dsipts 1.1.10__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -35,7 +35,18 @@ from .modifiers import *
35
35
  from aim.pytorch_lightning import AimLogger
36
36
  import time
37
37
 
38
-
38
+ class DummyScaler():
39
+ def __init__(self):
40
+ pass
41
+ def fit(self,x):
42
+ pass
43
+ def transform(self,x):
44
+ return x
45
+ def inverse_transform(self,x):
46
+ return x
47
+ def fit_transform(self,x):
48
+ return x
49
+
39
50
 
40
51
  pd.options.mode.chained_assignment = None
41
52
  log = logging.getLogger(__name__)
@@ -210,20 +221,23 @@ class TimeSeries():
210
221
  self.future_variables = []
211
222
  self.target_variables = ['signal']
212
223
  self.num_var = list(set(self.past_variables).union(set(self.future_variables)).union(set(self.target_variables)))
213
-
224
+ self.num_var = list(np.sort(self.num_var))
214
225
 
215
226
  def enrich(self,dataset,columns):
216
- if columns =='hour':
217
- dataset[columns] = dataset.time.dt.hour
218
- elif columns=='dow':
219
- dataset[columns] = dataset.time.dt.weekday
220
- elif columns=='month':
221
- dataset[columns] = dataset.time.dt.month
222
- elif columns=='minute':
223
- dataset[columns] = dataset.time.dt.minute
224
- else:
225
- if columns not in dataset.columns:
226
- beauty_string(f'I can not automatically enrich column {columns}. Please contact the developers or add it manually to your dataset.','section',True)
227
+ try:
228
+ if columns =='hour':
229
+ dataset[columns] = dataset.time.dt.hour
230
+ elif columns=='dow':
231
+ dataset[columns] = dataset.time.dt.weekday
232
+ elif columns=='month':
233
+ dataset[columns] = dataset.time.dt.month
234
+ elif columns=='minute':
235
+ dataset[columns] = dataset.time.dt.minute
236
+ else:
237
+ if columns not in dataset.columns:
238
+ beauty_string(f'I can not automatically enrich column {columns}. Please contact the developers or add it manually to your dataset.','section',True)
239
+ except:
240
+ beauty_string(f'I can not automatically enrich column {columns}. Probably not a temporal index.','section',True)
227
241
 
228
242
  def load_signal(self,data:pd.DataFrame,
229
243
  enrich_cat:List[str] = [],
@@ -300,7 +314,7 @@ class TimeSeries():
300
314
  if check_past:
301
315
  beauty_string('I will update past column adding all target columns, if you want to avoid this beahviour please use check_pass as false','info',self.verbose)
302
316
  past_variables = list(set(past_variables).union(set(target_variables)))
303
-
317
+ past_variables = list(np.sort(past_variables))
304
318
  self.cat_past_var = cat_past_var
305
319
  self.cat_fut_var = cat_fut_var
306
320
 
@@ -321,14 +335,18 @@ class TimeSeries():
321
335
  beauty_string('Categorical {c} already present, it will be added to categorical variable but not call the enriching function','info',self.verbose)
322
336
  else:
323
337
  self.enrich(dataset,c)
338
+ self.cat_past_var = list(np.sort(self.cat_past_var))
339
+ self.cat_fut_var = list(np.sort(self.cat_fut_var))
340
+
324
341
  self.cat_var = list(set(self.cat_past_var+self.cat_fut_var)) ## all categorical data
325
-
342
+ self.cat_var = list(np.sort(self.cat_var))
326
343
  self.dataset = dataset
327
344
  self.past_variables = past_variables
328
345
  self.future_variables = future_variables
329
346
  self.target_variables = target_variables
330
347
  self.out_vars = len(target_variables)
331
348
  self.num_var = list(set(self.past_variables).union(set(self.future_variables)).union(set(self.target_variables)))
349
+ self.num_var = list(np.sort(self.num_var))
332
350
  if silly_model:
333
351
  beauty_string('YOU ARE TRAINING A SILLY MODEL WITH THE TARGETS IN THE INPUTS','section',self.verbose)
334
352
  self.future_variables+=self.target_variables
@@ -665,7 +683,8 @@ class TimeSeries():
665
683
  #self.model.apply(weight_init_zeros)
666
684
 
667
685
  self.config = config
668
-
686
+
687
+
669
688
  beauty_string('Setting the model','block',self.verbose)
670
689
  beauty_string(model,'',self.verbose)
671
690
 
@@ -790,8 +809,17 @@ class TimeSeries():
790
809
  weight_exists = False
791
810
  beauty_string('I can not load a previous model','section',self.verbose)
792
811
 
812
+ self.model.to(torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
813
+ if self.model.can_be_compiled():
814
+ try:
815
+ self.model = torch.compile(self.model)
816
+ beauty_string('Model COMPILED','block',self.verbose)
817
+
818
+ except:
819
+ beauty_string('Can not compile the model','block',self.verbose)
820
+ else:
821
+ beauty_string('Model can not still be compiled, be patient','block',self.verbose)
793
822
 
794
-
795
823
 
796
824
  if OLD_PL:
797
825
  trainer = pl.Trainer(default_root_dir=dirpath,
@@ -873,10 +901,19 @@ class TimeSeries():
873
901
  self.losses = pd.DataFrame()
874
902
 
875
903
  try:
904
+
876
905
  if OLD_PL:
877
- self.model = self.model.load_from_checkpoint(self.checkpoint_file_last)
906
+ if isinstance(self.model, torch._dynamo.eval_frame.OptimizedModule):
907
+ self.model = self.model._orig_mod
908
+ self.model.load_from_checkpoint(self.checkpoint_file_last)
909
+ else:
910
+ self.model = self.model.load_from_checkpoint(self.checkpoint_file_last)
878
911
  else:
879
- self.model = self.model.__class__.load_from_checkpoint(self.checkpoint_file_last)
912
+ if isinstance(self.model, torch._dynamo.eval_frame.OptimizedModule):
913
+ mm = self.model._orig_mod
914
+ self.model = mm.__class__.load_from_checkpoint(self.checkpoint_file_last)
915
+ else:
916
+ self.model = self.model.__class__.load_from_checkpoint(self.checkpoint_file_last)
880
917
 
881
918
  except Exception as _:
882
919
  beauty_string(f'There is a problem loading the weights on file MAYBE CHANGED HOW WEIGHTS ARE LOADED {self.checkpoint_file_last}','section',self.verbose)
@@ -1164,6 +1201,6 @@ class TimeSeries():
1164
1201
  self.model = self.model.load_from_checkpoint(tmp_path,verbose=self.verbose,)
1165
1202
  else:
1166
1203
  self.model = self.model.__class__.load_from_checkpoint(tmp_path,verbose=self.verbose,)
1167
-
1204
+ self.model.to(torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
1168
1205
  except Exception as e:
1169
1206
  beauty_string(f'There is a problem loading the weights on file {tmp_path} {e}','section',self.verbose)
@@ -148,7 +148,8 @@ class Autoformer(Base):
148
148
  projection=nn.Linear(d_model, self.out_channels*self.mul, bias=True)
149
149
  )
150
150
  self.projection = nn.Linear(self.past_channels,self.out_channels*self.mul )
151
-
151
+ def can_be_compiled(self):
152
+ return True
152
153
  def forward(self, batch):
153
154
 
154
155
 
@@ -114,7 +114,8 @@ class CrossFormer(Base):
114
114
 
115
115
 
116
116
 
117
-
117
+ def can_be_compiled(self):
118
+ return True
118
119
 
119
120
  def forward(self, batch):
120
121
 
dsipts/models/D3VAE.py CHANGED
@@ -98,7 +98,8 @@ class D3VAE(Base):
98
98
  self.gamma = 0.01
99
99
  self.lambda1 = 1.0
100
100
 
101
-
101
+ def can_be_compiled(self):
102
+ return False
102
103
  def configure_optimizers(self):
103
104
  """
104
105
  Each model has optim_config and scheduler_config
@@ -425,6 +425,9 @@ class Diffusion(Base):
425
425
  loss = self.compute_loss(batch,out)
426
426
  return loss
427
427
 
428
+ def can_be_compiled(self):
429
+ return False
430
+
428
431
  # function to concat embedded categorical variables
429
432
  def cat_categorical_vars(self, batch:dict):
430
433
  """Extracting categorical context about past and future
@@ -234,7 +234,8 @@ class DilatedConv(Base):
234
234
  self.return_additional_loss = True
235
235
 
236
236
 
237
-
237
+ def can_be_compiled(self):
238
+ return True
238
239
 
239
240
  def forward(self, batch):
240
241
  """It is mandatory to implement this method
@@ -228,7 +228,8 @@ class DilatedConvED(Base):
228
228
  nn.BatchNorm1d(hidden_RNN) if use_bn else nn.Dropout(dropout_rate) ,
229
229
  Permute() if use_bn else nn.Identity() ,
230
230
  nn.Linear(hidden_RNN ,self.mul))
231
-
231
+ def can_be_compiled(self):
232
+ return True
232
233
 
233
234
 
234
235
  def forward(self, batch):
dsipts/models/Duet.py CHANGED
@@ -136,7 +136,8 @@ class Duet(Base):
136
136
  activation(),
137
137
  nn.Linear(dim*2,self.out_channels*self.mul ))
138
138
 
139
-
139
+ def can_be_compiled(self):
140
+ return False
140
141
  def forward(self, batch:dict)-> float:
141
142
  # x: [Batch, Input length, Channel]
142
143
  x_enc = batch['x_num_past'].to(self.device)
@@ -8,6 +8,8 @@ import numpy as np
8
8
  from .itransformer.Transformer_EncDec import Encoder, EncoderLayer
9
9
  from .itransformer.SelfAttention_Family import FullAttention, AttentionLayer
10
10
  from .itransformer.Embed import DataEmbedding_inverted
11
+ from ..data_structure.utils import beauty_string
12
+ from .utils import get_scope,get_activation,Embedding_cat_variables
11
13
 
12
14
  try:
13
15
  import lightning.pytorch as pl
@@ -17,12 +19,6 @@ except:
17
19
  import pytorch_lightning as pl
18
20
  OLD_PL = True
19
21
  from .base import Base
20
- from .utils import QuantileLossMO,Permute, get_activation
21
-
22
- from typing import List, Union
23
- from ..data_structure.utils import beauty_string
24
- from .utils import get_scope
25
- from .utils import Embedding_cat_variables
26
22
 
27
23
 
28
24
 
@@ -34,8 +30,6 @@ class ITransformer(Base):
34
30
  description = get_scope(handle_multivariate,handle_future_covariates,handle_categorical_variables,handle_quantile_loss)
35
31
 
36
32
  def __init__(self,
37
-
38
-
39
33
  # specific params
40
34
  hidden_size:int,
41
35
  d_model: int,
@@ -107,6 +101,9 @@ class ITransformer(Base):
107
101
  )
108
102
  self.projector = nn.Linear(d_model, self.future_steps*self.mul, bias=True)
109
103
 
104
+ def can_be_compiled(self):
105
+ return True
106
+
110
107
  def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
111
108
  if self.use_norm:
112
109
  # Normalization from Non-stationary Transformer
dsipts/models/Informer.py CHANGED
@@ -124,7 +124,8 @@ class Informer(Base):
124
124
 
125
125
 
126
126
 
127
-
127
+ def can_be_compiled(self):
128
+ return True
128
129
 
129
130
  def forward(self,batch):
130
131
  #x_enc, x_mark_enc, x_dec, x_mark_dec,enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
dsipts/models/LinearTS.py CHANGED
@@ -143,7 +143,8 @@ class LinearTS(Base):
143
143
  activation(),
144
144
  nn.BatchNorm1d(hidden_size//8) if use_bn else nn.Dropout(dropout_rate) ,
145
145
  nn.Linear(hidden_size//8,self.future_steps*self.mul)))
146
-
146
+ def can_be_compiled(self):
147
+ return True
147
148
  def forward(self, batch):
148
149
 
149
150
  x = batch['x_num_past'].to(self.device)
dsipts/models/PatchTST.py CHANGED
@@ -133,6 +133,9 @@ class PatchTST(Base):
133
133
 
134
134
  #self.final_linear = nn.Sequential(nn.Linear(past_channels,past_channels//2),activation(),nn.Dropout(dropout_rate), nn.Linear(past_channels//2,out_channels) )
135
135
 
136
+ def can_be_compiled(self):
137
+ return True
138
+
136
139
  def forward(self, batch): # x: [Batch, Input length, Channel]
137
140
 
138
141
 
dsipts/models/RNN.py CHANGED
@@ -148,7 +148,8 @@ class RNN(Base):
148
148
  activation(),
149
149
  MyBN(hidden_RNN//8) if use_bn else nn.Dropout(dropout_rate) ,
150
150
  nn.Linear(hidden_RNN//8,1)))
151
-
151
+ def can_be_compiled(self):
152
+ return True
152
153
 
153
154
 
154
155
  def forward(self, batch):
@@ -85,7 +85,9 @@ class Samformer(Base):
85
85
  activation(),
86
86
  nn.Linear(dim*2,self.out_channels*self.mul ))
87
87
 
88
-
88
+ def can_be_compiled(self):
89
+ return True
90
+
89
91
  def forward(self, batch:dict)-> float:
90
92
 
91
93
  x = batch['x_num_past'].to(self.device)
dsipts/models/Simple.py CHANGED
@@ -67,7 +67,9 @@ class Simple(Base):
67
67
  self.linear = (nn.Sequential(nn.Linear(emb_past_out_channel*self.past_steps+emb_fut_out_channel*self.future_steps+self.past_steps*self.past_channels+self.future_channels*self.future_steps,hidden_size),
68
68
  activation(),nn.Dropout(dropout_rate),
69
69
  nn.Linear(hidden_size,self.out_channels*self.future_steps*self.mul)))
70
-
70
+ def can_be_compiled(self):
71
+ return True
72
+
71
73
  def forward(self, batch):
72
74
 
73
75
  x = batch['x_num_past'].to(self.device)
dsipts/models/TFT.py CHANGED
@@ -111,6 +111,10 @@ class TFT(Base):
111
111
 
112
112
  self.outLinear = nn.Linear(d_model, self.out_channels*self.mul)
113
113
 
114
+ def can_be_compiled(self):
115
+ return False
116
+
117
+
114
118
  def forward(self, batch:dict) -> torch.Tensor:
115
119
  """Temporal Fusion Transformer
116
120
 
dsipts/models/TIDE.py CHANGED
@@ -106,7 +106,10 @@ class TIDE(Base):
106
106
 
107
107
  # linear for Y lookback
108
108
  self.linear_target = nn.Linear(self.past_steps*self.out_channels, self.future_steps*self.out_channels*self.mul)
109
-
109
+
110
+ def can_be_compiled(self):
111
+ return False
112
+
110
113
 
111
114
  def forward(self, batch:dict)-> float:
112
115
  """training process of the diffusion network
dsipts/models/TTM.py CHANGED
@@ -12,240 +12,146 @@ except:
12
12
  from .base import Base
13
13
 
14
14
 
15
-
16
- from typing import List,Union
17
-
18
- from .utils import QuantileLossMO
15
+ from .ttm.utils import get_model, get_frequency_token, count_parameters, DEFAULT_FREQUENCY_MAPPING
19
16
  from ..data_structure.utils import beauty_string
20
- from .ttm.utils import get_model, get_frequency_token, count_parameters, RMSELoss
21
-
17
+ from .utils import get_scope
22
18
 
23
19
  class TTM(Base):
20
+ handle_multivariate = True
21
+ handle_future_covariates = True
22
+ handle_categorical_variables = True
23
+ handle_quantile_loss = True
24
+ description = get_scope(handle_multivariate,handle_future_covariates,handle_categorical_variables,handle_quantile_loss)
25
+
24
26
  def __init__(self,
25
27
  model_path:str,
26
- past_steps:int,
27
- future_steps:int,
28
- freq_prefix_tuning:bool,
29
- freq:str,
30
28
  prefer_l1_loss:bool, # exog: set true to use l1 loss
31
29
  prefer_longer_context:bool,
32
- loss_type:str,
33
- num_input_channels,
34
30
  prediction_channel_indices,
35
- exogenous_channel_indices,
31
+ exogenous_channel_indices_cont,
32
+ exogenous_channel_indices_cat,
36
33
  decoder_mode,
34
+ freq,
35
+ freq_prefix_tuning,
37
36
  fcm_context_length,
38
37
  fcm_use_mixer,
39
38
  fcm_mix_layers,
40
39
  fcm_prepend_past,
41
40
  enable_forecast_channel_mixing,
42
- out_channels:int,
43
- embs:List[int],
44
- remove_last = False,
45
- optim:Union[str,None]=None,
46
- optim_config:dict=None,
47
- scheduler_config:dict=None,
48
- verbose = False,
49
- use_quantiles=False,
50
- persistence_weight:float=0.0,
51
- quantiles:List[int]=[],
52
41
  **kwargs)->None:
53
- """TODO and FIX for future and past categorical variables
54
-
55
- Args:
56
- model_path (str): _description_
57
- past_steps (int): _description_
58
- future_steps (int): _description_
59
- freq_prefix_tuning (bool): _description_
60
- freq (str): _description_
61
- prefer_l1_loss (bool): _description_
62
- loss_type (str): _description_
63
- num_input_channels (_type_): _description_
64
- prediction_channel_indices (_type_): _description_
65
- exogenous_channel_indices (_type_): _description_
66
- decoder_mode (_type_): _description_
67
- fcm_context_length (_type_): _description_
68
- fcm_use_mixer (_type_): _description_
69
- fcm_mix_layers (_type_): _description_
70
- fcm_prepend_past (_type_): _description_
71
- enable_forecast_channel_mixing (_type_): _description_
72
- out_channels (int): _description_
73
- embs (List[int]): _description_
74
- remove_last (bool, optional): _description_. Defaults to False.
75
- optim (Union[str,None], optional): _description_. Defaults to None.
76
- optim_config (dict, optional): _description_. Defaults to None.
77
- scheduler_config (dict, optional): _description_. Defaults to None.
78
- verbose (bool, optional): _description_. Defaults to False.
79
- use_quantiles (bool, optional): _description_. Defaults to False.
80
- persistence_weight (float, optional): _description_. Defaults to 0.0.
81
- quantiles (List[int], optional): _description_. Defaults to [].
82
- """
83
- super(TTM, self).__init__(verbose)
42
+
43
+ super().__init__(**kwargs)
84
44
  self.save_hyperparameters(logger=False)
85
- self.future_steps = future_steps
86
- self.use_quantiles = use_quantiles
87
- self.optim = optim
88
- self.optim_config = optim_config
89
- self.scheduler_config = scheduler_config
90
- self.persistence_weight = persistence_weight
91
- self.loss_type = loss_type
92
- self.remove_last = remove_last
93
- self.embs = embs
94
- self.freq = freq
95
- self.extend_variables = False
96
-
97
- # NOTE: For Hydra
98
- prediction_channel_indices = list(prediction_channel_indices)
99
- exogenous_channel_indices = list(exogenous_channel_indices)
100
-
101
- if len(quantiles)>0:
102
- assert len(quantiles)==3, beauty_string('ONLY 3 quantiles premitted','info',True)
103
- self.use_quantiles = True
104
- self.mul = len(quantiles)
105
- self.loss = QuantileLossMO(quantiles)
106
- self.extend_variables = True
107
- if out_channels * 3 != len(prediction_channel_indices):
108
- prediction_channel_indices, exogenous_channel_indices, num_input_channels = self.__add_quantile_features(prediction_channel_indices,
109
- exogenous_channel_indices,
110
- out_channels)
45
+
46
+
47
+
48
+ self.index_fut = list(exogenous_channel_indices_cont)
49
+
50
+ if len(exogenous_channel_indices_cat)>0:
51
+ self.index_fut_cat = (self.past_channels+len(self.embs_past))+list(exogenous_channel_indices_cat)
111
52
  else:
112
- self.mul = 1
113
- if self.loss_type == 'mse':
114
- self.loss = nn.MSELoss(reduction="mean")
115
- elif self.loss_type == 'rmse':
116
- self.loss = RMSELoss()
117
- else:
118
- self.loss = nn.L1Loss()
53
+ self.index_fut_cat = []
54
+ self.freq = freq
55
+
56
+ base_freq_token = get_frequency_token(self.freq) # e.g., shape [n_token] or scalar
57
+ # ensure it's a tensor of integer type
58
+ if not torch.is_tensor(base_freq_token):
59
+ base_freq_token = torch.tensor(base_freq_token)
60
+ base_freq_token = base_freq_token.long()
61
+ self.register_buffer("token", base_freq_token, persistent=True)
62
+
119
63
 
120
64
  self.model = get_model(
121
65
  model_path=model_path,
122
- context_length=past_steps,
123
- prediction_length=future_steps,
124
- freq_prefix_tuning=freq_prefix_tuning,
125
- freq=freq,
66
+ context_length=self.past_steps,
67
+ prediction_length=self.future_steps,
126
68
  prefer_l1_loss=prefer_l1_loss,
127
69
  prefer_longer_context=prefer_longer_context,
128
- num_input_channels=num_input_channels,
70
+ num_input_channels=self.past_channels+len(self.embs_past), #giusto
129
71
  decoder_mode=decoder_mode,
130
72
  prediction_channel_indices=list(prediction_channel_indices),
131
- exogenous_channel_indices=list(exogenous_channel_indices),
73
+ exogenous_channel_indices=self.index_fut + self.index_fut_cat,
132
74
  fcm_context_length=fcm_context_length,
133
75
  fcm_use_mixer=fcm_use_mixer,
134
76
  fcm_mix_layers=fcm_mix_layers,
77
+ freq=freq,
78
+ freq_prefix_tuning=freq_prefix_tuning,
135
79
  fcm_prepend_past=fcm_prepend_past,
136
- #loss='mse',
137
80
  enable_forecast_channel_mixing=enable_forecast_channel_mixing,
81
+
138
82
  )
139
- self.__freeze_backbone()
140
-
141
- def __add_quantile_features(self, prediction_channel_indices, exogenous_channel_indices, out_channels):
142
- prediction_channel_indices = list(range(out_channels * 3))
143
- exogenous_channel_indices = [prediction_channel_indices[-1] + i for i in range(1, len(exogenous_channel_indices)+1)]
144
- num_input_channels = len(prediction_channel_indices) + len(exogenous_channel_indices)
145
- return prediction_channel_indices, exogenous_channel_indices, num_input_channels
83
+ hidden_size = self.model.config.hidden_size
84
+ self.model.prediction_head = torch.nn.Linear(hidden_size, self.out_channels*self.mul)
85
+ self._freeze_backbone()
146
86
 
147
- def __freeze_backbone(self):
87
+ def _freeze_backbone(self):
148
88
  """
149
89
  Freeze the backbone of the model.
150
90
  This is useful when you want to fine-tune only the head of the model.
151
91
  """
152
- print(
153
- "Number of params before freezing backbone",
154
- count_parameters(self.model),
155
- )
92
+ beauty_string(f"Number of params before freezing backbone:{count_parameters(self.model)}",'info',self.verbose)
93
+
156
94
  # Freeze the backbone of the model
157
95
  for param in self.model.backbone.parameters():
158
96
  param.requires_grad = False
159
97
  # Count params
160
- print(
161
- "Number of params after freezing the backbone",
162
- count_parameters(self.model),
163
- )
98
+ beauty_string(f"Number of params after freezing the backbone: {count_parameters(self.model)}",'info',self.verbose)
99
+
164
100
 
165
- def __scaler(self, input):
166
- #new_data = torch.tensor([MinMaxScaler().fit_transform(step_data) for step_data in data])
167
- for i, e in enumerate(self.embs):
101
+ def _scaler_past(self, input):
102
+ for i, e in enumerate(self.embs_past):
103
+ input[:,:,i] = input[:, :, i] / (e-1)
104
+ return input
105
+ def _scaler_fut(self, input):
106
+ for i, e in enumerate(self.embs_fut):
168
107
  input[:,:,i] = input[:, :, i] / (e-1)
169
108
  return input
170
-
171
- def __build_tupla_indexes(self, size, target_idx, current_idx):
172
- permute = list(range(size))
173
- history = dict()
174
- for j, i in enumerate(target_idx):
175
- c = history.get(current_idx[j], current_idx[j])
176
- permute[i], permute[c] = current_idx[j], i
177
- history[i] = current_idx[j]
178
-
179
-
180
- def __permute_indexes(self, values, target_idx, current_idx):
181
- if current_idx is None or target_idx is None:
182
- raise ValueError("Indexes cannot be None")
183
- if sorted(current_idx) != sorted(target_idx):
184
- return values[..., self.__build_tupla_indexes(values.shape[-1], target_idx, current_idx)]
185
- return values
186
-
187
- def __extend_with_quantile_variables(self, x, original_indexes):
188
- covariate_indexes = [i for i in range(x.shape[-1]) if i not in original_indexes]
189
- covariate_tensors = x[..., covariate_indexes]
190
-
191
- new_tensors = [x[..., target_index] for target_index in original_indexes for _ in range(3)]
192
109
 
193
- new_original_indexes = list(range(len(original_indexes) * 3))
194
- return torch.cat([torch.stack(new_tensors, dim=-1), covariate_tensors], dim=-1), new_original_indexes
195
-
110
+ def can_be_compiled(self):
111
+ return True
112
+
196
113
  def forward(self, batch):
197
- x_enc = batch['x_num_past']
114
+ x_enc = batch['x_num_past'].to(self.device)
198
115
  original_indexes = batch['idx_target'][0].tolist()
199
- original_indexes_future = batch['idx_target_future'][0].tolist()
200
116
 
201
117
 
202
- if self.extend_variables:
203
- x_enc, original_indexes = self.__extend_with_quantile_variables(x_enc, original_indexes)
204
-
205
118
  if 'x_cat_past' in batch.keys():
206
119
  x_mark_enc = batch['x_cat_past'].to(torch.float32).to(self.device)
207
- x_mark_enc = self.__scaler(x_mark_enc)
120
+ x_mark_enc = self._scaler_past(x_mark_enc)
208
121
  past_values = torch.cat((x_enc,x_mark_enc), axis=-1).type(torch.float32)
209
122
  else:
210
123
  past_values = x_enc
211
124
 
212
- x_dec = torch.tensor([]).to(self.device)
125
+ future_values = torch.zeros_like(past_values).to(self.device)
126
+ future_values = future_values[:,:self.future_steps,:]
127
+
213
128
  if 'x_num_future' in batch.keys():
214
- x_dec = batch['x_num_future'].to(self.device)
215
- if self.extend_variables:
216
- x_dec, original_indexes_future = self.__extend_with_quantile_variables(x_dec, original_indexes_future)
129
+ future_values[:,:,self.index_fut] = batch['x_num_future'].to(self.device)
217
130
  if 'x_cat_future' in batch.keys():
218
131
  x_mark_dec = batch['x_cat_future'].to(torch.float32).to(self.device)
219
- x_mark_dec = self.__scaler(x_mark_dec)
220
- future_values = torch.cat((x_dec, x_mark_dec), axis=-1).type(torch.float32)
221
- else:
222
- future_values = x_dec
223
-
224
- if self.remove_last:
225
- idx_target = batch['idx_target'][0]
226
- x_start = x_enc[:,-1,idx_target].unsqueeze(1)
227
- x_enc[:,:,idx_target]-=x_start
228
-
132
+ x_mark_dec = self._scaler_fut(x_mark_dec)
133
+ future_values[:,:,self.index_cat_fut] = x_mark_dec
134
+
229
135
 
230
- past_values = self.__permute_indexes(past_values, self.model.prediction_channel_indices, original_indexes)
136
+ #investigating!! problem with dynamo!
137
+ #freq_token = get_frequency_token(self.freq).repeat(past_values.shape[0])
231
138
 
232
-
233
- future_values = self.__permute_indexes(future_values, self.model.prediction_channel_indices, original_indexes_future)
139
+ batch_size = past_values.shape[0]
140
+ freq_token = self.token.repeat(batch_size).long().to(self.device)
234
141
 
235
- freq_token = get_frequency_token(self.freq).repeat(x_enc.shape[0])
236
142
 
237
143
  res = self.model(
238
144
  past_values= past_values,
239
- future_values= future_values,
145
+ future_values= future_values,# future_values if future_values.shape[0]>0 else None,
240
146
  past_observed_mask = None,
241
147
  future_observed_mask = None,
242
148
  output_hidden_states = False,
243
149
  return_dict = False,
244
- freq_token= freq_token,
150
+ freq_token= freq_token,#[0:past_values.shape[0]], ##investigating
245
151
  static_categorical_values = None
246
152
  )
247
- #args = None
248
- #res = self.model(**args)
153
+
154
+
249
155
  BS = res.shape[0]
250
156
  return res.reshape(BS,self.future_steps,-1,self.mul)
251
157
 
dsipts/models/TimeXER.py CHANGED
@@ -125,7 +125,9 @@ class TimeXER(Base):
125
125
 
126
126
 
127
127
 
128
-
128
+ def can_be_compiled(self):
129
+ return True
130
+
129
131
 
130
132
 
131
133
  def forward(self, batch:dict)-> float:
dsipts/models/base.py CHANGED
@@ -111,8 +111,11 @@ class Base(pl.LightningModule):
111
111
  self.train_loss_epoch = -100.0
112
112
  self.verbose = verbose
113
113
  self.name = self.__class__.__name__
114
- self.train_epoch_metrics = []
115
- self.validation_epoch_metrics = []
114
+ self.register_buffer("train_epoch_metrics", torch.tensor(0.0))
115
+ self.register_buffer("validation_epoch_metrics", torch.tensor(0.0))
116
+ self.register_buffer("train_epoch_count", torch.tensor(0))
117
+ self.register_buffer("validation_epoch_count", torch.tensor(0))
118
+
116
119
 
117
120
  self.use_quantiles = True if len(quantiles)>0 else False
118
121
  self.quantiles = quantiles
@@ -295,7 +298,8 @@ class Base(pl.LightningModule):
295
298
  y_hat = self(batch)
296
299
  loss = self.compute_loss(batch,y_hat)
297
300
 
298
- self.train_epoch_metrics.append(loss.item())
301
+ self.train_epoch_metrics+=loss.detach()
302
+ self.train_epoch_count +=1
299
303
  return loss
300
304
 
301
305
 
@@ -311,27 +315,20 @@ class Base(pl.LightningModule):
311
315
  y_hat = self(batch)
312
316
  score = 0
313
317
  if batch_idx==0:
314
- if self.use_quantiles:
315
- idx = 1
316
- else:
317
- idx = 0
318
- #track the predictions! We can do better than this but maybe it is better to firstly update pytorch-lightening
319
-
318
+
320
319
  if self.count_epoch%int(max(self.trainer.max_epochs/100,1))==1:
321
-
322
- for i in range(batch['y'].shape[2]):
323
- real = batch['y'][0,:,i].cpu().detach().numpy()
324
- pred = y_hat[0,:,i,idx].cpu().detach().numpy()
325
- fig, ax = plt.subplots(figsize=(7,5))
326
- ax.plot(real,'o-',label='real')
327
- ax.plot(pred,'o-',label='pred')
328
- ax.legend()
329
- ax.set_title(f'Channel {i} first element first batch validation {int(100*self.count_epoch/self.trainer.max_epochs)}%')
330
- self.logger.experiment.track(Image(fig), name='cm_training_end')
331
- #self.log(f"example_{i}", np.stack([real, pred]).T,sync_dist=True)
332
-
333
- return self.compute_loss(batch,y_hat)+score
334
-
320
+ self._val_outputs.append({
321
+ "y": batch['y'].detach().cpu(),
322
+ "y_hat": y_hat.detach().cpu()
323
+ })
324
+ self.validation_epoch_metrics = (self.compute_loss(batch,y_hat)+score).detach()
325
+ self.validation_epoch_count+=1
326
+
327
+ return None #self.compute_loss(batch,y_hat)+score
328
+
329
+ def on_validation_start(self):
330
+ # reset buffer each epoch
331
+ self._val_outputs = []
335
332
 
336
333
  def validation_epoch_end(self, outs):
337
334
  """
@@ -339,14 +336,30 @@ class Base(pl.LightningModule):
339
336
 
340
337
  :meta private:
341
338
  """
342
- if len(outs)==0:
343
- loss = 10000
344
- beauty_string(f'THIS IS A BUG, It should be polulated','info',self.verbose)
345
- else:
346
- loss = torch.stack(outs).mean()
347
-
348
- self.log("val_loss", loss.item(),sync_dist=True)
349
- beauty_string(f'Epoch: {self.count_epoch} train error: {self.train_loss_epoch:.4f} validation loss: {loss.item():.4f}','info',self.verbose)
339
+ if len(self._val_outputs)>0:
340
+ ys = torch.cat([o["y"] for o in self._val_outputs])
341
+ y_hats = torch.cat([o["y_hat"] for o in self._val_outputs])
342
+ if self.use_quantiles:
343
+ idx = 1
344
+ else:
345
+ idx = 0
346
+ for i in range(ys.shape[2]):
347
+ real = ys[0,:,i].cpu().detach().numpy()
348
+ pred = y_hats[0,:,i,idx].cpu().detach().numpy()
349
+ fig, ax = plt.subplots(figsize=(7,5))
350
+ ax.plot(real,'o-',label='real')
351
+ ax.plot(pred,'o-',label='pred')
352
+ ax.legend()
353
+ ax.set_title(f'Channel {i} first element first batch validation {int(100*self.count_epoch/self.trainer.max_epochs)}%')
354
+ self.logger.experiment.track(Image(fig), name='cm_training_end')
355
+ #self.log(f"example_{i}", np.stack([real, pred]).T,sync_dist=True)
356
+ plt.close(fig)
357
+ avg = self.validation_epoch_metrics/self.validation_epoch_count
358
+
359
+ self.validation_epoch_metrics.zero_()
360
+ self.validation_epoch_count.zero_()
361
+ self.log("val_loss", avg,sync_dist=True)
362
+ beauty_string(f'Epoch: {self.count_epoch} train error: {self.train_loss_epoch:.4f} validation loss: {avg:.4f}','info',self.verbose)
350
363
 
351
364
  def training_epoch_end(self, outs):
352
365
  """
@@ -355,12 +368,11 @@ class Base(pl.LightningModule):
355
368
  :meta private:
356
369
  """
357
370
 
358
- loss = sum(outs['loss'] for outs in outs) / len(outs)
359
- self.log("train_loss", loss.item(),sync_dist=True)
371
+ loss = self.train_epoch_metrics/self.global_step
372
+ self.log("train_loss", loss,sync_dist=True)
360
373
  self.count_epoch+=1
361
374
 
362
- self.train_loss_epoch = loss.item()
363
-
375
+ self.train_loss_epoch = loss
364
376
  def compute_loss(self,batch,y_hat):
365
377
  """
366
378
  custom loss calculation
dsipts/models/base_v2.py CHANGED
@@ -15,7 +15,6 @@ from typing import List, Union
15
15
  from .utils import QuantileLossMO, CPRS
16
16
  import torch.nn as nn
17
17
 
18
-
19
18
  def standardize_momentum(x,order):
20
19
  mean = torch.mean(x,1).unsqueeze(1).repeat(1,x.shape[1],1)
21
20
  num = torch.pow(x-mean,order).mean(axis=1)
@@ -113,8 +112,13 @@ class Base(pl.LightningModule):
113
112
  self.train_loss_epoch = -100.0
114
113
  self.verbose = verbose
115
114
  self.name = self.__class__.__name__
116
- self.train_epoch_metrics = []
117
- self.validation_epoch_metrics = []
115
+ #self.train_epoch_metrics = 0
116
+ #self.validation_epoch_metrics = 0
117
+
118
+ self.register_buffer("train_epoch_metrics", torch.tensor(0.0))
119
+ self.register_buffer("validation_epoch_metrics", torch.tensor(0.0))
120
+ self.register_buffer("train_epoch_count", torch.tensor(0))
121
+ self.register_buffer("validation_epoch_count", torch.tensor(0))
118
122
 
119
123
  self.use_quantiles = True if len(quantiles)>0 else False
120
124
  self.quantiles = quantiles
@@ -299,10 +303,11 @@ class Base(pl.LightningModule):
299
303
  y_hat = self(batch)
300
304
  loss = self.compute_loss(batch,y_hat)
301
305
 
302
- self.train_epoch_metrics.append(loss.item())
306
+ self.train_epoch_metrics+=loss.detach()
307
+ self.train_epoch_count +=1
303
308
  return loss
304
309
 
305
-
310
+
306
311
  def validation_step(self, batch, batch_idx):
307
312
  """
308
313
  pythotrch lightening stuff
@@ -315,42 +320,54 @@ class Base(pl.LightningModule):
315
320
  else:
316
321
  y_hat = self(batch)
317
322
  score = 0
318
- if batch_idx==0:
319
- if self.use_quantiles:
320
- idx = 1
321
- else:
322
- idx = 0
323
- #track the predictions! We can do better than this but maybe it is better to firstly update pytorch-lightening
323
+ #log_this_batch = (batch_idx == 0) and (self.count_epoch % int(max(self.trainer.max_epochs / 100,1)) == 1)
324
324
 
325
- if self.count_epoch%int(max(self.trainer.max_epochs/100,1))==1:
326
-
327
- for i in range(batch['y'].shape[2]):
328
- real = batch['y'][0,:,i].cpu().detach().numpy()
329
- pred = y_hat[0,:,i,idx].cpu().detach().numpy()
330
- fig, ax = plt.subplots(figsize=(7,5))
331
- ax.plot(real,'o-',label='real')
332
- ax.plot(pred,'o-',label='pred')
333
- ax.legend()
334
- ax.set_title(f'Channel {i} first element first batch validation {int(100*self.count_epoch/self.trainer.max_epochs)}%')
335
- self.logger.experiment.track(Image(fig), name='cm_training_end')
336
- #self.log(f"example_{i}", np.stack([real, pred]).T,sync_dist=True)
337
- self.validation_epoch_metrics.append(self.compute_loss(batch,y_hat)+score)
338
- return
325
+ #if log_this_batch:
326
+ #track the predictions! We can do better than this but maybe it is better to firstly update pytorch-lightening
327
+ self._val_outputs=[{
328
+ "y": batch['y'].detach().cpu(),
329
+ "y_hat": y_hat.detach().cpu()
330
+ }]
331
+ self.validation_epoch_metrics+= (self.compute_loss(batch,y_hat)+score).detach()
332
+ self.validation_epoch_count+=1
333
+ return None
339
334
 
335
+ def on_validation_start(self):
336
+ # reset buffer each epoch
337
+ self._val_outputs = []
338
+
340
339
 
341
340
  def on_validation_epoch_end(self):
342
341
  """
343
342
  pythotrch lightening stuff
344
343
 
345
344
  :meta private:
346
- """
345
+ """
347
346
 
348
- if len(self.validation_epoch_metrics)==0:
349
- avg = 10000
350
- beauty_string(f'THIS IS A BUG, It should be polulated','info',self.verbose)
351
- else:
352
- avg = torch.stack(self.validation_epoch_metrics).mean()
353
- self.validation_epoch_metrics = []
347
+ if len(self._val_outputs)>0:
348
+ ys = torch.cat([o["y"] for o in self._val_outputs])
349
+ y_hats = torch.cat([o["y_hat"] for o in self._val_outputs])
350
+ if self.use_quantiles:
351
+ idx = 1
352
+ else:
353
+ idx = 0
354
+ for i in range(ys.shape[2]):
355
+ real = ys[0,:,i].cpu().detach().numpy()
356
+ pred = y_hats[0,:,i,idx].cpu().detach().numpy()
357
+ fig, ax = plt.subplots(figsize=(7,5))
358
+ ax.plot(real,'o-',label='real')
359
+ ax.plot(pred,'o-',label='pred')
360
+ ax.legend()
361
+ ax.set_title(f'Channel {i} first element first batch validation {int(100*self.count_epoch/self.trainer.max_epochs)}%')
362
+ self.logger.experiment.track(Image(fig), name='cm_training_end')
363
+ #self.log(f"example_{i}", np.stack([real, pred]).T,sync_dist=True)
364
+ plt.close(fig)
365
+
366
+
367
+ avg = self.validation_epoch_metrics/self.validation_epoch_count
368
+
369
+ self.validation_epoch_metrics.zero_()
370
+ self.validation_epoch_count.zero_()
354
371
  self.log("val_loss", avg,sync_dist=True)
355
372
  beauty_string(f'Epoch: {self.count_epoch} train error: {self.train_loss_epoch:.4f} validation loss: {avg:.4f}','info',self.verbose)
356
373
 
@@ -361,14 +378,12 @@ class Base(pl.LightningModule):
361
378
 
362
379
  :meta private:
363
380
  """
364
- if len(self.train_epoch_metrics)==0:
365
- avg = 0
366
- beauty_string(f'THIS IS A BUG, It should be polulated','info',self.verbose)
367
- else:
368
- avg = np.stack(self.train_epoch_metrics).mean()
381
+
382
+ avg = self.train_epoch_metrics/self.train_epoch_count
369
383
  self.log("train_loss", avg,sync_dist=True)
370
384
  self.count_epoch+=1
371
- self.train_epoch_metrics = []
385
+ self.train_epoch_metrics.zero_()
386
+ self.train_epoch_count.zero_()
372
387
  self.train_loss_epoch = avg
373
388
 
374
389
  def compute_loss(self,batch,y_hat):
@@ -219,7 +219,7 @@ class SparseDispatcher(object):
219
219
  # expand according to batch index so we can just split by _part_sizes
220
220
  inp_exp = inp[self._batch_index].squeeze(1)
221
221
  return torch.split(inp_exp, self._part_sizes, dim=0)
222
-
222
+
223
223
  def combine(self, expert_out, multiply_by_gates=True):
224
224
  """Sum together the expert output, weighted by the gates.
225
225
  The slice corresponding to a particular batch element `b` is computed
@@ -234,7 +234,9 @@ class SparseDispatcher(object):
234
234
  a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
235
235
  """
236
236
  # apply exp to expert outputs, so we are not longer in log space
237
+
237
238
  stitched = torch.cat(expert_out, 0)
239
+
238
240
  if multiply_by_gates:
239
241
  # stitched = stitched.mul(self._nonzero_gates)
240
242
  stitched = torch.einsum("i...,ij->i...", stitched, self._nonzero_gates)
@@ -430,9 +432,11 @@ class Linear_extractor_cluster(nn.Module):
430
432
  expert_inputs = dispatcher.dispatch(x_norm)
431
433
 
432
434
  gates = dispatcher.expert_to_gates()
435
+
433
436
  expert_outputs = [
434
437
  self.experts[i](expert_inputs[i]) for i in range(self.num_experts)
435
438
  ]
439
+ #y = dispatcher.combine([e for e in expert_outputs if len(e)>0])
440
+ #with torch._dynamo.disable():
436
441
  y = dispatcher.combine(expert_outputs)
437
-
438
442
  return y, loss
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dsipts
3
- Version: 1.1.10
3
+ Version: 1.1.12
4
4
  Summary: Unified library for timeseries modelling
5
5
  Author-email: Andrea Gobbi <agobbi@fbk.eu>
6
6
  Project-URL: Homepage, https://github.com/DSIP-FBK/DSIPTS
@@ -3,33 +3,33 @@ dsipts/data_management/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3
3
3
  dsipts/data_management/monash.py,sha256=aZxq9FbIH6IsU8Lwou1hAokXjgOAK-wdl2VAeFg2k4M,13075
4
4
  dsipts/data_management/public_datasets.py,sha256=yXFzOZZ-X0ZG1DoqVU-zFmEGVMc2033YDQhRgYxY8ws,6793
5
5
  dsipts/data_structure/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- dsipts/data_structure/data_structure.py,sha256=87VtKelx2EPoddrVYcja9dO5rQqaS83vZlQB_NY54PI,58994
6
+ dsipts/data_structure/data_structure.py,sha256=KVkjTVjc7NznJIou4LYGzMbzE7ye-K3ll65GEgn2qKg,60814
7
7
  dsipts/data_structure/modifiers.py,sha256=qlry9dfw8pEE0GrvgwROZJkJ6oPpUnjEHPIG5qIetss,7948
8
8
  dsipts/data_structure/utils.py,sha256=QwfKPZgSy6DIw5n6ztOdPJIAnzo4EnlMTgRbpiWnyko,6593
9
- dsipts/models/Autoformer.py,sha256=ddGT3L9T4gAXNJHx1TsuYZy7j63Anyr0rkqqXaOoSu4,8447
10
- dsipts/models/CrossFormer.py,sha256=iO64L3S01jxuWA9dmm8FsK1WRvBIXbZ0PQ2tZlEQg4w,6481
11
- dsipts/models/D3VAE.py,sha256=NstHIniNteBRrkfL7SJ3-bJEl3l3IIxoSxavRV3j16U,6857
12
- dsipts/models/Diffusion.py,sha256=pUujnrdeSSkj4jC1RORbcptt03KpuCsGVwg414o4LPg,40733
13
- dsipts/models/DilatedConv.py,sha256=_c0NvFuT3vbYmo9A8cQchGo1XVb0qOpzBprNEkkAgiE,14292
14
- dsipts/models/DilatedConvED.py,sha256=fXk1-EWiRC5J_VIepTjYKya_D02SlEAkyiJcCjhW_XU,14004
15
- dsipts/models/Duet.py,sha256=EharWHT_r7tEYIk7BkozVLPZ0xptE5mmQmeFGm3uBsA,7628
16
- dsipts/models/ITransformer.py,sha256=jO8wxLaC06Wgu4GncrFFTISv3pVyfFLLhQvbEOYsz6Y,7368
17
- dsipts/models/Informer.py,sha256=ByJ00qGk12ONFF7NZWAACzxxRb5UXcu5wpkGMYX9Cq4,6920
18
- dsipts/models/LinearTS.py,sha256=B0-Sz4POwUyl-PN2ssSx8L-ZHgwrQQPcMmreyvSS47U,9104
19
- dsipts/models/PatchTST.py,sha256=Z7DM1Kw5Ym8Hh9ywj0j9RuFtKaz_yVZmKFIYafjceM8,9061
9
+ dsipts/models/Autoformer.py,sha256=nUQvPC_qtajLT1AHdNJmF_P3ZL01j3spkZ4ubxdGF3g,8497
10
+ dsipts/models/CrossFormer.py,sha256=ClW6H_hrtLJH0iqTC7q_ya_Bwc_Xu-0lpAN5w2DSUYk,6526
11
+ dsipts/models/D3VAE.py,sha256=d1aY6kGjBSxZncN-KPWpdUGunu182ng2QFInGFrKYQM,6903
12
+ dsipts/models/Diffusion.py,sha256=owst4IxA3hkEEIrn5K-zwAYWUzEhouiRPwM4nTLcyoE,40786
13
+ dsipts/models/DilatedConv.py,sha256=TMDzd_cNgCZa6YusVVVGbTGGH3YlMz0IZZ9ZxRrJ3i4,14334
14
+ dsipts/models/DilatedConvED.py,sha256=KwG83yHqoEx_Vmea69zTPsSP1-0GdOUrtXwvhNDuWj8,14048
15
+ dsipts/models/Duet.py,sha256=m67PStuYE6vkFUFUofBrrLryx1ZUZropyVGcu_ygOx8,7681
16
+ dsipts/models/ITransformer.py,sha256=2WXqqEvnWH2DqRQyXfGm4Eg4_q32GFy2XnNeoTl-KmY,7310
17
+ dsipts/models/Informer.py,sha256=gxCdU2KkNhadyMujBA5A0eP6SPN4Q0IkEIogLYwvz5k,6970
18
+ dsipts/models/LinearTS.py,sha256=vXaGpbbkfdpzpTEWZ1hs6QI6j3vDvevD3SyKQXo6Sdg,9151
19
+ dsipts/models/PatchTST.py,sha256=1O09cPMg8USdkt5q6szTiz5dIY45kizsf6gt6vLKnQo,9119
20
20
  dsipts/models/Persistent.py,sha256=URwyaBb0M7zbPXSGMImtHlwC9XCy-OquFCwfWvn3P70,1249
21
- dsipts/models/RNN.py,sha256=GbH6QyrGhvQg-Hnt_0l3YSnhNHE0Hl0AWsZpdQUAzug,9633
22
- dsipts/models/Samformer.py,sha256=s61Hi1o9iuw-KgSBPfiE80oJcK1j2fUA6N9f5BJgKJc,5551
23
- dsipts/models/Simple.py,sha256=K82E88A62NhV_7U9Euu2cn3Q8P287HDR7eIy7VqgwbM,3909
24
- dsipts/models/TFT.py,sha256=JO2-AKIUag7bfm9Oeo4KmGfdYZJbzQBHPDqGVg0WUZI,13830
25
- dsipts/models/TIDE.py,sha256=i8qXac2gImEVgE2X6cNxqW5kuQP3rzWMlQNdgJbNmKM,13033
26
- dsipts/models/TTM.py,sha256=WpCiTN0qX3JFO6xgPLedoqMKXUC2pQpNAe9ee-Rw89Q,10602
27
- dsipts/models/TimeXER.py,sha256=aCg0003LxYZzqZWyWugpbW_iOybcdHN4OH6_v77qp4o,7056
21
+ dsipts/models/RNN.py,sha256=RnsRDAQ2z5-XNaJVZd6Q7z23WvPR2uLVdi7BNQyF7QE,9685
22
+ dsipts/models/Samformer.py,sha256=Kt7B9ID3INtFDAVKIM1LTly5-UfKCaVZ9uxAJmYv6B4,5606
23
+ dsipts/models/Simple.py,sha256=8wRSO-gh_Z6Sl8fYMV-RIXIL0RrO5u5dDtsaq-OsKg0,3960
24
+ dsipts/models/TFT.py,sha256=JiI90ikfP8aaR_rtczu8CyGMNLTgml13aYQifgIC_yo,13888
25
+ dsipts/models/TIDE.py,sha256=S1KlKqFOR3jJ9DDiTqeaKvya9hYBsNHBVqwJsYX3FLU,13094
26
+ dsipts/models/TTM.py,sha256=lOOo5dR5nOmf37cND6C8ft8TVl0kzNeraIuABw7eI5g,5897
27
+ dsipts/models/TimeXER.py,sha256=EkmlHfT2RegY6Ce6q8EUEV1a_WZ6SkYibnOZXqsyd_8,7111
28
28
  dsipts/models/VQVAEA.py,sha256=sNJi8UZh-10qEIKcZK3SzhlOFUUjvqjoglzeZBFaeZM,13789
29
29
  dsipts/models/VVA.py,sha256=BnPkJ0Nzue0oShSHZVRNlf5RvT0Iwtf9bx19vLB9Nn0,11939
30
30
  dsipts/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- dsipts/models/base.py,sha256=0r_gGD9CPAVmuqTmySugTpCVUgoHJrwaMAqLx3P-ZBw,19021
32
- dsipts/models/base_v2.py,sha256=b_RaVTBnA2dU4HpVPI-P0_VkmbsQHtYzxVf5iFVvp1U,19299
31
+ dsipts/models/base.py,sha256=Gqsycy8ZXGaIVx9vvmYRpBCqdUxGE4tvC5ltgxlpEYY,19640
32
+ dsipts/models/base_v2.py,sha256=03cueZExRhkJyBVIHuUPB8sjsCd5Go1HJAR81CADg-c,19896
33
33
  dsipts/models/utils.py,sha256=kjTwyktNCFMpPUy6zoleBCSKlvMvK_Jkgyh2T1OXg3E,24497
34
34
  dsipts/models/autoformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  dsipts/models/autoformer/layers.py,sha256=xHt8V1lKdD1cIvgxXdDbI_EqOz4zgOQ6LP8l7M1pAxM,13276
@@ -47,7 +47,7 @@ dsipts/models/d3vae/neural_operations.py,sha256=C70kUtQ0ox9MeXBdu4rPDqt022_hVtcN
47
47
  dsipts/models/d3vae/resnet.py,sha256=3bnlrEBM2DGiAJV8TeSv2tm27Gm-_P6hee41t8QQFL8,5520
48
48
  dsipts/models/d3vae/utils.py,sha256=fmUsE_67uwizjeR1_pDdsndyQddbqt27Lv31XBEn-gw,23798
49
49
  dsipts/models/duet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- dsipts/models/duet/layers.py,sha256=ikMAKr4DzhGt9J1KuBBQzVYXMHZUZVsV29P6TVJCa_Y,18141
50
+ dsipts/models/duet/layers.py,sha256=TTrhlfSwIXE_7gO9rsdKJD9Bdy3B_JJPCo8vYZJ8Fvg,18258
51
51
  dsipts/models/duet/masked.py,sha256=lkdAB5kwAgV7QfBSVP_QeDr_mB09Rz4302p-KwZpUV4,7111
52
52
  dsipts/models/informer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  dsipts/models/informer/attn.py,sha256=ghrQGfAqt-Z_7qU5D_aixobmwk6pBKMLAdaNfg-QZbo,6839
@@ -76,7 +76,7 @@ dsipts/models/vva/minigpt.py,sha256=bg0JddqSD322uxSGexen3nPXL_hGTsk3vNLR62d7-w8,
76
76
  dsipts/models/vva/vqvae.py,sha256=RzCQ_M9xBprp7_x20dSV3EQqlO0FjPUGWV-qdyKrQsM,19680
77
77
  dsipts/models/xlstm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
78
  dsipts/models/xlstm/xLSTM.py,sha256=ZKZZmffmIq1Vb71CR4GSyM8viqVx-u0FChxhcNgHub8,10081
79
- dsipts-1.1.10.dist-info/METADATA,sha256=hwFJB926XiPZjhisLz-Usqpic_ty16lk3ZwvHoZHC0c,24795
80
- dsipts-1.1.10.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
81
- dsipts-1.1.10.dist-info/top_level.txt,sha256=i6o0rf5ScFwZK21E89dSKjVNjUBkrEQpn0-Vij43748,7
82
- dsipts-1.1.10.dist-info/RECORD,,
79
+ dsipts-1.1.12.dist-info/METADATA,sha256=nxE2kAg9RvG5Py27sMNbQ-mUIu9mtZrDo2WocLpJdQ4,24795
80
+ dsipts-1.1.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
81
+ dsipts-1.1.12.dist-info/top_level.txt,sha256=i6o0rf5ScFwZK21E89dSKjVNjUBkrEQpn0-Vij43748,7
82
+ dsipts-1.1.12.dist-info/RECORD,,