drizzle 2.2.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
drizzle/resample.py ADDED
@@ -0,0 +1,1158 @@
1
+ """
2
+ The `drizzle` module defines the `Drizzle` class, for combining input
3
+ images into a single output image using the drizzle algorithm.
4
+ """
5
+
6
+ import warnings
7
+
8
+ import numpy as np
9
+
10
+ from drizzle import cdrizzle
11
+
12
+ __all__ = ["Drizzle", "blot_image"]
13
+
14
+ SUPPORTED_DRIZZLE_KERNELS = [
15
+ "square",
16
+ "gaussian",
17
+ "point",
18
+ "turbo",
19
+ "lanczos2",
20
+ "lanczos3",
21
+ ]
22
+
23
+ CTX_PLANE_BITS = 32
24
+
25
+
26
+ _DEPRECATED_ARG = object()
27
+
28
+
29
+ class Drizzle:
30
+ """
31
+ A class for managing resampling and co-adding of multiple images onto a
32
+ common output grid. The main method of this class is :py:meth:`add_image`.
33
+ The main functionality of this class is to resample and co-add multiple
34
+ images onto one output image using the "drizzle" algorithm described in
35
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
36
+ In the simplest terms, it redistributes flux
37
+ from input pixels to one or more output pixels based on the chosen kernel,
38
+ supplied weights, and input-to-output coordinate transformations as defined
39
+ by the ``pixmap`` argument. For more details, see :ref:`main-user-doc`.
40
+
41
+ This class keeps track of the total exposure time of all co-added images
42
+ and also of which input images have contributed to an output (resampled)
43
+ pixel. This is accomplished via *context image*.
44
+
45
+ Main outputs of :py:meth:`add_image` can be accessed as class properties
46
+ ``out_img``, ``out_img2``, ``out_wht``, ``out_ctx``, and ``exptime``.
47
+
48
+ .. warning::
49
+ Output arrays (``out_img``, ``out_img2``, ``out_wht``, and ``out_ctx``)
50
+ can be pre-allocated by the caller and be passed to the initializer or
51
+ the class initializer can allocate these arrays based on other input
52
+ parameters such as ``output_shape``. If caller-supplied output arrays
53
+ have the correct type (`numpy.float32` for ``out_img``, ``out_img2``
54
+ and ``out_wht``, `numpy.int32` for the ``out_ctx`` array and
55
+ `numpy.uint32` for the ``out_dq`` array) and if
56
+ ``out_ctx`` is large enough not to need to be resized, these arrays
57
+ will be used as is and may be modified by the :py:meth:`add_image`
58
+ method. If not, a copy of these arrays will be made when converting
59
+ to the expected type (or expanding the context array).
60
+
61
+ Scaling of input image data
62
+ ---------------------------
63
+
64
+ It is important to highlight that the drizzle algorithm computes
65
+ *weighted mean* of input pixel values -- see equations (4) and (5) in
66
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
67
+ Therefore, it is important that all input pixel values that contribute
68
+ to an output pixel are from the same distribution. In other words,
69
+ input pixel values from different images must be on the same footing,
70
+ i.e., they must be comparable and must be representative of the same
71
+ physical quantity.
72
+
73
+ For example, for Hubble Space Telescope data, calibrated images
74
+ (i.e., ``*_flt.fits``, ``*_flc.fits``) are in unit of counts, counts per
75
+ second, electrons, or electrons per second. To convert them to flux
76
+ units (e.g., erg/cm^2/s/Angstrom), one needs to multiply these images
77
+ by the ``PHOTFLAM``. Sometimes, images that are drizzle-combined have been
78
+ observed at very different times (separated by many years) and the
79
+ sensitivity of the instrument (represented by ``PHOTFLAM``) may have
80
+ changed significantly. Other times a source is observed in different chips,
81
+ i.e., the two chips of the Wide Field Camera. In such cases detector's
82
+ sensitivity (``PHOTFLAM``) may be different for the images to be combined.
83
+ Consequently, pixel values in these images may not be directly comparable
84
+ and drizzle-combining such images would result in systematic errors.
85
+
86
+ In this case, it is important to rescale images to the same flux units
87
+ either by multiplying by the appropriate ``PHOTFLAM`` values or some
88
+ other appropriate scaling factor before combining them using drizzle.
89
+ This can be accomplished by using the ``iscale`` parameter of
90
+ :py:meth:`add_image` which simply multiplies each input image by
91
+ ``iscale``.
92
+
93
+ Also, for the case of HST images that have flux units instead of surface
94
+ brightness, if input images have different pixel scales, then the pixel
95
+ values must be rescaled by the square of the pixel scale ratio (the linear
96
+ dimension of a side of an output pixel as seen in the input image's
97
+ coordinate frame) in order to preserve flux. In this case ``iscale`` is
98
+ equivalent to ``s**2`` factor in equations (3) and (5) of
99
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_
100
+ (``s`` may be different for each input image).
101
+
102
+ Output Science Image
103
+ --------------------
104
+
105
+ Output science image is obtained by computing *weighted mean* of input
106
+ pixel values according to equations (4) and (5) in
107
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
108
+ The weights and coefficients in those equations will depend on the chosen
109
+ kernel, input image weights, and pixel overlaps computed from ``pixmap``.
110
+
111
+ Output Weight Image
112
+ -------------------
113
+
114
+ Output weight image stores the total weight of output science pixels
115
+ according to equation (4) in
116
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
117
+ It depends on the chosen kernel, input image weights, and pixel overlaps
118
+ computed from ``pixmap``.
119
+
120
+ Output Context Image
121
+ --------------------
122
+
123
+ Each pixel in the context image is a bit field that encodes
124
+ information about which input image has contributed to the corresponding
125
+ pixel in the resampled data array. Context image uses 32 bit integers to
126
+ encode this information and hence it can keep track of only 32 input images.
127
+ The first bit corresponds to the first input image, the second bit
128
+ corresponds to the second input image, and so on.
129
+ We call this (0-indexed) order "context ID" which is represented by
130
+ the ``ctx_id`` parameter/property. If the number of
131
+ input images exceeds 32, then it is necessary to have multiple context
132
+ images ("planes") to hold information about all input images, with the first
133
+ plane encoding which of the first 32 images contributed to the output data
134
+ pixel, the second plane representing next 32 input images (number 33-64),
135
+ etc. For this reason, context array is either a 2D array (if the total
136
+ number of resampled images is less than 33) of the type `numpy.int32` and
137
+ shape ``(ny, nx)`` or a a 3D array of shape ``(np, ny, nx)`` where ``nx``
138
+ and ``ny`` are dimensions of the image data. ``np`` is the number of
139
+ "planes" computed as ``(number of input images - 1) // 32 + 1``. If a bit at
140
+ position ``k`` in a pixel with coordinates ``(p, y, x)`` is 0, then input
141
+ image number ``32 * p + k`` (0-indexed) did not contribute to the output
142
+ data pixel with array coordinates ``(y, x)`` and if that bit is 1, then
143
+ input image number ``32 * p + k`` did contribute to the pixel ``(y, x)``
144
+ in the resampled image.
145
+
146
+ As an example, let's assume we have 8 input images. Then, when ``out_ctx``
147
+ pixel values are displayed using binary representation (and decimal in
148
+ parenthesis), one could see values like this::
149
+
150
+ 00000001 (1) - only first input image contributed to this output pixel;
151
+ 00000010 (2) - 2nd input image contributed;
152
+ 00000100 (4) - 3rd input image contributed;
153
+ 10000000 (128) - 8th input image contributed;
154
+ 10000100 (132=128+4) - 3rd and 8th input images contributed;
155
+ 11001101 (205=1+4+8+64+128) - input images 1, 3, 4, 7, 8 have contributed
156
+ to this output pixel.
157
+
158
+ In order to test if a specific input image contributed to an output pixel,
159
+ one needs to use bitwise operations. Using the example above, to test
160
+ whether input images number 4 and 5 have contributed to the output pixel
161
+ whose corresponding ``out_ctx`` value is 205 (11001101 in binary form) we
162
+ can do the following:
163
+
164
+ >>> bool(205 & (1 << (5 - 1))) # (205 & 16) = 0 (== 0 => False): did NOT contribute
165
+ False
166
+ >>> bool(205 & (1 << (4 - 1))) # (205 & 8) = 8 (!= 0 => True): did contribute
167
+ True
168
+
169
+ In general, to get a list of all input images that have contributed to an
170
+ output resampled pixel with image coordinates ``(x, y)``, and given a
171
+ context array ``ctx``, one can do something like this:
172
+
173
+ .. doctest-skip::
174
+
175
+ >>> import numpy as np
176
+ >>> np.flatnonzero([v & (1 << k) for v in ctx[:, y, x] for k in range(32)])
177
+
178
+ For convenience, this functionality was implemented in the
179
+ :py:func:`~drizzle.utils.decode_context` function.
180
+
181
+ Output DQ Image
182
+ ---------------
183
+
184
+ If DQ array of input image pixels is provided via ``dq`` parameter of
185
+ :py:meth:`add_image`, then an output DQ array will be computed by combining
186
+ (using bitwise-OR) DQ bitfields of all input pixels that contribute to
187
+ a given output pixel.
188
+
189
+ References
190
+ ----------
191
+ A full description of the drizzling algorithm can be found in
192
+ `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
193
+
194
+ Examples
195
+ --------
196
+ .. highlight:: python
197
+ .. code-block:: python
198
+
199
+ # wcs1 - WCS of the input image usually with distortions (to be resampled)
200
+ # wcs2 - WCS of the output image without distortions
201
+
202
+ import numpy as np
203
+ from drizzle.resample import Drizzle
204
+ from drizzle.utils import calc_pixmap
205
+
206
+ # simulate some data and a pixel map:
207
+ data = np.ones((240, 570))
208
+ pixmap = calc_pixmap(wcs1, wcs2)
209
+ # or simulate a mapping from input image to output image frame:
210
+ # y, x = np.indices((240, 570), dtype=np.float64)
211
+ # pixmap = np.dstack([x, y])
212
+
213
+ # initialize Drizzle object
214
+ d = Drizzle(out_shape=(240, 570))
215
+ d.add_image(data, exptime=15, pixmap=pixmap)
216
+
217
+ # access outputs:
218
+ d.out_img
219
+ d.out_ctx
220
+ d.out_wht
221
+
222
+ """
223
+
224
+ def __init__(
225
+ self,
226
+ kernel="square",
227
+ fillval=None,
228
+ fillval2=None,
229
+ out_shape=None,
230
+ out_img=None,
231
+ out_wht=None,
232
+ out_ctx=None,
233
+ out_img2=None,
234
+ out_dq=None,
235
+ exptime=0.0,
236
+ begin_ctx_id=0,
237
+ max_ctx_id=None,
238
+ disable_ctx=False,
239
+ ):
240
+ """
241
+ kernel: str, optional
242
+ The name of the kernel used to combine the input. The choice of
243
+ kernel controls the distribution of flux over the kernel. The kernel
244
+ names are: "square", "gaussian", "point", "turbo",
245
+ "lanczos2", and "lanczos3". The square kernel is the default.
246
+
247
+ .. warning::
248
+ The "gaussian" and "lanczos2/3" kernels **DO NOT**
249
+ conserve flux.
250
+
251
+ out_shape : tuple, None, optional
252
+ Shape (`numpy` order ``(Ny, Nx)``) of the output images (context
253
+ image will have a third dimension of size proportional to the number
254
+ of input images). This parameter is helpful when neither
255
+ ``out_img``, ``out_wht``, nor ``out_ctx`` images are provided.
256
+
257
+ fillval: float, None, str, optional
258
+ The value of output pixels that did not have contributions from
259
+ input images' pixels. When ``fillval`` is either `None` or
260
+ ``"INDEF"`` and ``out_img`` is provided, the values of ``out_img``
261
+ will not be modified. When ``fillval`` is either `None` or
262
+ ``"INDEF"`` and ``out_img`` is **not provided**, the values of
263
+ ``out_img`` will be initialized to `numpy.nan`. If ``fillval``
264
+ is a string that can be converted to a number, then the output
265
+ pixels with no contributions from input images will be set to this
266
+ ``fillval`` value.
267
+
268
+ fillval2: float, None, str, optional
269
+ Same as ``fillval`` but applies to ``out_img2``.
270
+
271
+ out_img : 2D array of float32, None, optional
272
+ A 2D numpy array containing the output image produced by
273
+ drizzling. On the first call the array values should be set to zero.
274
+ On subsequent calls it will hold the intermediate results.
275
+
276
+ out_img2 : 2D array of float32, list of 2D arrays of float32, None, optional
277
+ A 2D numpy array containing the output image produced by
278
+ drizzling *with squared weights*. This is useful when performing
279
+ standard error propagation using variance arrays. On the first call
280
+ the array values should be set to zero. On subsequent calls it will
281
+ hold the intermediate results.
282
+
283
+ Multiple output arrays (of the same shape as that of ``out_img``)
284
+ can be provided as a list of 2D arrays. The number of arrays must
285
+ match the number of data arrays that will be resampled and co-added
286
+ using squared weights (see argument ``data2`` in `add_data`.)
287
+
288
+ If ``out_img2`` is None, output arrays for the squared weights
289
+ co-adds will be created after the first call to `add_image` based
290
+ on the number of ``data2`` arrays.
291
+
292
+ out_wht : 2D array of float32, None, optional
293
+ A 2D numpy array containing the output counts. On the first
294
+ call it should be set to zero. On subsequent calls it will
295
+ hold the intermediate results.
296
+
297
+ out_ctx : 2D or 3D array of int32, None, optional
298
+ A 2D or 3D numpy array holding a bitmap of which image was an input
299
+ for each output pixel. Should be integer zero on first call.
300
+ Subsequent calls hold intermediate results. This parameter is
301
+ ignored when ``disable_ctx`` is `True`.
302
+
303
+ out_dq : 2D array of uint32, None, optional
304
+ A 2D `~numpy.ndarray` containing DQ bitfields of output (resampled)
305
+ pixels. It will be computed by combining (using bitwise-OR)
306
+ DQ bitfields of input pixels that contributed to the output pixel.
307
+ If provided, it must be a 2D array of the same shape as
308
+ ``out_img`` and `numpy.uint32` type (unsigned 32-bit integer type).
309
+ If `None`, output DQ array will be created during
310
+ the first call to `add_image` and will be initialized to zero.
311
+
312
+ .. warning::
313
+ 64-bit integer type is not supported and will raise
314
+ an exception. Contact the authors to add support for 64-bit DQ
315
+ if you need it.
316
+
317
+ exptime : float, optional
318
+ Exposure time of previously resampled images when provided via
319
+ parameters ``out_img`` and ``out_wht``.
320
+
321
+ begin_ctx_id : int, optional
322
+ The context ID number (0-based) of the first image that will be
323
+ resampled (using `add_image`). Subsequent images will be assigned
324
+ consecutively increasing ID numbers. This parameter is ignored
325
+ when ``disable_ctx`` is `True`.
326
+
327
+ max_ctx_id : int, None, optional
328
+ The largest integer context ID that is *expected* to be used for
329
+ an input image. When it is a non-negative number and ``out_ctx`` is
330
+ `None`, it allows to pre-allocate the necessary array for the output
331
+ context image. If the actual number of input images that will be
332
+ resampled will exceed initial allocation for the context image,
333
+ additional context planes will be added as needed (context array
334
+ will "grow" in the third dimension as new input images are added.)
335
+ The default value of `None` is equivalent to setting ``max_ctx_id``
336
+ equal to ``begin_ctx_id``. This parameter is ignored either when
337
+ ``out_ctx`` is provided or when ``disable_ctx`` is `True`.
338
+
339
+ disable_ctx : bool, optional
340
+ Indicates to not create a context image. If ``disable_ctx`` is set
341
+ to `True`, parameters ``out_ctx``, ``begin_ctx_id``, and
342
+ ``max_ctx_id`` will be ignored.
343
+
344
+ """
345
+ self._ncoadds = 0
346
+ self._out_img2 = None
347
+ self._out_dq = None
348
+ self._disable_ctx = disable_ctx
349
+
350
+ if disable_ctx:
351
+ self._ctx_id = None
352
+ self._max_ctx_id = None
353
+ else:
354
+ if begin_ctx_id < 0:
355
+ raise ValueError("Invalid context image ID")
356
+ self._ctx_id = begin_ctx_id # the ID of the *last* image to be resampled
357
+ if max_ctx_id is None:
358
+ max_ctx_id = begin_ctx_id
359
+ elif max_ctx_id < begin_ctx_id:
360
+ raise ValueError("'max_ctx_id' cannot be smaller than 'begin_ctx_id'.")
361
+ self._max_ctx_id = max_ctx_id
362
+
363
+ if exptime < 0.0:
364
+ raise ValueError("Exposure time must be non-negative.")
365
+
366
+ if exptime > 0.0 and out_img is None and out_ctx is None and out_wht is None:
367
+ raise ValueError(
368
+ "Exposure time must be 0.0 for the first resampling "
369
+ "(when no output resampled images have been provided)."
370
+ )
371
+
372
+ if exptime == 0.0 and (
373
+ (out_ctx is not None and np.sum(out_ctx) > 0)
374
+ or (out_wht is not None and np.sum(out_wht) > 0)
375
+ ):
376
+ raise ValueError(
377
+ "Inconsistent exposure time and context and/or weight images: "
378
+ "Exposure time cannot be 0 when context and/or weight arrays "
379
+ "are non-zero."
380
+ )
381
+
382
+ self._texptime = exptime
383
+
384
+ if kernel.lower() not in SUPPORTED_DRIZZLE_KERNELS:
385
+ raise ValueError(f"Kernel '{kernel}' is not supported.")
386
+ self._kernel = kernel
387
+
388
+ self._fillval = _process_fillval(out_img, fillval)
389
+ self._fillval2 = _process_fillval(out_img2, fillval2)
390
+
391
+ # shapes will collect user specified 'out_shape' and shapes of
392
+ # out_* arrays (if provided) in order to check all shapes are the same.
393
+ shapes = set()
394
+
395
+ if out_img is not None:
396
+ out_img = np.asarray(out_img, dtype=np.float32)
397
+ shapes.add(out_img.shape)
398
+
399
+ if out_wht is not None:
400
+ out_wht = np.asarray(out_wht, dtype=np.float32)
401
+ shapes.add(out_wht.shape)
402
+
403
+ if out_ctx is not None:
404
+ out_ctx = np.asarray(out_ctx, dtype=np.int32)
405
+ if out_ctx.ndim == 2:
406
+ out_ctx = out_ctx[None, :, :]
407
+ elif out_ctx.ndim != 3:
408
+ raise ValueError("'out_ctx' must be either a 2D or 3D array.")
409
+ shapes.add(out_ctx.shape[1:])
410
+
411
+ if out_dq is not None:
412
+ t = np.min_scalar_type(out_dq)
413
+ if t.kind not in ["i", "u"] or t.itemsize > 4:
414
+ raise TypeError(
415
+ "'out_dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
416
+ )
417
+ out_dq = np.asarray(out_dq, dtype=np.uint32)
418
+ shapes.add(out_dq.shape)
419
+ self._out_dq = out_dq
420
+
421
+ if out_shape is not None:
422
+ shapes.add(tuple(out_shape))
423
+
424
+ if len(shapes) == 1:
425
+ self._out_shape = shapes.pop()
426
+ self._alloc_output_arrays(
427
+ out_shape=self._out_shape,
428
+ max_ctx_id=max_ctx_id,
429
+ out_img=out_img,
430
+ out_wht=out_wht,
431
+ out_ctx=out_ctx,
432
+ )
433
+
434
+ elif len(shapes) > 1:
435
+ raise ValueError(
436
+ "Inconsistent data shapes specified: 'out_shape' and/or "
437
+ "out_img, out_img2, out_wht, out_ctx, out_dq have different "
438
+ "shapes."
439
+ )
440
+ else:
441
+ self._out_shape = None
442
+ self._out_img = None
443
+ self._out_wht = None
444
+ self._out_ctx = None
445
+
446
+ if out_img2 is not None:
447
+ if self._out_shape is not None:
448
+ shapes.add(self._out_shape)
449
+ if isinstance(out_img2, np.ndarray):
450
+ out_img2 = np.asarray(out_img2, dtype=np.float32)
451
+ shapes.add(out_img2.shape)
452
+ else:
453
+ for img in out_img2:
454
+ if img is not None:
455
+ shapes.add(np.shape(img))
456
+ if len(shapes) > 1:
457
+ raise ValueError(
458
+ "Inconsistent data shapes specified: 'out_shape' "
459
+ "and/or out_img, out_img2, out_wht, out_ctx have "
460
+ "different shapes."
461
+ )
462
+ self._output_shapes = shapes
463
+ self._alloc_output_arrays2_init(out_img2=out_img2)
464
+
465
+ @property
466
+ def fillval(self):
467
+ """Fill value for output pixels without contributions from input images."""
468
+ return self._fillval
469
+
470
+ @property
471
+ def fillval2(self):
472
+ """Fill value for output pixels in ``out_img2`` without contributions
473
+ from input images.
474
+
475
+ """
476
+ return self._fillval2
477
+
478
+ @property
479
+ def kernel(self):
480
+ """Resampling kernel."""
481
+ return self._kernel
482
+
483
+ @property
484
+ def ctx_id(self):
485
+ """Context image "ID" (0-based ) of the next image to be resampled."""
486
+ return self._ctx_id
487
+
488
+ @property
489
+ def out_img(self):
490
+ """Output resampled image."""
491
+ return self._out_img
492
+
493
+ @property
494
+ def out_wht(self):
495
+ """Output weight image."""
496
+ return self._out_wht
497
+
498
+ @property
499
+ def out_ctx(self):
500
+ """Output "context" image."""
501
+ return self._out_ctx
502
+
503
+ @property
504
+ def out_img2(self):
505
+ """Output resampled image(s) obtained with squared weights.
506
+ It is always a list of one or more 2D arrays.
507
+
508
+ """
509
+ return self._out_img2
510
+
511
+ @property
512
+ def out_dq(self):
513
+ """Output DQ image computed by OR-combining DQ bitfields of input
514
+ images' pixels that have contributed to a given output pixel.
515
+
516
+ """
517
+ return self._out_dq
518
+
519
+ @property
520
+ def total_exptime(self):
521
+ """Total exposure time of all resampled images."""
522
+ return self._texptime
523
+
524
+ def _alloc_output_arrays(self, out_shape, max_ctx_id, out_img, out_wht, out_ctx):
525
+ # allocate arrays as needed:
526
+ if out_wht is None:
527
+ self._out_wht = np.zeros(out_shape, dtype=np.float32)
528
+ else:
529
+ self._out_wht = out_wht
530
+
531
+ if self._disable_ctx:
532
+ self._out_ctx = None
533
+ else:
534
+ if out_ctx is None:
535
+ n_ctx_planes = max_ctx_id // CTX_PLANE_BITS + 1
536
+ ctx_shape = (n_ctx_planes,) + out_shape
537
+ self._out_ctx = np.zeros(ctx_shape, dtype=np.int32)
538
+ else:
539
+ self._out_ctx = out_ctx
540
+
541
+ if not (out_wht is None and out_ctx is None):
542
+ # check that input data make sense: weight of pixels with
543
+ # non-zero context values must be different from zero:
544
+ if np.any(np.bitwise_xor(self._out_wht > 0.0, np.sum(self._out_ctx, axis=0) > 0)):
545
+ raise ValueError(
546
+ "Inconsistent values of supplied 'out_wht' and "
547
+ "'out_ctx' arrays. Pixels with non-zero context "
548
+ "values must have positive weights and vice-versa."
549
+ )
550
+
551
+ if out_img is None:
552
+ if self._fillval.upper() in ["INDEF", "NAN"]:
553
+ fillval = np.nan
554
+ else:
555
+ fillval = float(self._fillval)
556
+ self._out_img = np.full(out_shape, fillval, dtype=np.float32)
557
+ else:
558
+ self._out_img = out_img
559
+
560
+ def _alloc_output_arrays2_init(self, out_img2=None):
561
+ if hasattr(self, "_out_img2") and self._out_img2 is not None:
562
+ raise AssertionError(
563
+ "It is expected that _alloc_output_arrays2_init is called "
564
+ "before Drizzle._out_img2 is set."
565
+ )
566
+
567
+ if out_img2 is None:
568
+ return
569
+
570
+ if isinstance(out_img2, np.ndarray):
571
+ out_img2 = [out_img2]
572
+
573
+ self._out_img2 = []
574
+
575
+ if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
576
+ fv = np.nan
577
+ else:
578
+ fv = np.float32(self._fillval2)
579
+
580
+ for i2 in out_img2:
581
+ if i2 is None:
582
+ if self._out_shape is None:
583
+ if len(self._output_shapes) == 1:
584
+ shape = next(iter(self._output_shapes))
585
+ else:
586
+ self._out_img2.append(None)
587
+ continue
588
+ else:
589
+ shape = self._out_shape
590
+ arr = np.full(shape, fill_value=fv, dtype=np.float32)
591
+ else:
592
+ arr = np.asarray(i2, dtype=np.float32)
593
+ self._out_img2.append(arr)
594
+ del arr
595
+
596
+ def _alloc_output_arrays2_add(self, ninputs2=None):
597
+ if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
598
+ fv = np.nan
599
+ else:
600
+ fv = np.float32(self._fillval2)
601
+ if self._out_img2 is None:
602
+ if ninputs2 is None or ninputs2 < 1:
603
+ # nothing to do
604
+ return
605
+ if self._ncoadds > 0:
606
+ raise ValueError(
607
+ "Mismatch between the number of 'out_img2' images and the number of inputs."
608
+ )
609
+ self._out_img2 = [
610
+ np.full(self._out_shape, fill_value=fv, dtype=np.float32) for _ in range(ninputs2)
611
+ ]
612
+
613
+ else:
614
+ nimg2 = len(self._out_img2)
615
+
616
+ # replace None values with arrays of _out_shape:
617
+ for k, img in enumerate(self._out_img2):
618
+ if img is None:
619
+ self._out_img2[k] = np.full(self._out_shape, fill_value=fv, dtype=np.float32)
620
+
621
+ if (ninputs2 is not None and ninputs2 != nimg2) or (ninputs2 is None and nimg2 > 0):
622
+ raise ValueError(
623
+ "Mismatch between the number of 'out_img2' images "
624
+ "previously set and the number of inputs."
625
+ )
626
+
627
+ def _increment_ctx_id(self):
628
+ """
629
+ Returns a pair of the *current* plane number and bit number in that
630
+ plane and increments context image ID
631
+ (after computing the return value).
632
+ """
633
+ if self._disable_ctx:
634
+ return None, 0
635
+
636
+ self._plane_no = self._ctx_id // CTX_PLANE_BITS
637
+ depth = self._out_ctx.shape[0]
638
+
639
+ if self._plane_no >= depth:
640
+ # Add a new plane to the context image if planeid overflows
641
+ plane = np.zeros((1,) + self._out_shape, np.int32)
642
+ self._out_ctx = np.append(self._out_ctx, plane, axis=0)
643
+
644
+ plane_info = (self._plane_no, self._ctx_id % CTX_PLANE_BITS)
645
+ # increment ID for the *next* image to be added:
646
+ self._ctx_id += 1
647
+
648
+ return plane_info
649
+
650
+ def add_image(
651
+ self,
652
+ data,
653
+ exptime,
654
+ pixmap,
655
+ data2=None,
656
+ dq=None,
657
+ scale=_DEPRECATED_ARG,
658
+ iscale=1.0,
659
+ pixel_scale_ratio=1.0,
660
+ weight_map=None,
661
+ wht_scale=1.0,
662
+ pixfrac=1.0,
663
+ in_units="cps",
664
+ xmin=None,
665
+ xmax=None,
666
+ ymin=None,
667
+ ymax=None,
668
+ ):
669
+ """
670
+ Resample and add an image to the cumulative output image. Also, update
671
+ output total weight image and context images.
672
+
673
+ Parameters
674
+ ----------
675
+ data : 2D numpy.ndarray
676
+ A 2D numpy array containing the input image to be drizzled.
677
+
678
+ exptime : float
679
+ The exposure time of the input image, a positive number. The
680
+ exposure time is used to scale the image if the units are counts.
681
+
682
+ pixmap : 3D array
683
+ A mapping from input image (``data``) coordinates to resampled
684
+ (``out_img``) coordinates. ``pixmap`` must be an array of shape
685
+ ``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
686
+ ``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
687
+ pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
688
+ Y-coordinates of input pixels in the output coordinate frame.
689
+
690
+ data2 : 2D array of float32, list of 2D arrays of float32 or None, None, optional
691
+ A 2D numpy array (or a list of 2D arrays) with image data to be
692
+ resampled and co-added using squared weights. The resampled output
693
+ image can be accessed via ``out_img2`` property of the `Drizzle`
694
+ object. This is useful for performing standard error propagation
695
+ using variance arrays.
696
+
697
+ Multiple data arrays (of the same shape as that of ``data``)
698
+ can be provided as a list of 2D arrays. The number of arrays must
699
+ match the number of output data arrays provided during
700
+ initialization via argument ``out_img2``. If an item in the list
701
+ is `None`, that item will not be resampled to the corresponding
702
+ ``out_img2`` element.
703
+
704
+ .. note::
705
+ It is assumed that data in ``data2`` have squared units of
706
+ ``data``. Therefore, when ``in_units`` are "counts",
707
+ ``data2`` arrays will be rescaled by ``exptime**2`` to convert
708
+ to rate units before resampling.
709
+
710
+ dq : 2D array, None, optional
711
+ A 2D numpy array of type `numpy.uint32` (unsigned 32-bit integer
712
+ type) containing DQ bitfields of input pixels. It must
713
+ have the same shape as ``data``. If provided, output DQ array
714
+ (accessible via ``out_dq`` property) will be computed by combining
715
+ (using bitwise-OR) DQ bitfields of input pixels that contributed to
716
+ the output pixel. If `None`, DQ array of the output image will
717
+ not be computed.
718
+
719
+ .. warning::
720
+ 64-bit integer type is not supported and will raise
721
+ an exception. Contact the authors to add support for 64-bit DQ
722
+ if you need it.
723
+
724
+ scale : float, optional
725
+ Deprecated: use ``iscale`` and ``pixel_scale_ratio`` instead.
726
+ It is a factor used both to rescale input image data
727
+ by ``scale**2`` AND to compute the correct kernel size for some
728
+ kernels ("turbo", "gaussian", and "lanczos"). It is recommended
729
+ ``scale`` be set to pixel scale ratio: the linear dimension of
730
+ a side of an output pixel relative to the size of an input pixel
731
+ (or size of an output pixel in the input image's coordinate system).
732
+
733
+ iscale : float, optional
734
+ It is a multiplicative factor used to rescale input image data
735
+ by ``iscale`` value. ``data2`` images will be rescaled by
736
+ ``iscale**2``. It may make sense to rescale input image (``data``)
737
+ by squared pixel scale ratio (the linear dimension of a side of an
738
+ output pixel as seen in the input image's coordinate frame)
739
+ depending on the units of the input image, i.e., counts vs
740
+ brightness. For more details see section
741
+ "Scaling of input image data" in :py:class:`Drizzle`.
742
+
743
+ pixel_scale_ratio : float, None, optional
744
+ It is a factor used to compute the correct kernel size in output
745
+ image's coordinate system for some of the kernels
746
+ ("turbo", "gaussian", and "lanczos") from their nominal
747
+ sizes in input image pixels. For example, for the "lanczos3"
748
+ kernel, the nominal size is 3 input pixels. It is recommended that
749
+ ``pixel_scale_ratio`` be set to pixel scale ratio: the linear dimension of
750
+ output pixel relative to the size of an input pixel. When
751
+ ``pixel_scale_ratio`` is `None`, it will be estimated from ``pixmap`` but this
752
+ can impose a performance penalty.
753
+
754
+ weight_map : 2D array, None, optional
755
+ A 2D numpy array containing the pixel by pixel weighting.
756
+ Must have the same dimensions as ``data``.
757
+
758
+ When ``weight_map`` is `None`, the weight of input data pixels will
759
+ be assumed to be 1.
760
+
761
+ wht_scale : float
762
+ A scaling factor applied to the pixel by pixel weighting.
763
+
764
+ pixfrac : float, optional
765
+ The fraction of a pixel that the pixel flux is confined to. The
766
+ default value of 1 has the pixel flux evenly spread across the image.
767
+ A value of 0.5 confines it to half a pixel in the linear dimension,
768
+ so the flux is confined to a quarter of the pixel area when the square
769
+ kernel is used.
770
+
771
+ in_units : str
772
+ The units of the input image. The units can either be "counts"
773
+ or "cps" (counts per second.)
774
+
775
+ xmin : float, optional
776
+ This and the following three parameters set a bounding rectangle
777
+ on the input image. Only pixels on the input image inside this
778
+ rectangle will have their flux added to the output image. Xmin
779
+ sets the minimum value of the x dimension. The x dimension is the
780
+ dimension that varies quickest on the image. If the value is zero,
781
+ no minimum will be set in the x dimension. All four parameters are
782
+ zero based, counting starts at zero.
783
+
784
+ xmax : float, optional
785
+ Sets the maximum value of the x dimension on the bounding box
786
+ of the input image. If the value is zero, no maximum will
787
+ be set in the x dimension, the full x dimension of the output
788
+ image is the bounding box.
789
+
790
+ ymin : float, optional
791
+ Sets the minimum value in the y dimension on the bounding box. The
792
+ y dimension varies less rapidly than the x and represents the line
793
+ index on the input image. If the value is zero, no minimum will be
794
+ set in the y dimension.
795
+
796
+ ymax : float, optional
797
+ Sets the maximum value in the y dimension. If the value is zero, no
798
+ maximum will be set in the y dimension, the full x dimension
799
+ of the output image is the bounding box.
800
+
801
+ Returns
802
+ -------
803
+ nskip : float
804
+ The number of lines from the box defined by
805
+ ``((xmin, xmax), (ymin, ymax))`` in the input image that were
806
+ ignored and did not contribute to the output image.
807
+
808
+ nmiss : float
809
+ The number of pixels from the box defined by
810
+ ``((xmin, xmax), (ymin, ymax))`` in the input image that were
811
+ ignored and did not contribute to the output image.
812
+
813
+ """
814
+ if scale is not _DEPRECATED_ARG:
815
+ warnings.warn(
816
+ "Argument 'scale' has been deprecated since version 3.0 and "
817
+ "it will be removed in a future release. "
818
+ "Use 'iscale' and 'pixel_scale_ratio' instead and set iscale=pixel_scale_ratio**2 "
819
+ "to achieve the same effect as with 'scale'.",
820
+ DeprecationWarning,
821
+ )
822
+ iscale = scale * scale
823
+ pixel_scale_ratio = scale
824
+
825
+ # this enables initializer to not need output image shape at all and
826
+ # set output image shape based on output coordinates from the pixmap.
827
+ #
828
+ if self._out_shape is None:
829
+ nshapes = len(self._output_shapes)
830
+ if nshapes == 0:
831
+ pmap_xmin = int(np.floor(np.nanmin(pixmap[:, :, 0])))
832
+ pmap_xmax = int(np.ceil(np.nanmax(pixmap[:, :, 0])))
833
+ pmap_ymin = int(np.floor(np.nanmin(pixmap[:, :, 1])))
834
+ pmap_ymax = int(np.ceil(np.nanmax(pixmap[:, :, 1])))
835
+ pixmap = pixmap.copy()
836
+ pixmap[:, :, 0] -= pmap_xmin
837
+ pixmap[:, :, 1] -= pmap_ymin
838
+ self._out_shape = (pmap_xmax - pmap_xmin + 1, pmap_ymax - pmap_ymin + 1)
839
+ elif nshapes == 1:
840
+ self._out_shape = next(iter(self._output_shapes))
841
+ else:
842
+ raise ValueError(
843
+ "Inconsistent data shapes: 'out_shape' and/or "
844
+ "out_img, out_img2, out_wht, out_ctx have different shapes."
845
+ ) # pragma: no cover
846
+
847
+ self._alloc_output_arrays(
848
+ out_shape=self._out_shape,
849
+ max_ctx_id=self._max_ctx_id,
850
+ out_img=None,
851
+ out_wht=None,
852
+ out_ctx=None,
853
+ )
854
+
855
+ if data2 is None:
856
+ ninputs2 = None
857
+ else:
858
+ if isinstance(data2, np.ndarray):
859
+ ninputs2 = 1
860
+ if data2.shape != data.shape:
861
+ raise ValueError("'data2' shape is not consistent with 'data' shape.")
862
+ else:
863
+ shapes2 = set()
864
+ ninputs2 = len(data2)
865
+ data2 = list(data2)
866
+ for k, d in enumerate(data2):
867
+ if d is None or d.size == 0:
868
+ data2[k] = None
869
+ else:
870
+ shapes2.add(d.shape)
871
+
872
+ if (len(shapes2) == 1 and shapes2.pop() != data.shape) or len(shapes2) > 1:
873
+ raise ValueError("'data2' shape(s) is not consistent with 'data' shape.")
874
+
875
+ self._alloc_output_arrays2_add(ninputs2=ninputs2)
876
+
877
+ plane_no, id_in_plane = self._increment_ctx_id()
878
+
879
+ if exptime <= 0.0:
880
+ raise ValueError("'exptime' *must* be a strictly positive number.")
881
+
882
+ # Ensure that the fillval parameter gets properly interpreted
883
+ # for use with tdriz
884
+ if in_units == "cps":
885
+ expscale = 1.0
886
+ else:
887
+ expscale = exptime
888
+
889
+ self._texptime += exptime
890
+
891
+ data = np.asarray(data, dtype=np.float32)
892
+ pixmap = np.asarray(pixmap, dtype=np.float64)
893
+ in_ymax, in_xmax = data.shape
894
+
895
+ if pixmap.shape[:2] != data.shape:
896
+ raise ValueError("'pixmap' shape is not consistent with 'data' shape.")
897
+
898
+ if xmin is None or xmin < 0:
899
+ xmin = 0
900
+
901
+ if ymin is None or ymin < 0:
902
+ ymin = 0
903
+
904
+ if xmax is None or xmax > in_xmax - 1:
905
+ xmax = in_xmax - 1
906
+
907
+ if ymax is None or ymax > in_ymax - 1:
908
+ ymax = in_ymax - 1
909
+
910
+ if weight_map is not None:
911
+ weight_map = np.asarray(weight_map, dtype=np.float32)
912
+ if weight_map.shape != data.shape:
913
+ raise ValueError("'weight_map' shape is not consistent with 'data' shape.")
914
+ else: # TODO: this should not be needed after C code modifications
915
+ weight_map = np.ones_like(data)
916
+
917
+ pixmap = np.asarray(pixmap, dtype=np.float64)
918
+
919
+ if self._disable_ctx:
920
+ ctx_plane = None
921
+ else:
922
+ if self._out_ctx.ndim == 2:
923
+ raise AssertionError("Context image is expected to be 3D")
924
+ ctx_plane = self._out_ctx[plane_no]
925
+
926
+ if dq is not None:
927
+ t = np.min_scalar_type(dq)
928
+ if t.kind not in ["i", "u"] or t.itemsize > 4:
929
+ raise TypeError(
930
+ "'dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
931
+ )
932
+ dq = np.asarray(dq, dtype=np.uint32)
933
+ if dq.shape != data.shape:
934
+ raise ValueError("'dq' shape is not consistent with 'data' shape.")
935
+ if self._out_dq is None:
936
+ self._out_dq = np.zeros(self._out_shape, dtype=np.uint32)
937
+
938
+ # TODO: probably tdriz should be modified to not return version.
939
+ # we should not have git, Python, C, ... versions
940
+
941
+ # TODO: While drizzle code in cdrizzlebox.c supports weight_map=None,
942
+ # cdrizzleapi.c does not. It should be modified to support this
943
+ # for performance reasons.
944
+
945
+ _vers, nmiss, nskip = cdrizzle.tdriz(
946
+ input=data,
947
+ weights=weight_map,
948
+ pixmap=pixmap,
949
+ output=self._out_img,
950
+ counts=self._out_wht,
951
+ context=ctx_plane,
952
+ input2=data2,
953
+ output2=self._out_img2,
954
+ dq=dq,
955
+ outdq=self._out_dq,
956
+ uniqid=id_in_plane + 1,
957
+ xmin=xmin,
958
+ xmax=xmax,
959
+ ymin=ymin,
960
+ ymax=ymax,
961
+ iscale=iscale, # scales image intensity. usually equal to 1 or
962
+ # (pixel scale ratio)**2
963
+ pscale_ratio=pixel_scale_ratio, # scales kernel size. usually equal to pixel scale ratio
964
+ pixfrac=pixfrac,
965
+ kernel=self._kernel,
966
+ in_units=in_units,
967
+ expscale=expscale,
968
+ wtscale=wht_scale,
969
+ fillstr=self._fillval,
970
+ fillstr2=self._fillval2,
971
+ )
972
+ self._cversion = _vers # TODO: probably not needed
973
+ self._ncoadds += 1
974
+
975
+ return nmiss, nskip
976
+
977
+
978
+ def blot_image(
979
+ data,
980
+ pixmap,
981
+ pix_ratio=_DEPRECATED_ARG,
982
+ exptime=_DEPRECATED_ARG,
983
+ output_pixel_shape=_DEPRECATED_ARG,
984
+ out_img=None,
985
+ fillval=0.0,
986
+ iscale=1.0,
987
+ interp="poly5",
988
+ sinscl=1.0,
989
+ ):
990
+ """
991
+ Resample the ``data`` input image onto an output grid defined by
992
+ the ``pixmap`` array. ``blot_image`` performs resampling using one of
993
+ the several interpolation algorithms and, unlike the "drizzle" algorithm
994
+ with 'square', 'turbo', and 'point' kernels, this resampling is not
995
+ flux-conserving.
996
+
997
+ This method works best for with well sampled images and thus it is
998
+ typically used to resample the output of :py:class:`Drizzle` back to the
999
+ coordinate grids of input images of :py:meth:`Drizzle.add_image`.
1000
+ The output of :py:class:`Drizzle` are usually well sampled images especially
1001
+ if it was created from a set of dithered images.
1002
+
1003
+ Parameters
1004
+ ----------
1005
+ data : 2D array
1006
+ Input numpy array of the source image in units of 'cps'.
1007
+
1008
+ pixmap : 3D array
1009
+ A mapping from input image (``data``) coordinates to resampled
1010
+ (``out_img``) coordinates. ``pixmap`` must be an array of shape
1011
+ ``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
1012
+ ``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
1013
+ pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
1014
+ Y-coordinates of input pixels in the output coordinate frame.
1015
+
1016
+ pix_ratio : float
1017
+ Ratio of the input image pixel scale to the output image pixel scale as
1018
+ used in the ``drizzle`` context: input is a distorted image that was
1019
+ "drizzled" onto the output image. That is, it is the ratio of the
1020
+ scale of the pixels in the input ``data`` argument to the scale of
1021
+ pixels of the image array returned by ``blot_image()``.
1022
+ **It is used to scale the input image intensities to account
1023
+ for the change in pixel area.**
1024
+
1025
+ .. warning::
1026
+ Deprecated since version 3.0 and will be removed in a future
1027
+ release. Use ``iscale`` instead and set
1028
+ ``iscale=1.0 / pix_ratio**2`` to achieve the same effect as with
1029
+ ``pix_ratio``.
1030
+
1031
+ exptime : float
1032
+ The exposure time of the input image. If provided it is used to scale
1033
+ the output image values.
1034
+
1035
+ .. warning::
1036
+ Deprecated since version 3.0 and will be removed in a future
1037
+ release. Use ``iscale`` instead and set
1038
+ ``iscale=exptime`` or ``exptime / pix_ratio**2`` to achieve the
1039
+ same effect as with ``exptime`` (and ``pix_ratio``).
1040
+
1041
+ output_pixel_shape : tuple of int
1042
+ A tuple of two integer numbers indicating the dimensions of the output
1043
+ image ``(Nx, Ny)``.
1044
+
1045
+ .. warning::
1046
+ Deprecated since version 3.0 and will be removed in a future
1047
+ release. It is not needed since the output image shape can be
1048
+ inferred from ``pixmap``.
1049
+
1050
+ output_image : 2D array of float32, None, optional
1051
+ A 2D numpy array to hold the output image produced by resampling
1052
+ the input image (``data``). If `None`, a new array will be allocated.
1053
+
1054
+ fillval: float, optional
1055
+ The value of output pixels that did not have contributions from
1056
+ input image' pixels.
1057
+
1058
+ iscale : float, optional
1059
+ A multiplicative factor used to rescale output image data by
1060
+ ``iscale``. Depending on specific needs, it may make sense to rescale
1061
+ output image by inverse of squared pixel scale ratio (the linear
1062
+ dimension of a side of a resampled/drizzled (input) pixel as seen in
1063
+ the distorted (output) image's coordinate frame) depending on the units
1064
+ of the input image, i.e., counts (flux) vs surface brightness.
1065
+ For more details see section "Scaling of input image data" in
1066
+ :py:class:`Drizzle`.
1067
+
1068
+ interp : str, optional
1069
+ The type of interpolation used in the resampling. The
1070
+ possible values are:
1071
+
1072
+ - "nearest" (nearest neighbor interpolation);
1073
+ - "linear" (bilinear interpolation);
1074
+ - "poly3" (cubic polynomial interpolation);
1075
+ - "poly5" (quintic polynomial interpolation);
1076
+ - "sinc" (sinc interpolation);
1077
+ - "lan3" (3rd order Lanczos interpolation); and
1078
+ - "lan5" (5th order Lanczos interpolation).
1079
+
1080
+ .. warning::
1081
+ The "sinc" interpolation is currently investigated for possible
1082
+ issues, see https://github.com/spacetelescope/drizzle/issues/209,
1083
+ and its use is not recommended. Furthermore, sinc interpolation may
1084
+ be removed in future releases.
1085
+
1086
+ sincscl : float, optional
1087
+ The scaling factor for "sinc" interpolation.
1088
+
1089
+ Returns
1090
+ -------
1091
+ out_img : 2D numpy.ndarray
1092
+ A 2D numpy array containing the resampled image data.
1093
+
1094
+ """
1095
+ if pix_ratio is not _DEPRECATED_ARG:
1096
+ warnings.warn(
1097
+ "Argument 'pix_ratio' has been deprecated since version 3.0 and "
1098
+ "it will be removed in a future release. "
1099
+ "Use 'iscale' instead and set iscale=1.0 / pix_ratio**2 "
1100
+ "to achieve the same effect as with 'pix_ratio'.",
1101
+ DeprecationWarning,
1102
+ )
1103
+ iscale /= pix_ratio * pix_ratio
1104
+
1105
+ if exptime is not _DEPRECATED_ARG:
1106
+ warnings.warn(
1107
+ "Argument 'exptime' has been deprecated since version 3.0 and "
1108
+ "it will be removed in a future release. "
1109
+ "Use 'iscale' instead and set iscale=exptime "
1110
+ "to achieve the same effect as with 'exptime'.",
1111
+ DeprecationWarning,
1112
+ )
1113
+ iscale *= exptime
1114
+
1115
+ if output_pixel_shape is _DEPRECATED_ARG:
1116
+ output_shape = tuple(pixmap.shape[:2])
1117
+ else:
1118
+ warnings.warn(
1119
+ "Argument 'output_pixel_shape' has been deprecated since version "
1120
+ "3.0 and it will be removed in a future release. It is not needed "
1121
+ "since the output image shape can be inferred from 'pixmap'.",
1122
+ DeprecationWarning,
1123
+ )
1124
+ output_shape = output_pixel_shape[::-1]
1125
+
1126
+ if out_img is None:
1127
+ out_img = np.empty(output_shape, dtype=np.float32)
1128
+ else:
1129
+ out_img = np.asarray(out_img, dtype=np.float32)
1130
+ if out_img.shape != output_shape:
1131
+ raise ValueError("'output_image' shape is not consistent with 'pixmap' shape.")
1132
+
1133
+ cdrizzle.tblot(
1134
+ data, pixmap, out_img, iscale=iscale, interp=interp, fillval=fillval, sinscl=sinscl
1135
+ )
1136
+
1137
+ return out_img
1138
+
1139
+
1140
+ def _process_fillval(out_img, fillval):
1141
+ if fillval is None:
1142
+ fillval = "INDEF"
1143
+
1144
+ elif isinstance(fillval, str):
1145
+ fillval = fillval.strip()
1146
+ if fillval.upper() in ["", "INDEF"]:
1147
+ fillval = "INDEF"
1148
+ else:
1149
+ float(fillval)
1150
+ fillval = str(fillval)
1151
+
1152
+ else:
1153
+ fillval = str(fillval)
1154
+
1155
+ if out_img is None and fillval == "INDEF":
1156
+ fillval = "NaN"
1157
+
1158
+ return fillval