drizzle 1.15.3__cp312-cp312-macosx_11_0_arm64.whl → 2.0.1__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of drizzle might be problematic. Click here for more details.

@@ -0,0 +1,190 @@
1
+ import os
2
+
3
+ import gwcs
4
+ import numpy as np
5
+ from gwcs.coordinate_frames import CelestialFrame, Frame2D
6
+
7
+ from astropy import coordinates as coord
8
+ from astropy import units
9
+ from astropy import wcs as fits_wcs
10
+ from astropy.io import fits
11
+ from astropy.modeling.models import (
12
+ Mapping,
13
+ Pix2Sky_TAN,
14
+ Polynomial2D,
15
+ RotateNative2Celestial,
16
+ Shift,
17
+ )
18
+ from astropy.modeling.projections import AffineTransformation2D
19
+
20
+ __all__ = ["wcs_from_file"]
21
+
22
+ TEST_DIR = os.path.abspath(os.path.dirname(__file__))
23
+ DATA_DIR = os.path.join(TEST_DIR, 'data')
24
+
25
+
26
+ def wcs_from_file(filename, ext=None, return_data=False, crpix_shift=None,
27
+ wcs_type="fits"):
28
+ """
29
+ Read the WCS from a ".fits" file.
30
+
31
+ Parameters
32
+ ----------
33
+ filename : str
34
+ Name of the file to load WCS from.
35
+
36
+ ext : int, None, optional
37
+ Extension number to load the WCS from. When `None`, the WCS will be
38
+ loaded from the first extension containing a WCS.
39
+
40
+ return_data : bool, optional
41
+ When `True`, this function will return a tuple with first item
42
+ being the WCS and the second item being the image data array.
43
+
44
+ crpix_shift : tuple, None, optional
45
+ A tuple of two values to be added to header CRPIX values before
46
+ creating the WCS. This effectively introduces a constant shift
47
+ in the image coordinate system.
48
+
49
+ wcs_type : {"fits", "gwcs"}, optional
50
+ Return either a FITS WCS or a gwcs.
51
+
52
+ Returns
53
+ -------
54
+ WCS or tuple of WCS and image data
55
+
56
+ """
57
+ full_file_name = os.path.join(DATA_DIR, filename)
58
+ path = os.path.join(DATA_DIR, full_file_name)
59
+ with fits.open(path) as hdu:
60
+ if ext is None:
61
+ for k, u in enumerate(hdu):
62
+ if "CTYPE1" in u.header:
63
+ ext = k
64
+ break
65
+
66
+ hdr = hdu[ext].header
67
+ naxis1 = hdr.get("WCSNAX1", hdr.get("NAXIS1"))
68
+ naxis2 = hdr.get("WCSNAX2", hdr.get("NAXIS2"))
69
+ if naxis1 is not None and naxis2 is not None:
70
+ shape = (naxis2, naxis1)
71
+ if hdu[ext].data is None:
72
+ hdu[ext].data = np.zeros(shape, dtype=np.float32)
73
+ else:
74
+ shape = None
75
+
76
+ if crpix_shift is not None and "CRPIX1" in hdr:
77
+ hdr["CRPIX1"] += crpix_shift[0]
78
+ hdr["CRPIX2"] += crpix_shift[1]
79
+
80
+ result = fits_wcs.WCS(hdr, hdu)
81
+ result.array_shape = shape
82
+
83
+ if wcs_type == "gwcs":
84
+ result = _gwcs_from_hst_fits_wcs(result)
85
+
86
+ if return_data:
87
+ result = (result, )
88
+ if not isinstance(return_data, (list, tuple)):
89
+ return_data = [ext]
90
+ for ext in return_data:
91
+ data = (hdu[ext].data, )
92
+ result = result + data
93
+
94
+ return result
95
+
96
+
97
+ def _gwcs_from_hst_fits_wcs(w):
98
+ # NOTE: this function ignores table distortions
99
+ def coeffs_to_poly(mat, degree):
100
+ pol = Polynomial2D(degree=degree)
101
+ for i in range(mat.shape[0]):
102
+ for j in range(mat.shape[1]):
103
+ if 0 < i + j <= degree:
104
+ setattr(pol, f'c{i}_{j}', mat[i, j])
105
+ return pol
106
+
107
+ nx, ny = w.pixel_shape
108
+ x0, y0 = w.wcs.crpix - 1
109
+
110
+ cd = w.wcs.piximg_matrix
111
+
112
+ if w.sip is None:
113
+ # construct GWCS:
114
+ det2sky = (
115
+ (Shift(-x0) & Shift(-y0)) |
116
+ Pix2Sky_TAN() | RotateNative2Celestial(*w.wcs.crval, 180)
117
+ )
118
+ else:
119
+ cfx, cfy = np.dot(cd, [w.sip.a.ravel(), w.sip.b.ravel()])
120
+ a = np.reshape(cfx, w.sip.a.shape)
121
+ b = np.reshape(cfy, w.sip.b.shape)
122
+ a[1, 0] = cd[0, 0]
123
+ a[0, 1] = cd[0, 1]
124
+ b[1, 0] = cd[1, 0]
125
+ b[0, 1] = cd[1, 1]
126
+
127
+ polx = coeffs_to_poly(a, w.sip.a_order)
128
+ poly = coeffs_to_poly(b, w.sip.b_order)
129
+
130
+ sip = Mapping((0, 1, 0, 1)) | (polx & poly)
131
+
132
+ # construct GWCS:
133
+ det2sky = (
134
+ (Shift(-x0) & Shift(-y0)) | sip |
135
+ Pix2Sky_TAN() | RotateNative2Celestial(*w.wcs.crval, 180)
136
+ )
137
+
138
+ detector_frame = Frame2D(
139
+ name="detector",
140
+ axes_names=("x", "y"),
141
+ unit=(units.pix, units.pix)
142
+ )
143
+ sky_frame = CelestialFrame(
144
+ reference_frame=getattr(coord, w.wcs.radesys).__call__(),
145
+ name=w.wcs.radesys,
146
+ unit=(units.deg, units.deg)
147
+ )
148
+ pipeline = [(detector_frame, det2sky), (sky_frame, None)]
149
+ gw = gwcs.wcs.WCS(pipeline)
150
+ gw.array_shape = w.array_shape
151
+ gw.bounding_box = ((-0.5, nx - 0.5), (-0.5, ny - 0.5))
152
+
153
+ if w.sip is not None:
154
+ # compute inverse SIP and re-create output GWCS
155
+
156
+ # compute inverse SIP:
157
+ hdr = gw.to_fits_sip(
158
+ max_inv_pix_error=1e-5,
159
+ inv_degree=None,
160
+ npoints=64,
161
+ crpix=w.wcs.crpix,
162
+ projection='TAN',
163
+ verbose=False
164
+ )
165
+ winv = fits_wcs.WCS(hdr)
166
+ ap = winv.sip.ap.copy()
167
+ bp = winv.sip.bp.copy()
168
+ ap[1, 0] += 1
169
+ bp[0, 1] += 1
170
+ polx_inv = coeffs_to_poly(ap, winv.sip.ap_order)
171
+ poly_inv = coeffs_to_poly(bp, winv.sip.bp_order)
172
+ af = AffineTransformation2D(
173
+ matrix=np.linalg.inv(winv.wcs.piximg_matrix)
174
+ )
175
+
176
+ # set analytical inverses:
177
+ sip.inverse = af | Mapping((0, 1, 0, 1)) | (polx_inv & poly_inv)
178
+
179
+ # construct GWCS:
180
+ det2sky = (
181
+ (Shift(-x0) & Shift(-y0)) | sip |
182
+ Pix2Sky_TAN() | RotateNative2Celestial(*w.wcs.crval, 180)
183
+ )
184
+
185
+ pipeline = [(detector_frame, det2sky), (sky_frame, None)]
186
+ gw = gwcs.wcs.WCS(pipeline)
187
+ gw.array_shape = w.array_shape
188
+ gw.bounding_box = ((-0.5, nx - 0.5), (-0.5, ny - 0.5))
189
+
190
+ return gw
@@ -9,16 +9,21 @@ def test_cdrizzle():
9
9
  """
10
10
 
11
11
  size = 100
12
- data = np.zeros((size,size), dtype='float32')
13
- weights = np.ones((size,size), dtype='float32')
12
+ data = np.zeros((size, size), dtype='float32')
13
+ weights = np.ones((size, size), dtype='float32')
14
14
 
15
- pixmap = np.indices((size,size), dtype='float64')
15
+ pixmap = np.indices((size, size), dtype='float64')
16
16
  pixmap = pixmap.transpose()
17
17
 
18
- output_data = np.zeros((size,size), dtype='float32')
19
- output_counts = np.zeros((size,size), dtype='float32')
20
- output_context = np.zeros((size,size), dtype='int32')
18
+ output_data = np.zeros((size, size), dtype='float32')
19
+ output_counts = np.zeros((size, size), dtype='float32')
20
+ output_context = np.zeros((size, size), dtype='int32')
21
21
 
22
- cdrizzle.test_cdrizzle(data, weights, pixmap,
23
- output_data, output_counts,
24
- output_context)
22
+ cdrizzle.test_cdrizzle(
23
+ data,
24
+ weights,
25
+ pixmap,
26
+ output_data,
27
+ output_counts,
28
+ output_context,
29
+ )
@@ -1,8 +1,8 @@
1
- import pytest
2
- from math import sqrt
3
1
  from itertools import product
2
+ from math import sqrt
4
3
 
5
4
  import numpy as np
5
+ import pytest
6
6
 
7
7
  from drizzle.cdrizzle import clip_polygon, invert_pixmap
8
8