eP6SPN4Q0IkEIogLYwvz5k,6970
18
19
  dsipts/models/LinearTS.py,sha256=vXaGpbbkfdpzpTEWZ1hs6QI6j3vDvevD3SyKQXo6Sdg,9151
19
20
  dsipts/models/PatchTST.py,sha256=1O09cPMg8USdkt5q6szTiz5dIY45kizsf6gt6vLKnQo,9119
20
- dsipts/models/Persistent.py,sha256=URwyaBb0M7zbPXSGMImtHlwC9XCy-OquFCwfWvn3P70,1249
21
+ dsipts/models/Persistent.py,sha256=CPHLgqAIPWbxYqzCNpxB2kh8J2-LJsvrbv9OVC72A8o,1301
21
22
  dsipts/models/RNN.py,sha256=RnsRDAQ2z5-XNaJVZd6Q7z23WvPR2uLVdi7BNQyF7QE,9685
22
23
  dsipts/models/Samformer.py,sha256=Kt7B9ID3INtFDAVKIM1LTly5-UfKCaVZ9uxAJmYv6B4,5606
23
24
  dsipts/models/Simple.py,sha256=8wRSO-gh_Z6Sl8fYMV-RIXIL0RrO5u5dDtsaq-OsKg0,3960
24
25
  dsipts/models/TFT.py,sha256=JiI90ikfP8aaR_rtczu8CyGMNLTgml13aYQifgIC_yo,13888
25
26
  dsipts/models/TIDE.py,sha256=S1KlKqFOR3jJ9DDiTqeaKvya9hYBsNHBVqwJsYX3FLU,13094
26
- dsipts/models/TTM.py,sha256=lOOo5dR5nOmf37cND6C8ft8TVl0kzNeraIuABw7eI5g,5897
27
+ dsipts/models/TTM.py,sha256=CGKtO992_ty5_AX27llMd1TsvKLP8ZKpR8Xbx1F8Ws4,6625
28
+ dsipts/models/TimeKAN.py,sha256=bJEIJZIksi0jhN9ZttXezATwxJj9DkWjO1WNwDD5Fbw,4686
27
29
  dsipts/models/TimeXER.py,sha256=EkmlHfT2RegY6Ce6q8EUEV1a_WZ6SkYibnOZXqsyd_8,7111
30
+ dsipts/models/TimesNet.py,sha256=1OekvmqZidfPqoSMFsG7pK6Xcgen8IMTEu0n9ZQMEPc,3895
28
31
  dsipts/models/VQVAEA.py,sha256=sNJi8UZh-10qEIKcZK3SzhlOFUUjvqjoglzeZBFaeZM,13789
29
32
  dsipts/models/VVA.py,sha256=BnPkJ0Nzue0oShSHZVRNlf5RvT0Iwtf9bx19vLB9Nn0,11939
30
33
  dsipts/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- dsipts/models/base.py,sha256=Gqsycy8ZXGaIVx9vvmYRpBCqdUxGE4tvC5ltgxlpEYY,19640
32
- dsipts/models/base_v2.py,sha256=03cueZExRhkJyBVIHuUPB8sjsCd5Go1HJAR81CADg-c,19896
34
+ dsipts/models/base.py,sha256=aWvtDiBnmONsJ96tgaZRewB_yrqI8yvlAlH6PdpWrLA,20099
35
+ dsipts/models/base_v2.py,sha256=BNmBQXMDnGsZABu0nOu8d3f3anNQZbgNBCwlMr-k8lQ,20346
33
36
  dsipts/models/utils.py,sha256=kjTwyktNCFMpPUy6zoleBCSKlvMvK_Jkgyh2T1OXg3E,24497
34
37
  dsipts/models/autoformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
38
  dsipts/models/autoformer/layers.py,sha256=xHt8V1lKdD1cIvgxXdDbI_EqOz4zgOQ6LP8l7M1pAxM,13276
@@ -64,6 +67,10 @@ dsipts/models/samformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG
64
67
  dsipts/models/samformer/utils.py,sha256=62p5fzippKwZpqZBQghrHyA_ANeaFa-TC5EM4L6Q7DE,5583
65
68
  dsipts/models/tft/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
69
  dsipts/models/tft/sub_nn.py,sha256=6UDI0BvxEcF5N1_Wx3-WL0PO99k8QtI7JTsEAaosb5k,8881
70
+ dsipts/models/timekan/Layers.py,sha256=T-saVZFYHkMtbXgD8eIp2q_ZM4fcItNzw4PUo4KC-gM,10771
71
+ dsipts/models/timekan/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
+ dsipts/models/timesnet/Layers.py,sha256=Jh42klg2QFSnE1vLH35uZXp8A8xo6cvj3d3gTuvym64,3460
73
+ dsipts/models/timesnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
67
74
  dsipts/models/timexer/Layers.py,sha256=-QG4a70sBQFoRoE6CfisOkKhm4kIdB21DBtQ4V-7fHw,4699
68
75
  dsipts/models/timexer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
76
  dsipts/models/ttm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -76,7 +83,7 @@ dsipts/models/vva/minigpt.py,sha256=bg0JddqSD322uxSGexen3nPXL_hGTsk3vNLR62d7-w8,
76
83
  dsipts/models/vva/vqvae.py,sha256=RzCQ_M9xBprp7_x20dSV3EQqlO0FjPUGWV-qdyKrQsM,19680
77
84
  dsipts/models/xlstm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
85
  dsipts/models/xlstm/xLSTM.py,sha256=ZKZZmffmIq1Vb71CR4GSyM8viqVx-u0FChxhcNgHub8,10081
79
- dsipts-1.1.12.dist-info/METADATA,sha256=nxE2kAg9RvG5Py27sMNbQ-mUIu9mtZrDo2WocLpJdQ4,24795
80
- dsipts-1.1.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
81
- dsipts-1.1.12.dist-info/top_level.txt,sha256=i6o0rf5ScFwZK21E89dSKjVNjUBkrEQpn0-Vij43748,7
82
- dsipts-1.1.12.dist-info/RECORD,,
86
+ dsipts-1.1.15.dist-info/METADATA,sha256=1i5fPSZJxFoQPkvf-PVwHf6faoD6vFhixMDucbowQdM,27477
87
+ dsipts-1.1.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
88
+ dsipts-1.1.15.dist-info/top_level.txt,sha256=i6o0rf5ScFwZK21E89dSKjVNjUBkrEQpn0-Vij43748,7
89
+ dsipts-1.1.15.dist-info/RECORD,,