drizzle 1.15.3__cp310-cp310-win_amd64.whl → 2.0.0__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of drizzle might be problematic. Click here for more details.
- drizzle/__init__.py +2 -1
- drizzle/cdrizzle.cp310-win_amd64.pyd +0 -0
- drizzle/resample.py +702 -0
- drizzle/tests/test_cdrizzle.py +14 -9
- drizzle/tests/test_overlap_calc.py +2 -2
- drizzle/tests/test_resample.py +1437 -0
- drizzle/tests/test_utils.py +193 -0
- drizzle/util.py +17 -239
- drizzle/utils.py +239 -0
- {drizzle-1.15.3.dist-info → drizzle-2.0.0.dist-info}/METADATA +14 -176
- drizzle-2.0.0.dist-info/RECORD +15 -0
- {drizzle-1.15.3.dist-info → drizzle-2.0.0.dist-info}/WHEEL +1 -1
- drizzle/calc_pixmap.py +0 -52
- drizzle/doblot.py +0 -80
- drizzle/dodrizzle.py +0 -189
- drizzle/drizzle.py +0 -569
- drizzle/tests/test_drizzle.py +0 -834
- drizzle/tests/test_file_io.py +0 -173
- drizzle/tests/test_pixmap.py +0 -76
- drizzle-1.15.3.dist-info/RECORD +0 -18
- {drizzle-1.15.3.dist-info → drizzle-2.0.0.dist-info}/LICENSE.rst +0 -0
- {drizzle-1.15.3.dist-info → drizzle-2.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1437 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pytest
|
|
6
|
+
|
|
7
|
+
from astropy import wcs
|
|
8
|
+
from astropy.io import fits
|
|
9
|
+
from drizzle import cdrizzle, resample, utils
|
|
10
|
+
|
|
11
|
+
TEST_DIR = os.path.abspath(os.path.dirname(__file__))
|
|
12
|
+
DATA_DIR = os.path.join(TEST_DIR, 'data')
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def bound_image(image):
|
|
16
|
+
"""
|
|
17
|
+
Compute region where image is non-zero
|
|
18
|
+
"""
|
|
19
|
+
coords = np.nonzero(image)
|
|
20
|
+
ymin = coords[0].min()
|
|
21
|
+
ymax = coords[0].max()
|
|
22
|
+
xmin = coords[1].min()
|
|
23
|
+
xmax = coords[1].max()
|
|
24
|
+
return (ymin, ymax, xmin, xmax)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def centroid(image, size, center):
|
|
28
|
+
"""
|
|
29
|
+
Compute the centroid of a rectangular area
|
|
30
|
+
"""
|
|
31
|
+
ylo = int(center[0] - size / 2)
|
|
32
|
+
yhi = min(ylo + size, image.shape[0])
|
|
33
|
+
xlo = int(center[1] - size / 2)
|
|
34
|
+
xhi = min(xlo + size, image.shape[1])
|
|
35
|
+
|
|
36
|
+
yx1 = np.mgrid[ylo:yhi, xlo:xhi, 1:2]
|
|
37
|
+
center = (yx1[..., 0] * image[ylo:yhi, xlo:xhi]).sum(
|
|
38
|
+
axis=(1, 2),
|
|
39
|
+
dtype=np.float64,
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
if center[2] == 0.0:
|
|
43
|
+
return None
|
|
44
|
+
|
|
45
|
+
center[0] /= center[2]
|
|
46
|
+
center[1] /= center[2]
|
|
47
|
+
return center
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def centroid_close(list_of_centroids, size, point):
|
|
51
|
+
"""
|
|
52
|
+
Find if any centroid is close to a point
|
|
53
|
+
"""
|
|
54
|
+
for i in range(len(list_of_centroids) - 1, -1, -1):
|
|
55
|
+
if (abs(list_of_centroids[i][0] - point[0]) < int(size / 2) and
|
|
56
|
+
abs(list_of_centroids[i][1] - point[1]) < int(size / 2)):
|
|
57
|
+
return 1
|
|
58
|
+
|
|
59
|
+
return 0
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def centroid_compare(centroid):
|
|
63
|
+
return centroid[1]
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def centroid_distances(image1, image2, amp, size):
|
|
67
|
+
"""
|
|
68
|
+
Compute a list of centroids and the distances between them in two images
|
|
69
|
+
"""
|
|
70
|
+
distances = []
|
|
71
|
+
list_of_centroids = centroid_list(image2, amp, size)
|
|
72
|
+
for center2 in list_of_centroids:
|
|
73
|
+
center1 = centroid(image1, size, center2)
|
|
74
|
+
if center1 is None:
|
|
75
|
+
continue
|
|
76
|
+
|
|
77
|
+
disty = center2[0] - center1[0]
|
|
78
|
+
distx = center2[1] - center1[1]
|
|
79
|
+
dist = math.sqrt(disty * disty + distx * distx)
|
|
80
|
+
dflux = abs(center2[2] - center1[2])
|
|
81
|
+
distances.append([dist, dflux, center1, center2])
|
|
82
|
+
|
|
83
|
+
distances.sort(key=centroid_compare)
|
|
84
|
+
return distances
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def centroid_list(image, amp, size):
|
|
88
|
+
"""
|
|
89
|
+
Find the next centroid
|
|
90
|
+
"""
|
|
91
|
+
list_of_centroids = []
|
|
92
|
+
points = np.transpose(np.nonzero(image > amp))
|
|
93
|
+
for point in points:
|
|
94
|
+
if not centroid_close(list_of_centroids, size, point):
|
|
95
|
+
center = centroid(image, size, point)
|
|
96
|
+
list_of_centroids.append(center)
|
|
97
|
+
|
|
98
|
+
return list_of_centroids
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def centroid_statistics(title, fname, image1, image2, amp, size):
|
|
102
|
+
"""
|
|
103
|
+
write centroid statistics to compare differences btw two images
|
|
104
|
+
"""
|
|
105
|
+
stats = ("minimum", "median", "maximum")
|
|
106
|
+
images = (None, None, image1, image2)
|
|
107
|
+
im_type = ("", "", "test", "reference")
|
|
108
|
+
|
|
109
|
+
diff = []
|
|
110
|
+
distances = centroid_distances(image1, image2, amp, size)
|
|
111
|
+
indexes = (0, int(len(distances) / 2), len(distances) - 1)
|
|
112
|
+
fd = open(fname, 'w')
|
|
113
|
+
fd.write(f"*** {title:s} ***\n")
|
|
114
|
+
|
|
115
|
+
if len(distances) == 0:
|
|
116
|
+
diff = [0.0, 0.0, 0.0]
|
|
117
|
+
fd.write("No matches!!\n")
|
|
118
|
+
|
|
119
|
+
elif len(distances) == 1:
|
|
120
|
+
diff = [distances[0][0], distances[0][0], distances[0][0]]
|
|
121
|
+
|
|
122
|
+
fd.write("1 match\n")
|
|
123
|
+
fd.write(
|
|
124
|
+
f"distance = {distances[0][0]:f} "
|
|
125
|
+
f"flux difference = {distances[0][1]:f}\n"
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
for j in range(2, 4):
|
|
129
|
+
ylo = int(distances[0][j][0]) - 1
|
|
130
|
+
yhi = int(distances[0][j][0]) + 2
|
|
131
|
+
xlo = int(distances[0][j][1]) - 1
|
|
132
|
+
xhi = int(distances[0][j][1]) + 2
|
|
133
|
+
subimage = images[j][ylo:yhi, xlo:xhi]
|
|
134
|
+
fd.write(
|
|
135
|
+
f"\n{im_type[j]} image centroid = "
|
|
136
|
+
f"({distances[0][j][0]:f}, {distances[0][j][1]:f}) "
|
|
137
|
+
f"image flux = {distances[0][j][2]:f}\n"
|
|
138
|
+
)
|
|
139
|
+
fd.write(str(subimage) + "\n")
|
|
140
|
+
|
|
141
|
+
else:
|
|
142
|
+
fd.write(f"{len(distances)} matches\n")
|
|
143
|
+
|
|
144
|
+
for k in range(3):
|
|
145
|
+
i = indexes[k]
|
|
146
|
+
diff.append(distances[i][0])
|
|
147
|
+
fd.write(
|
|
148
|
+
f"\n{stats[k]} distance = {distances[i][0]:f} "
|
|
149
|
+
f"flux difference = {distances[i][1]:f}\n"
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
for j in range(2, 4):
|
|
153
|
+
ylo = int(distances[i][j][0]) - 1
|
|
154
|
+
yhi = int(distances[i][j][0]) + 2
|
|
155
|
+
xlo = int(distances[i][j][1]) - 1
|
|
156
|
+
xhi = int(distances[i][j][1]) + 2
|
|
157
|
+
subimage = images[j][ylo:yhi, xlo:xhi]
|
|
158
|
+
fd.write(
|
|
159
|
+
f"\n{stats[k]} {im_type[j]} image centroid = "
|
|
160
|
+
f"({distances[i][j][0]:f}, {distances[i][j][1]:f}) "
|
|
161
|
+
f"image flux = {distances[i][j][2]:f}\n"
|
|
162
|
+
)
|
|
163
|
+
fd.write(str(subimage) + "\n")
|
|
164
|
+
|
|
165
|
+
fd.close()
|
|
166
|
+
return tuple(diff)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def make_point_image(input_image, point, value):
|
|
170
|
+
"""
|
|
171
|
+
Create an image with a single point set
|
|
172
|
+
"""
|
|
173
|
+
output_image = np.zeros(input_image.shape, dtype=input_image.dtype)
|
|
174
|
+
output_image[point] = value
|
|
175
|
+
return output_image
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def make_grid_image(input_image, spacing, value):
|
|
179
|
+
"""
|
|
180
|
+
Create an image with points on a grid set
|
|
181
|
+
"""
|
|
182
|
+
output_image = np.zeros(input_image.shape, dtype=input_image.dtype)
|
|
183
|
+
|
|
184
|
+
shape = output_image.shape
|
|
185
|
+
half_space = int(spacing / 2)
|
|
186
|
+
for y in range(half_space, shape[0], spacing):
|
|
187
|
+
for x in range(half_space, shape[1], spacing):
|
|
188
|
+
output_image[y, x] = value
|
|
189
|
+
|
|
190
|
+
return output_image
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def read_image(filename):
|
|
194
|
+
"""
|
|
195
|
+
Read the image from a fits file
|
|
196
|
+
"""
|
|
197
|
+
path = os.path.join(DATA_DIR, filename)
|
|
198
|
+
hdu = fits.open(path)
|
|
199
|
+
|
|
200
|
+
image = hdu[1].data
|
|
201
|
+
hdu.close()
|
|
202
|
+
return image
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
def read_wcs(filename):
|
|
206
|
+
"""
|
|
207
|
+
Read the wcs of a fits file
|
|
208
|
+
"""
|
|
209
|
+
path = os.path.join(DATA_DIR, filename)
|
|
210
|
+
hdu = fits.open(path)
|
|
211
|
+
the_wcs = wcs.WCS(hdu[1].header)
|
|
212
|
+
hdu.close()
|
|
213
|
+
return the_wcs
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def test_drizzle_defaults():
|
|
217
|
+
n = 200
|
|
218
|
+
in_shape = (n, n)
|
|
219
|
+
|
|
220
|
+
# input coordinate grid:
|
|
221
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
222
|
+
|
|
223
|
+
# simulate data:
|
|
224
|
+
in_sci = np.ones(in_shape, dtype=np.float32)
|
|
225
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
226
|
+
|
|
227
|
+
# create a Drizzle object using all default parameters (except for 'kernel')
|
|
228
|
+
driz = resample.Drizzle(
|
|
229
|
+
kernel='square',
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
assert driz.out_img is None
|
|
233
|
+
assert driz.out_wht is None
|
|
234
|
+
assert driz.out_ctx is None
|
|
235
|
+
assert driz.total_exptime == 0.0
|
|
236
|
+
|
|
237
|
+
driz.add_image(
|
|
238
|
+
in_sci,
|
|
239
|
+
exptime=1.0,
|
|
240
|
+
pixmap=np.dstack([x, y]),
|
|
241
|
+
weight_map=in_wht,
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
pixmap = np.dstack([x + 1, y + 2])
|
|
245
|
+
driz.add_image(
|
|
246
|
+
3 * in_sci,
|
|
247
|
+
exptime=1.0,
|
|
248
|
+
pixmap=pixmap,
|
|
249
|
+
weight_map=in_wht,
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
assert driz.out_img[0, 0] == 1
|
|
253
|
+
assert driz.out_img[1, 0] == 1
|
|
254
|
+
assert driz.out_img[2, 0] == 1
|
|
255
|
+
assert driz.out_img[1, 1] == 1
|
|
256
|
+
assert driz.out_img[1, 2] == 1
|
|
257
|
+
assert (driz.out_img[2, 1] - 2.0) < 1.0e-14
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
def test_square_with_point(tmpdir):
|
|
261
|
+
"""
|
|
262
|
+
Test do_driz square kernel with point
|
|
263
|
+
"""
|
|
264
|
+
output_difference = str(tmpdir.join('difference_square_point.txt'))
|
|
265
|
+
|
|
266
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
267
|
+
output_template = os.path.join(DATA_DIR, 'reference_square_point.fits')
|
|
268
|
+
|
|
269
|
+
insci = read_image(input_file)
|
|
270
|
+
inwcs = read_wcs(input_file)
|
|
271
|
+
insci = make_point_image(insci, (500, 200), 100.0)
|
|
272
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
273
|
+
output_wcs = read_wcs(output_template)
|
|
274
|
+
|
|
275
|
+
pixmap = utils.calc_pixmap(
|
|
276
|
+
inwcs,
|
|
277
|
+
output_wcs,
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
# ignore previous pscale and compute it the old way (only to make
|
|
281
|
+
# tests work with old truth files and thus to show that new API gives
|
|
282
|
+
# same results when equal definitions of the pixel scale is used):
|
|
283
|
+
pscale = np.sqrt(
|
|
284
|
+
np.sum(output_wcs.wcs.pc**2, axis=0)[0] /
|
|
285
|
+
np.sum(inwcs.wcs.cd**2, axis=0)[0]
|
|
286
|
+
)
|
|
287
|
+
|
|
288
|
+
driz = resample.Drizzle(
|
|
289
|
+
kernel='square',
|
|
290
|
+
out_shape=output_wcs.array_shape,
|
|
291
|
+
fillval=0.0,
|
|
292
|
+
)
|
|
293
|
+
driz.add_image(
|
|
294
|
+
insci,
|
|
295
|
+
exptime=1.0,
|
|
296
|
+
pixmap=pixmap,
|
|
297
|
+
weight_map=inwht,
|
|
298
|
+
scale=pscale,
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
template_data = read_image(output_template)
|
|
302
|
+
|
|
303
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
304
|
+
"square with point",
|
|
305
|
+
output_difference,
|
|
306
|
+
driz.out_img,
|
|
307
|
+
template_data,
|
|
308
|
+
20.0,
|
|
309
|
+
8,
|
|
310
|
+
)
|
|
311
|
+
|
|
312
|
+
assert med_diff < 1.0e-6
|
|
313
|
+
assert max_diff < 1.0e-5
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
@pytest.mark.parametrize(
|
|
317
|
+
'kernel,fc',
|
|
318
|
+
[
|
|
319
|
+
('square', True),
|
|
320
|
+
('point', True),
|
|
321
|
+
('turbo', True),
|
|
322
|
+
('lanczos2', False),
|
|
323
|
+
('lanczos3', False),
|
|
324
|
+
('gaussian', False),
|
|
325
|
+
],
|
|
326
|
+
)
|
|
327
|
+
def test_zero_input_weight(kernel, fc):
|
|
328
|
+
"""
|
|
329
|
+
Test do_driz square kernel with grid
|
|
330
|
+
"""
|
|
331
|
+
# initialize input:
|
|
332
|
+
insci = np.ones((200, 400), dtype=np.float32)
|
|
333
|
+
inwht = np.ones((200, 400), dtype=np.float32)
|
|
334
|
+
inwht[:, 150:155] = 0
|
|
335
|
+
|
|
336
|
+
# initialize output:
|
|
337
|
+
outsci = np.zeros((210, 410), dtype=np.float32)
|
|
338
|
+
outwht = np.zeros((210, 410), dtype=np.float32)
|
|
339
|
+
outctx = np.zeros((210, 410), dtype=np.int32)
|
|
340
|
+
|
|
341
|
+
# define coordinate mapping:
|
|
342
|
+
pixmap = np.moveaxis(np.mgrid[1:201, 1:401][::-1], 0, -1)
|
|
343
|
+
|
|
344
|
+
# resample:
|
|
345
|
+
if fc:
|
|
346
|
+
cdrizzle.tdriz(
|
|
347
|
+
insci,
|
|
348
|
+
inwht,
|
|
349
|
+
pixmap,
|
|
350
|
+
outsci,
|
|
351
|
+
outwht,
|
|
352
|
+
outctx,
|
|
353
|
+
uniqid=1,
|
|
354
|
+
xmin=0,
|
|
355
|
+
xmax=400,
|
|
356
|
+
ymin=0,
|
|
357
|
+
ymax=200,
|
|
358
|
+
pixfrac=1,
|
|
359
|
+
kernel=kernel,
|
|
360
|
+
in_units='cps',
|
|
361
|
+
expscale=1,
|
|
362
|
+
wtscale=1,
|
|
363
|
+
fillstr='INDEF',
|
|
364
|
+
)
|
|
365
|
+
else:
|
|
366
|
+
with pytest.warns(Warning):
|
|
367
|
+
cdrizzle.tdriz(
|
|
368
|
+
insci,
|
|
369
|
+
inwht,
|
|
370
|
+
pixmap,
|
|
371
|
+
outsci,
|
|
372
|
+
outwht,
|
|
373
|
+
outctx,
|
|
374
|
+
uniqid=1,
|
|
375
|
+
xmin=0,
|
|
376
|
+
xmax=400,
|
|
377
|
+
ymin=0,
|
|
378
|
+
ymax=200,
|
|
379
|
+
pixfrac=1,
|
|
380
|
+
kernel=kernel,
|
|
381
|
+
in_units='cps',
|
|
382
|
+
expscale=1,
|
|
383
|
+
wtscale=1,
|
|
384
|
+
fillstr='INDEF',
|
|
385
|
+
)
|
|
386
|
+
# pytest.xfail("Not a flux-conserving kernel")
|
|
387
|
+
|
|
388
|
+
# check that no pixel with 0 weight has any counts:
|
|
389
|
+
assert np.sum(np.abs(outsci[(outwht == 0)])) == 0.0
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
def test_square_with_grid(tmpdir):
|
|
393
|
+
"""
|
|
394
|
+
Test do_driz square kernel with grid
|
|
395
|
+
"""
|
|
396
|
+
output_difference = str(tmpdir.join('difference_square_grid.txt'))
|
|
397
|
+
|
|
398
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
399
|
+
output_template = os.path.join(DATA_DIR, 'reference_square_grid.fits')
|
|
400
|
+
|
|
401
|
+
insci = read_image(input_file)
|
|
402
|
+
inwcs = read_wcs(input_file)
|
|
403
|
+
insci = make_grid_image(insci, 64, 100.0)
|
|
404
|
+
|
|
405
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
406
|
+
output_wcs = read_wcs(output_template)
|
|
407
|
+
|
|
408
|
+
pixmap = utils.calc_pixmap(
|
|
409
|
+
inwcs,
|
|
410
|
+
output_wcs,
|
|
411
|
+
)
|
|
412
|
+
pscale = utils.estimate_pixel_scale_ratio(
|
|
413
|
+
inwcs,
|
|
414
|
+
output_wcs,
|
|
415
|
+
refpix_from=inwcs.wcs.crpix,
|
|
416
|
+
refpix_to=output_wcs.wcs.crpix,
|
|
417
|
+
)
|
|
418
|
+
# ignore previous pscale and compute it the old way (only to make
|
|
419
|
+
# tests work with old truth files and thus to show that new API gives
|
|
420
|
+
# same results when equal definitions of the pixel scale is used):
|
|
421
|
+
pscale = np.sqrt(
|
|
422
|
+
np.sum(output_wcs.wcs.pc**2, axis=0)[0] /
|
|
423
|
+
np.sum(inwcs.wcs.cd**2, axis=0)[0]
|
|
424
|
+
)
|
|
425
|
+
|
|
426
|
+
driz = resample.Drizzle(
|
|
427
|
+
kernel='square',
|
|
428
|
+
out_shape=output_wcs.array_shape,
|
|
429
|
+
fillval=0.0,
|
|
430
|
+
)
|
|
431
|
+
driz.add_image(
|
|
432
|
+
insci,
|
|
433
|
+
exptime=1.0,
|
|
434
|
+
pixmap=pixmap,
|
|
435
|
+
weight_map=inwht,
|
|
436
|
+
scale=pscale,
|
|
437
|
+
)
|
|
438
|
+
template_data = read_image(output_template)
|
|
439
|
+
|
|
440
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
441
|
+
"square with grid",
|
|
442
|
+
output_difference,
|
|
443
|
+
driz.out_img,
|
|
444
|
+
template_data,
|
|
445
|
+
20.0,
|
|
446
|
+
8,
|
|
447
|
+
)
|
|
448
|
+
assert med_diff < 1.0e-6
|
|
449
|
+
assert max_diff < 1.0e-5
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
def test_turbo_with_grid(tmpdir):
|
|
453
|
+
"""
|
|
454
|
+
Test do_driz turbo kernel with grid
|
|
455
|
+
"""
|
|
456
|
+
output_difference = str(tmpdir.join('difference_turbo_grid.txt'))
|
|
457
|
+
|
|
458
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
459
|
+
output_template = os.path.join(DATA_DIR, 'reference_turbo_grid.fits')
|
|
460
|
+
|
|
461
|
+
insci = read_image(input_file)
|
|
462
|
+
inwcs = read_wcs(input_file)
|
|
463
|
+
insci = make_grid_image(insci, 64, 100.0)
|
|
464
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
465
|
+
output_wcs = read_wcs(output_template)
|
|
466
|
+
|
|
467
|
+
pixmap = utils.calc_pixmap(
|
|
468
|
+
inwcs,
|
|
469
|
+
output_wcs,
|
|
470
|
+
)
|
|
471
|
+
pscale = utils.estimate_pixel_scale_ratio(
|
|
472
|
+
inwcs,
|
|
473
|
+
output_wcs,
|
|
474
|
+
refpix_from=inwcs.wcs.crpix,
|
|
475
|
+
refpix_to=output_wcs.wcs.crpix,
|
|
476
|
+
)
|
|
477
|
+
|
|
478
|
+
# ignore previous pscale and compute it the old way (only to make
|
|
479
|
+
# tests work with old truth files and thus to show that new API gives
|
|
480
|
+
# same results when equal definitions of the pixel scale is used):
|
|
481
|
+
pscale = np.sqrt(
|
|
482
|
+
np.sum(output_wcs.wcs.pc**2, axis=0)[0] /
|
|
483
|
+
np.sum(inwcs.wcs.cd**2, axis=0)[0]
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
driz = resample.Drizzle(
|
|
487
|
+
kernel='turbo',
|
|
488
|
+
out_shape=output_wcs.array_shape,
|
|
489
|
+
fillval=0.0,
|
|
490
|
+
)
|
|
491
|
+
driz.add_image(
|
|
492
|
+
insci,
|
|
493
|
+
exptime=1.0,
|
|
494
|
+
pixmap=pixmap,
|
|
495
|
+
weight_map=inwht,
|
|
496
|
+
scale=pscale,
|
|
497
|
+
)
|
|
498
|
+
|
|
499
|
+
template_data = read_image(output_template)
|
|
500
|
+
|
|
501
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
502
|
+
"turbo with grid",
|
|
503
|
+
output_difference,
|
|
504
|
+
driz.out_img,
|
|
505
|
+
template_data,
|
|
506
|
+
20.0,
|
|
507
|
+
8,
|
|
508
|
+
)
|
|
509
|
+
|
|
510
|
+
assert med_diff < 1.0e-6
|
|
511
|
+
assert max_diff < 1.0e-5
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def test_gaussian_with_grid(tmpdir):
|
|
515
|
+
"""
|
|
516
|
+
Test do_driz gaussian kernel with grid
|
|
517
|
+
"""
|
|
518
|
+
output_difference = str(tmpdir.join('difference_gaussian_grid.txt'))
|
|
519
|
+
|
|
520
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
521
|
+
output_template = os.path.join(DATA_DIR, 'reference_gaussian_grid.fits')
|
|
522
|
+
|
|
523
|
+
insci = read_image(input_file)
|
|
524
|
+
inwcs = read_wcs(input_file)
|
|
525
|
+
insci = make_grid_image(insci, 64, 100.0)
|
|
526
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
527
|
+
output_wcs = read_wcs(output_template)
|
|
528
|
+
|
|
529
|
+
pixmap = utils.calc_pixmap(
|
|
530
|
+
inwcs,
|
|
531
|
+
output_wcs,
|
|
532
|
+
)
|
|
533
|
+
pscale = utils.estimate_pixel_scale_ratio(
|
|
534
|
+
inwcs,
|
|
535
|
+
output_wcs,
|
|
536
|
+
refpix_from=inwcs.wcs.crpix,
|
|
537
|
+
refpix_to=output_wcs.wcs.crpix,
|
|
538
|
+
)
|
|
539
|
+
|
|
540
|
+
# ignore previous pscale and compute it the old way (only to make
|
|
541
|
+
# tests work with old truth files and thus to show that new API gives
|
|
542
|
+
# same results when equal definitions of the pixel scale is used):
|
|
543
|
+
pscale = np.sqrt(
|
|
544
|
+
np.sum(output_wcs.wcs.pc**2, axis=0)[0] /
|
|
545
|
+
np.sum(inwcs.wcs.cd**2, axis=0)[0]
|
|
546
|
+
)
|
|
547
|
+
|
|
548
|
+
driz = resample.Drizzle(
|
|
549
|
+
kernel='gaussian',
|
|
550
|
+
out_shape=output_wcs.array_shape,
|
|
551
|
+
fillval=0.0,
|
|
552
|
+
)
|
|
553
|
+
with pytest.warns(Warning):
|
|
554
|
+
driz.add_image(
|
|
555
|
+
insci,
|
|
556
|
+
exptime=1.0,
|
|
557
|
+
pixmap=pixmap,
|
|
558
|
+
weight_map=inwht,
|
|
559
|
+
scale=pscale,
|
|
560
|
+
)
|
|
561
|
+
|
|
562
|
+
template_data = read_image(output_template)
|
|
563
|
+
|
|
564
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
565
|
+
"gaussian with grid",
|
|
566
|
+
output_difference,
|
|
567
|
+
driz.out_img,
|
|
568
|
+
template_data,
|
|
569
|
+
20.0,
|
|
570
|
+
8,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
assert med_diff < 1.0e-6
|
|
574
|
+
assert max_diff < 2.0e-5
|
|
575
|
+
|
|
576
|
+
|
|
577
|
+
def test_lanczos_with_grid(tmpdir):
|
|
578
|
+
"""
|
|
579
|
+
Test do_driz lanczos kernel with grid
|
|
580
|
+
"""
|
|
581
|
+
output_difference = str(tmpdir.join('difference_lanczos_grid.txt'))
|
|
582
|
+
|
|
583
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
584
|
+
output_template = os.path.join(DATA_DIR, 'reference_lanczos_grid.fits')
|
|
585
|
+
|
|
586
|
+
insci = read_image(input_file)
|
|
587
|
+
inwcs = read_wcs(input_file)
|
|
588
|
+
insci = make_grid_image(insci, 64, 100.0)
|
|
589
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
590
|
+
output_wcs = read_wcs(output_template)
|
|
591
|
+
|
|
592
|
+
pixmap = utils.calc_pixmap(
|
|
593
|
+
inwcs,
|
|
594
|
+
output_wcs,
|
|
595
|
+
)
|
|
596
|
+
pscale = utils.estimate_pixel_scale_ratio(
|
|
597
|
+
inwcs,
|
|
598
|
+
output_wcs,
|
|
599
|
+
refpix_from=inwcs.wcs.crpix,
|
|
600
|
+
refpix_to=output_wcs.wcs.crpix,
|
|
601
|
+
)
|
|
602
|
+
|
|
603
|
+
# ignore previous pscale and compute it the old way (only to make
|
|
604
|
+
# tests work with old truth files and thus to show that new API gives
|
|
605
|
+
# same results when equal definitions of the pixel scale is used):
|
|
606
|
+
pscale = np.sqrt(
|
|
607
|
+
np.sum(output_wcs.wcs.pc**2, axis=0)[0] /
|
|
608
|
+
np.sum(inwcs.wcs.cd**2, axis=0)[0]
|
|
609
|
+
)
|
|
610
|
+
|
|
611
|
+
driz = resample.Drizzle(
|
|
612
|
+
kernel='lanczos3',
|
|
613
|
+
out_shape=output_wcs.array_shape,
|
|
614
|
+
fillval=0.0,
|
|
615
|
+
)
|
|
616
|
+
with pytest.warns(Warning):
|
|
617
|
+
driz.add_image(
|
|
618
|
+
insci,
|
|
619
|
+
exptime=1.0,
|
|
620
|
+
pixmap=pixmap,
|
|
621
|
+
weight_map=inwht,
|
|
622
|
+
scale=pscale,
|
|
623
|
+
)
|
|
624
|
+
|
|
625
|
+
template_data = read_image(output_template)
|
|
626
|
+
|
|
627
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
628
|
+
"lanczos with grid",
|
|
629
|
+
output_difference,
|
|
630
|
+
driz.out_img,
|
|
631
|
+
template_data,
|
|
632
|
+
20.0,
|
|
633
|
+
8,
|
|
634
|
+
)
|
|
635
|
+
assert med_diff < 1.0e-6
|
|
636
|
+
assert max_diff < 1.0e-5
|
|
637
|
+
|
|
638
|
+
|
|
639
|
+
def test_point_with_grid(tmpdir):
|
|
640
|
+
"""
|
|
641
|
+
Test do_driz point kernel with grid
|
|
642
|
+
"""
|
|
643
|
+
output_difference = str(tmpdir.join('difference_point_grid.txt'))
|
|
644
|
+
|
|
645
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
646
|
+
output_template = os.path.join(DATA_DIR, 'reference_point_grid.fits')
|
|
647
|
+
|
|
648
|
+
insci = read_image(input_file)
|
|
649
|
+
inwcs = read_wcs(input_file)
|
|
650
|
+
insci = make_grid_image(insci, 64, 100.0)
|
|
651
|
+
inwht = np.ones(insci.shape, dtype=insci.dtype)
|
|
652
|
+
output_wcs = read_wcs(output_template)
|
|
653
|
+
|
|
654
|
+
pixmap = utils.calc_pixmap(inwcs, output_wcs)
|
|
655
|
+
|
|
656
|
+
driz = resample.Drizzle(kernel='point', out_shape=output_wcs.array_shape, fillval=0.0)
|
|
657
|
+
driz.add_image(insci, exptime=1.0, pixmap=pixmap, weight_map=inwht)
|
|
658
|
+
|
|
659
|
+
template_data = read_image(output_template)
|
|
660
|
+
|
|
661
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
662
|
+
"point with grid",
|
|
663
|
+
output_difference,
|
|
664
|
+
driz.out_img,
|
|
665
|
+
template_data,
|
|
666
|
+
20.0,
|
|
667
|
+
8,
|
|
668
|
+
)
|
|
669
|
+
assert med_diff < 1.0e-6
|
|
670
|
+
assert max_diff < 1.0e-5
|
|
671
|
+
|
|
672
|
+
|
|
673
|
+
def test_blot_with_point(tmpdir):
|
|
674
|
+
"""
|
|
675
|
+
Test do_blot with point image
|
|
676
|
+
"""
|
|
677
|
+
output_difference = str(tmpdir.join('difference_blot_point.txt'))
|
|
678
|
+
|
|
679
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
680
|
+
output_template = os.path.join(DATA_DIR, 'reference_blot_point.fits')
|
|
681
|
+
|
|
682
|
+
outsci = read_image(input_file)
|
|
683
|
+
outwcs = read_wcs(input_file)
|
|
684
|
+
outsci = make_point_image(outsci, (500, 200), 40.0)
|
|
685
|
+
inwcs = read_wcs(output_template)
|
|
686
|
+
|
|
687
|
+
pixmap = utils.calc_pixmap(inwcs, outwcs)
|
|
688
|
+
|
|
689
|
+
# compute pscale the old way (only to make
|
|
690
|
+
# tests work with old truth files and thus to show that new API gives
|
|
691
|
+
# same results when equal definitions of the pixel scale is used):
|
|
692
|
+
pscale = np.sqrt(
|
|
693
|
+
np.sum(inwcs.wcs.pc**2, axis=0)[0] /
|
|
694
|
+
np.sum(outwcs.wcs.cd**2, axis=0)[0]
|
|
695
|
+
)
|
|
696
|
+
|
|
697
|
+
blotted_image = resample.blot_image(
|
|
698
|
+
outsci,
|
|
699
|
+
pixmap=pixmap,
|
|
700
|
+
pix_ratio=pscale,
|
|
701
|
+
exptime=1.0,
|
|
702
|
+
output_pixel_shape=inwcs.pixel_shape,
|
|
703
|
+
)
|
|
704
|
+
|
|
705
|
+
template_data = read_image(output_template)
|
|
706
|
+
|
|
707
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
708
|
+
"blot with point",
|
|
709
|
+
output_difference,
|
|
710
|
+
blotted_image,
|
|
711
|
+
template_data,
|
|
712
|
+
20.0,
|
|
713
|
+
16,
|
|
714
|
+
)
|
|
715
|
+
assert med_diff < 1.0e-6
|
|
716
|
+
assert max_diff < 1.0e-5
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
def test_blot_with_default(tmpdir):
|
|
720
|
+
"""
|
|
721
|
+
Test do_blot with default grid image
|
|
722
|
+
"""
|
|
723
|
+
output_difference = str(tmpdir.join('difference_blot_default.txt'))
|
|
724
|
+
|
|
725
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
726
|
+
output_template = os.path.join(DATA_DIR, 'reference_blot_default.fits')
|
|
727
|
+
|
|
728
|
+
outsci = read_image(input_file)
|
|
729
|
+
outsci = make_grid_image(outsci, 64, 100.0)
|
|
730
|
+
outwcs = read_wcs(input_file)
|
|
731
|
+
inwcs = read_wcs(output_template)
|
|
732
|
+
|
|
733
|
+
pixmap = utils.calc_pixmap(inwcs, outwcs)
|
|
734
|
+
|
|
735
|
+
# compute pscale the old way (only to make
|
|
736
|
+
# tests work with old truth files and thus to show that new API gives
|
|
737
|
+
# same results when equal definitions of the pixel scale is used):
|
|
738
|
+
pscale = np.sqrt(
|
|
739
|
+
np.sum(inwcs.wcs.pc**2, axis=0)[0] /
|
|
740
|
+
np.sum(outwcs.wcs.cd**2, axis=0)[0]
|
|
741
|
+
)
|
|
742
|
+
|
|
743
|
+
blotted_image = resample.blot_image(
|
|
744
|
+
outsci,
|
|
745
|
+
pixmap=pixmap,
|
|
746
|
+
pix_ratio=pscale,
|
|
747
|
+
exptime=1.0,
|
|
748
|
+
output_pixel_shape=inwcs.pixel_shape,
|
|
749
|
+
)
|
|
750
|
+
|
|
751
|
+
template_data = read_image(output_template)
|
|
752
|
+
|
|
753
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
754
|
+
"blot with defaults",
|
|
755
|
+
output_difference,
|
|
756
|
+
blotted_image,
|
|
757
|
+
template_data,
|
|
758
|
+
20.0,
|
|
759
|
+
16,
|
|
760
|
+
)
|
|
761
|
+
|
|
762
|
+
assert med_diff < 1.0e-6
|
|
763
|
+
assert max_diff < 1.0e-5
|
|
764
|
+
|
|
765
|
+
|
|
766
|
+
def test_blot_with_lan3(tmpdir):
|
|
767
|
+
"""
|
|
768
|
+
Test do_blot with lan3 grid image
|
|
769
|
+
"""
|
|
770
|
+
output_difference = str(tmpdir.join('difference_blot_lan3.txt'))
|
|
771
|
+
|
|
772
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
773
|
+
output_template = os.path.join(DATA_DIR, 'reference_blot_lan3.fits')
|
|
774
|
+
|
|
775
|
+
outsci = read_image(input_file)
|
|
776
|
+
outsci = make_grid_image(outsci, 64, 100.0)
|
|
777
|
+
outwcs = read_wcs(input_file)
|
|
778
|
+
inwcs = read_wcs(output_template)
|
|
779
|
+
|
|
780
|
+
pixmap = utils.calc_pixmap(inwcs, outwcs)
|
|
781
|
+
|
|
782
|
+
# compute pscale the old way (only to make
|
|
783
|
+
# tests work with old truth files and thus to show that new API gives
|
|
784
|
+
# same results when equal definitions of the pixel scale is used):
|
|
785
|
+
pscale = np.sqrt(
|
|
786
|
+
np.sum(inwcs.wcs.pc**2, axis=0)[0] /
|
|
787
|
+
np.sum(outwcs.wcs.cd**2, axis=0)[0]
|
|
788
|
+
)
|
|
789
|
+
|
|
790
|
+
blotted_image = resample.blot_image(
|
|
791
|
+
outsci,
|
|
792
|
+
pixmap=pixmap,
|
|
793
|
+
pix_ratio=pscale,
|
|
794
|
+
exptime=1.0,
|
|
795
|
+
output_pixel_shape=inwcs.pixel_shape,
|
|
796
|
+
interp="lan3",
|
|
797
|
+
)
|
|
798
|
+
|
|
799
|
+
template_data = read_image(output_template)
|
|
800
|
+
|
|
801
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
802
|
+
"blot with lan3",
|
|
803
|
+
output_difference,
|
|
804
|
+
blotted_image,
|
|
805
|
+
template_data,
|
|
806
|
+
20.0,
|
|
807
|
+
16,
|
|
808
|
+
)
|
|
809
|
+
|
|
810
|
+
assert med_diff < 1.0e-6
|
|
811
|
+
assert max_diff < 1.0e-5
|
|
812
|
+
|
|
813
|
+
|
|
814
|
+
def test_blot_with_lan5(tmpdir):
|
|
815
|
+
"""
|
|
816
|
+
Test do_blot with lan5 grid image
|
|
817
|
+
"""
|
|
818
|
+
output_difference = str(tmpdir.join('difference_blot_lan5.txt'))
|
|
819
|
+
|
|
820
|
+
input_file = os.path.join(DATA_DIR, 'j8bt06nyq_flt.fits')
|
|
821
|
+
output_template = os.path.join(DATA_DIR, 'reference_blot_lan5.fits')
|
|
822
|
+
|
|
823
|
+
outsci = read_image(input_file)
|
|
824
|
+
outsci = make_grid_image(outsci, 64, 100.0)
|
|
825
|
+
outwcs = read_wcs(input_file)
|
|
826
|
+
inwcs = read_wcs(output_template)
|
|
827
|
+
|
|
828
|
+
pixmap = utils.calc_pixmap(inwcs, outwcs)
|
|
829
|
+
|
|
830
|
+
# compute pscale the old way (only to make
|
|
831
|
+
# tests work with old truth files and thus to show that new API gives
|
|
832
|
+
# same results when equal definitions of the pixel scale is used):
|
|
833
|
+
pscale = np.sqrt(
|
|
834
|
+
np.sum(inwcs.wcs.pc**2, axis=0)[0] /
|
|
835
|
+
np.sum(outwcs.wcs.cd**2, axis=0)[0]
|
|
836
|
+
)
|
|
837
|
+
|
|
838
|
+
blotted_image = resample.blot_image(
|
|
839
|
+
outsci,
|
|
840
|
+
pixmap=pixmap,
|
|
841
|
+
pix_ratio=pscale,
|
|
842
|
+
exptime=1.0,
|
|
843
|
+
output_pixel_shape=inwcs.pixel_shape,
|
|
844
|
+
interp="lan5",
|
|
845
|
+
)
|
|
846
|
+
|
|
847
|
+
template_data = read_image(output_template)
|
|
848
|
+
|
|
849
|
+
_, med_diff, max_diff = centroid_statistics(
|
|
850
|
+
"blot with lan5",
|
|
851
|
+
output_difference,
|
|
852
|
+
blotted_image,
|
|
853
|
+
template_data,
|
|
854
|
+
20.0,
|
|
855
|
+
16,
|
|
856
|
+
)
|
|
857
|
+
|
|
858
|
+
assert med_diff < 1.0e-6
|
|
859
|
+
assert max_diff < 1.0e-5
|
|
860
|
+
|
|
861
|
+
|
|
862
|
+
def test_context_planes():
|
|
863
|
+
"""Reproduce error seen in issue #50"""
|
|
864
|
+
shape = (10, 10)
|
|
865
|
+
output_wcs = wcs.WCS()
|
|
866
|
+
output_wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
|
|
867
|
+
output_wcs.wcs.pc = [[1, 0], [0, 1]]
|
|
868
|
+
output_wcs.pixel_shape = shape
|
|
869
|
+
driz = resample.Drizzle(out_shape=tuple(shape))
|
|
870
|
+
|
|
871
|
+
image = np.ones(shape)
|
|
872
|
+
inwcs = wcs.WCS()
|
|
873
|
+
inwcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
|
|
874
|
+
inwcs.wcs.cd = [[1, 0], [0, 1]]
|
|
875
|
+
inwcs.pixel_shape = shape
|
|
876
|
+
|
|
877
|
+
pixmap = utils.calc_pixmap(inwcs, output_wcs)
|
|
878
|
+
|
|
879
|
+
# context image must be 2D or 3D:
|
|
880
|
+
with pytest.raises(ValueError) as err_info:
|
|
881
|
+
resample.Drizzle(
|
|
882
|
+
kernel='point',
|
|
883
|
+
exptime=0.0,
|
|
884
|
+
out_shape=shape,
|
|
885
|
+
out_ctx=[0, 0, 0],
|
|
886
|
+
)
|
|
887
|
+
assert str(err_info.value).startswith(
|
|
888
|
+
"'out_ctx' must be either a 2D or 3D array."
|
|
889
|
+
)
|
|
890
|
+
|
|
891
|
+
driz = resample.Drizzle(
|
|
892
|
+
kernel='square',
|
|
893
|
+
out_shape=output_wcs.array_shape,
|
|
894
|
+
fillval=0.0,
|
|
895
|
+
)
|
|
896
|
+
|
|
897
|
+
for i in range(32):
|
|
898
|
+
assert driz.ctx_id == i
|
|
899
|
+
driz.add_image(image, exptime=1.0, pixmap=pixmap)
|
|
900
|
+
assert driz.out_ctx.shape == (1, 10, 10)
|
|
901
|
+
|
|
902
|
+
driz.add_image(image, exptime=1.0, pixmap=pixmap)
|
|
903
|
+
assert driz.out_ctx.shape == (2, 10, 10)
|
|
904
|
+
|
|
905
|
+
|
|
906
|
+
def test_no_context_image():
|
|
907
|
+
"""Reproduce error seen in issue #50"""
|
|
908
|
+
shape = (10, 10)
|
|
909
|
+
output_wcs = wcs.WCS()
|
|
910
|
+
output_wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
|
|
911
|
+
output_wcs.wcs.pc = [[1, 0], [0, 1]]
|
|
912
|
+
output_wcs.pixel_shape = shape
|
|
913
|
+
driz = resample.Drizzle(
|
|
914
|
+
out_shape=tuple(shape),
|
|
915
|
+
begin_ctx_id=-1,
|
|
916
|
+
disable_ctx=True
|
|
917
|
+
)
|
|
918
|
+
assert driz.out_ctx is None
|
|
919
|
+
assert driz.ctx_id is None
|
|
920
|
+
|
|
921
|
+
image = np.ones(shape)
|
|
922
|
+
inwcs = wcs.WCS()
|
|
923
|
+
inwcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
|
|
924
|
+
inwcs.wcs.cd = [[1, 0], [0, 1]]
|
|
925
|
+
inwcs.pixel_shape = shape
|
|
926
|
+
|
|
927
|
+
pixmap = utils.calc_pixmap(inwcs, output_wcs)
|
|
928
|
+
|
|
929
|
+
for i in range(33):
|
|
930
|
+
driz.add_image(image, exptime=1.0, pixmap=pixmap)
|
|
931
|
+
assert driz.out_ctx is None
|
|
932
|
+
assert driz.ctx_id is None
|
|
933
|
+
|
|
934
|
+
|
|
935
|
+
def test_init_ctx_id():
|
|
936
|
+
# starting context ID must be positive
|
|
937
|
+
with pytest.raises(ValueError) as err_info:
|
|
938
|
+
resample.Drizzle(
|
|
939
|
+
kernel='square',
|
|
940
|
+
exptime=0.0,
|
|
941
|
+
begin_ctx_id=-1,
|
|
942
|
+
out_shape=(10, 10),
|
|
943
|
+
)
|
|
944
|
+
assert str(err_info.value).startswith(
|
|
945
|
+
"Invalid context image ID"
|
|
946
|
+
)
|
|
947
|
+
|
|
948
|
+
with pytest.raises(ValueError) as err_info:
|
|
949
|
+
resample.Drizzle(
|
|
950
|
+
kernel='square',
|
|
951
|
+
exptime=0.0,
|
|
952
|
+
out_shape=(10, 10),
|
|
953
|
+
begin_ctx_id=1,
|
|
954
|
+
max_ctx_id=0,
|
|
955
|
+
)
|
|
956
|
+
assert str(err_info.value).startswith(
|
|
957
|
+
"'max_ctx_id' cannot be smaller than 'begin_ctx_id'."
|
|
958
|
+
)
|
|
959
|
+
|
|
960
|
+
|
|
961
|
+
def test_context_agrees_with_weight():
|
|
962
|
+
n = 200
|
|
963
|
+
out_shape = (n, n)
|
|
964
|
+
|
|
965
|
+
# allocate output arrays:
|
|
966
|
+
out_img = np.zeros(out_shape, dtype=np.float32)
|
|
967
|
+
out_ctx = np.zeros(out_shape, dtype=np.int32)
|
|
968
|
+
out_wht = np.zeros(out_shape, dtype=np.float32)
|
|
969
|
+
|
|
970
|
+
# previous data in weight and context must agree:
|
|
971
|
+
with pytest.raises(ValueError) as err_info:
|
|
972
|
+
out_ctx[0, 0] = 1
|
|
973
|
+
out_ctx[0, 1] = 1
|
|
974
|
+
out_wht[0, 0] = 0.1
|
|
975
|
+
resample.Drizzle(
|
|
976
|
+
kernel='square',
|
|
977
|
+
out_shape=out_shape,
|
|
978
|
+
out_img=out_img,
|
|
979
|
+
out_ctx=out_ctx,
|
|
980
|
+
out_wht=out_wht,
|
|
981
|
+
exptime=1.0,
|
|
982
|
+
)
|
|
983
|
+
assert str(err_info.value).startswith(
|
|
984
|
+
"Inconsistent values of supplied 'out_wht' and 'out_ctx' "
|
|
985
|
+
)
|
|
986
|
+
|
|
987
|
+
|
|
988
|
+
@pytest.mark.parametrize(
|
|
989
|
+
'kernel,fc',
|
|
990
|
+
[
|
|
991
|
+
('square', True),
|
|
992
|
+
('point', True),
|
|
993
|
+
('turbo', True),
|
|
994
|
+
('lanczos2', False),
|
|
995
|
+
('lanczos3', False),
|
|
996
|
+
('gaussian', False),
|
|
997
|
+
],
|
|
998
|
+
)
|
|
999
|
+
def test_flux_conservation_nondistorted(kernel, fc):
|
|
1000
|
+
n = 200
|
|
1001
|
+
in_shape = (n, n)
|
|
1002
|
+
|
|
1003
|
+
# input coordinate grid:
|
|
1004
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1005
|
+
|
|
1006
|
+
# simulate a gaussian "star":
|
|
1007
|
+
fwhm = 2.9
|
|
1008
|
+
x0 = 50.0
|
|
1009
|
+
y0 = 68.0
|
|
1010
|
+
sig = fwhm / (2.0 * np.sqrt(2.0 * np.log(2.0 * fwhm)))
|
|
1011
|
+
sig2 = sig * sig
|
|
1012
|
+
star = np.exp(-0.5 / sig2 * ((x.astype(np.float32) - x0)**2 + (y.astype(np.float32) - y0)**2))
|
|
1013
|
+
in_sci = (star / np.sum(star)).astype(np.float32) # normalize to 1
|
|
1014
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1015
|
+
|
|
1016
|
+
# linear shift:
|
|
1017
|
+
xp = x + 0.5
|
|
1018
|
+
yp = y + 0.2
|
|
1019
|
+
|
|
1020
|
+
pixmap = np.dstack([xp, yp])
|
|
1021
|
+
|
|
1022
|
+
out_shape = (int(yp.max()) + 1, int(xp.max()) + 1)
|
|
1023
|
+
# make sure distorion is not moving flux out of the image towards negative
|
|
1024
|
+
# coordinates (just because of the simple way of how we account for output
|
|
1025
|
+
# image size)
|
|
1026
|
+
assert np.min(xp) > -0.5 and np.min(yp) > -0.5
|
|
1027
|
+
|
|
1028
|
+
out_img = np.zeros(out_shape, dtype=np.float32)
|
|
1029
|
+
out_ctx = np.zeros(out_shape, dtype=np.int32)
|
|
1030
|
+
out_wht = np.zeros(out_shape, dtype=np.float32)
|
|
1031
|
+
|
|
1032
|
+
if fc:
|
|
1033
|
+
cdrizzle.tdriz(
|
|
1034
|
+
in_sci,
|
|
1035
|
+
in_wht,
|
|
1036
|
+
pixmap,
|
|
1037
|
+
out_img,
|
|
1038
|
+
out_wht,
|
|
1039
|
+
out_ctx,
|
|
1040
|
+
pixfrac=1.0,
|
|
1041
|
+
scale=1.0,
|
|
1042
|
+
kernel=kernel,
|
|
1043
|
+
in_units="cps",
|
|
1044
|
+
expscale=1.0,
|
|
1045
|
+
wtscale=1.0,
|
|
1046
|
+
)
|
|
1047
|
+
else:
|
|
1048
|
+
with pytest.warns(Warning):
|
|
1049
|
+
cdrizzle.tdriz(
|
|
1050
|
+
in_sci,
|
|
1051
|
+
in_wht,
|
|
1052
|
+
pixmap,
|
|
1053
|
+
out_img,
|
|
1054
|
+
out_wht,
|
|
1055
|
+
out_ctx,
|
|
1056
|
+
pixfrac=1.0,
|
|
1057
|
+
scale=1.0,
|
|
1058
|
+
kernel=kernel,
|
|
1059
|
+
in_units="cps",
|
|
1060
|
+
expscale=1.0,
|
|
1061
|
+
wtscale=1.0,
|
|
1062
|
+
)
|
|
1063
|
+
pytest.xfail("Not a flux-conserving kernel")
|
|
1064
|
+
|
|
1065
|
+
assert np.allclose(
|
|
1066
|
+
np.sum(out_img * out_wht),
|
|
1067
|
+
np.sum(in_sci),
|
|
1068
|
+
atol=0.0,
|
|
1069
|
+
rtol=0.0001,
|
|
1070
|
+
)
|
|
1071
|
+
|
|
1072
|
+
|
|
1073
|
+
@pytest.mark.parametrize(
|
|
1074
|
+
'kernel,fc',
|
|
1075
|
+
[
|
|
1076
|
+
('square', True),
|
|
1077
|
+
('point', True),
|
|
1078
|
+
('turbo', True),
|
|
1079
|
+
('lanczos2', False),
|
|
1080
|
+
('lanczos3', False),
|
|
1081
|
+
('gaussian', False),
|
|
1082
|
+
],
|
|
1083
|
+
)
|
|
1084
|
+
def test_flux_conservation_distorted(kernel, fc):
|
|
1085
|
+
n = 200
|
|
1086
|
+
in_shape = (n, n)
|
|
1087
|
+
|
|
1088
|
+
# input coordinate grid:
|
|
1089
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1090
|
+
|
|
1091
|
+
# simulate a gaussian "star":
|
|
1092
|
+
fwhm = 2.9
|
|
1093
|
+
x0 = 50.0
|
|
1094
|
+
y0 = 68.0
|
|
1095
|
+
sig = fwhm / (2.0 * np.sqrt(2.0 * np.log(2.0 * fwhm)))
|
|
1096
|
+
sig2 = sig * sig
|
|
1097
|
+
star = np.exp(-0.5 / sig2 * ((x.astype(np.float32) - x0)**2 + (y.astype(np.float32) - y0)**2))
|
|
1098
|
+
in_sci = (star / np.sum(star)).astype(np.float32) # normalize to 1
|
|
1099
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1100
|
+
|
|
1101
|
+
# linear shift:
|
|
1102
|
+
xp = x + 0.5
|
|
1103
|
+
yp = y + 0.2
|
|
1104
|
+
# add distortion:
|
|
1105
|
+
xp += 1e-4 * x**2 + 1e-5 * x * y
|
|
1106
|
+
yp += 1e-3 * y**2 - 2e-5 * x * y
|
|
1107
|
+
|
|
1108
|
+
pixmap = np.dstack([xp, yp])
|
|
1109
|
+
|
|
1110
|
+
out_shape = (int(yp.max()) + 1, int(xp.max()) + 1)
|
|
1111
|
+
# make sure distorion is not moving (pixels with) flux out of the image
|
|
1112
|
+
# towards negative coordinates (just because of the simple way of how we
|
|
1113
|
+
# account for output image size):
|
|
1114
|
+
assert np.min(xp) > -0.5 and np.min(yp) > -0.5
|
|
1115
|
+
|
|
1116
|
+
out_img = np.zeros(out_shape, dtype=np.float32)
|
|
1117
|
+
out_ctx = np.zeros(out_shape, dtype=np.int32)
|
|
1118
|
+
out_wht = np.zeros(out_shape, dtype=np.float32)
|
|
1119
|
+
|
|
1120
|
+
if fc:
|
|
1121
|
+
cdrizzle.tdriz(
|
|
1122
|
+
in_sci,
|
|
1123
|
+
in_wht,
|
|
1124
|
+
pixmap,
|
|
1125
|
+
out_img,
|
|
1126
|
+
out_wht,
|
|
1127
|
+
out_ctx,
|
|
1128
|
+
pixfrac=1.0,
|
|
1129
|
+
scale=1.0,
|
|
1130
|
+
kernel=kernel,
|
|
1131
|
+
in_units="cps",
|
|
1132
|
+
expscale=1.0,
|
|
1133
|
+
wtscale=1.0,
|
|
1134
|
+
)
|
|
1135
|
+
else:
|
|
1136
|
+
with pytest.warns(Warning):
|
|
1137
|
+
cdrizzle.tdriz(
|
|
1138
|
+
in_sci,
|
|
1139
|
+
in_wht,
|
|
1140
|
+
pixmap,
|
|
1141
|
+
out_img,
|
|
1142
|
+
out_wht,
|
|
1143
|
+
out_ctx,
|
|
1144
|
+
pixfrac=1.0,
|
|
1145
|
+
scale=1.0,
|
|
1146
|
+
kernel=kernel,
|
|
1147
|
+
in_units="cps",
|
|
1148
|
+
expscale=1.0,
|
|
1149
|
+
wtscale=1.0,
|
|
1150
|
+
)
|
|
1151
|
+
pytest.xfail("Not a flux-conserving kernel")
|
|
1152
|
+
|
|
1153
|
+
assert np.allclose(
|
|
1154
|
+
np.sum(out_img * out_wht),
|
|
1155
|
+
np.sum(in_sci),
|
|
1156
|
+
atol=0.0,
|
|
1157
|
+
rtol=0.0001,
|
|
1158
|
+
)
|
|
1159
|
+
|
|
1160
|
+
|
|
1161
|
+
def test_drizzle_exptime():
|
|
1162
|
+
n = 200
|
|
1163
|
+
in_shape = (n, n)
|
|
1164
|
+
|
|
1165
|
+
# input coordinate grid:
|
|
1166
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1167
|
+
|
|
1168
|
+
# simulate data:
|
|
1169
|
+
in_sci = np.ones(in_shape, dtype=np.float32)
|
|
1170
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1171
|
+
|
|
1172
|
+
pixmap = np.dstack([x, y])
|
|
1173
|
+
|
|
1174
|
+
# allocate output arrays:
|
|
1175
|
+
out_shape = (int(y.max()) + 1, int(x.max()) + 1)
|
|
1176
|
+
out_img = np.zeros(out_shape, dtype=np.float32)
|
|
1177
|
+
out_ctx = np.zeros(out_shape, dtype=np.int32)
|
|
1178
|
+
out_wht = np.zeros(out_shape, dtype=np.float32)
|
|
1179
|
+
|
|
1180
|
+
# starting exposure time must be non-negative:
|
|
1181
|
+
with pytest.raises(ValueError) as err_info:
|
|
1182
|
+
driz = resample.Drizzle(
|
|
1183
|
+
kernel='square',
|
|
1184
|
+
out_shape=out_shape,
|
|
1185
|
+
fillval="indef",
|
|
1186
|
+
exptime=-1.0,
|
|
1187
|
+
)
|
|
1188
|
+
assert str(err_info.value) == "Exposure time must be non-negative."
|
|
1189
|
+
|
|
1190
|
+
driz = resample.Drizzle(
|
|
1191
|
+
kernel='turbo',
|
|
1192
|
+
out_shape=out_shape,
|
|
1193
|
+
fillval="",
|
|
1194
|
+
out_img=out_img,
|
|
1195
|
+
out_ctx=out_ctx,
|
|
1196
|
+
out_wht=out_wht,
|
|
1197
|
+
exptime=1.0,
|
|
1198
|
+
)
|
|
1199
|
+
assert driz.kernel == 'turbo'
|
|
1200
|
+
|
|
1201
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.03456, pixmap=pixmap)
|
|
1202
|
+
assert np.allclose(driz.total_exptime, 2.03456, rtol=0, atol=1.0e-14)
|
|
1203
|
+
|
|
1204
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=3.1415926, pixmap=pixmap)
|
|
1205
|
+
assert np.allclose(driz.total_exptime, 5.1761526, rtol=0, atol=1.0e-14)
|
|
1206
|
+
|
|
1207
|
+
with pytest.raises(ValueError) as err_info:
|
|
1208
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=-1, pixmap=pixmap)
|
|
1209
|
+
assert str(err_info.value) == "'exptime' *must* be a strictly positive number."
|
|
1210
|
+
|
|
1211
|
+
# exptime cannot be 0 when output data has data:
|
|
1212
|
+
with pytest.raises(ValueError) as err_info:
|
|
1213
|
+
out_ctx[0, 0] = 1
|
|
1214
|
+
driz = resample.Drizzle(
|
|
1215
|
+
kernel='square',
|
|
1216
|
+
out_shape=out_shape,
|
|
1217
|
+
fillval="indef",
|
|
1218
|
+
out_img=out_img,
|
|
1219
|
+
out_ctx=out_ctx,
|
|
1220
|
+
out_wht=out_wht,
|
|
1221
|
+
exptime=0.0,
|
|
1222
|
+
)
|
|
1223
|
+
assert str(err_info.value).startswith(
|
|
1224
|
+
"Inconsistent exposure time and context and/or weight images:"
|
|
1225
|
+
)
|
|
1226
|
+
|
|
1227
|
+
# exptime must be 0 when output arrays are not provided:
|
|
1228
|
+
with pytest.raises(ValueError) as err_info:
|
|
1229
|
+
driz = resample.Drizzle(
|
|
1230
|
+
kernel='square',
|
|
1231
|
+
out_shape=out_shape,
|
|
1232
|
+
exptime=1.0,
|
|
1233
|
+
)
|
|
1234
|
+
assert str(err_info.value).startswith(
|
|
1235
|
+
"Exposure time must be 0.0 for the first resampling"
|
|
1236
|
+
)
|
|
1237
|
+
|
|
1238
|
+
|
|
1239
|
+
def test_drizzle_unsupported_kernel():
|
|
1240
|
+
with pytest.raises(ValueError) as err_info:
|
|
1241
|
+
resample.Drizzle(
|
|
1242
|
+
kernel='magic_image_improver',
|
|
1243
|
+
out_shape=(10, 10),
|
|
1244
|
+
exptime=0.0,
|
|
1245
|
+
)
|
|
1246
|
+
assert str(err_info.value) == "Kernel 'magic_image_improver' is not supported."
|
|
1247
|
+
|
|
1248
|
+
|
|
1249
|
+
def test_pixmap_shape_matches_image():
|
|
1250
|
+
n = 200
|
|
1251
|
+
in_shape = (n, n)
|
|
1252
|
+
|
|
1253
|
+
# input coordinate grid:
|
|
1254
|
+
y, x = np.indices((n + 1, n), dtype=np.float64)
|
|
1255
|
+
|
|
1256
|
+
# simulate data:
|
|
1257
|
+
in_sci = np.ones(in_shape, dtype=np.float32)
|
|
1258
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1259
|
+
|
|
1260
|
+
pixmap = np.dstack([x, y])
|
|
1261
|
+
|
|
1262
|
+
driz = resample.Drizzle(
|
|
1263
|
+
kernel='square',
|
|
1264
|
+
fillval=0.0,
|
|
1265
|
+
exptime=0.0,
|
|
1266
|
+
)
|
|
1267
|
+
|
|
1268
|
+
# last two sizes of the pixelmap must match those of input images:
|
|
1269
|
+
with pytest.raises(ValueError) as err_info:
|
|
1270
|
+
driz.add_image(
|
|
1271
|
+
in_sci,
|
|
1272
|
+
exptime=1.0,
|
|
1273
|
+
pixmap=pixmap,
|
|
1274
|
+
weight_map=in_wht,
|
|
1275
|
+
)
|
|
1276
|
+
assert str(err_info.value) == "'pixmap' shape is not consistent with 'data' shape."
|
|
1277
|
+
|
|
1278
|
+
|
|
1279
|
+
def test_drizzle_fillval():
|
|
1280
|
+
n = 200
|
|
1281
|
+
in_shape = (n, n)
|
|
1282
|
+
|
|
1283
|
+
# input coordinate grid:
|
|
1284
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1285
|
+
|
|
1286
|
+
# simulate a gaussian "star":
|
|
1287
|
+
fwhm = 2.9
|
|
1288
|
+
x0 = 50.0
|
|
1289
|
+
y0 = 68.0
|
|
1290
|
+
sig = fwhm / (2.0 * np.sqrt(2.0 * np.log(2.0 * fwhm)))
|
|
1291
|
+
sig2 = sig * sig
|
|
1292
|
+
star = np.exp(-0.5 / sig2 * ((x.astype(np.float32) - x0)**2 + (y.astype(np.float32) - y0)**2))
|
|
1293
|
+
in_sci = (star / np.sum(star)).astype(np.float32) # normalize to 1
|
|
1294
|
+
in_wht = np.zeros(in_shape, dtype=np.float32)
|
|
1295
|
+
mask = np.where((x.astype(np.float32) - x0)**2 + (y.astype(np.float32) - y0)**2 <= 10)
|
|
1296
|
+
in_wht[mask] = 1.0
|
|
1297
|
+
|
|
1298
|
+
# linear shift:
|
|
1299
|
+
xp = x + 50
|
|
1300
|
+
yp = y + 50
|
|
1301
|
+
|
|
1302
|
+
pixmap = np.dstack([xp, yp])
|
|
1303
|
+
|
|
1304
|
+
out_shape = (int(yp.max()) + 1, int(xp.max()) + 1)
|
|
1305
|
+
# make sure distorion is not moving flux out of the image towards negative
|
|
1306
|
+
# coordinates (just because of the simple way of how we account for output
|
|
1307
|
+
# image size)
|
|
1308
|
+
assert np.min(xp) > -0.5 and np.min(yp) > -0.5
|
|
1309
|
+
|
|
1310
|
+
out_img = np.zeros(out_shape, dtype=np.float32) - 1.11
|
|
1311
|
+
out_ctx = np.zeros((1, ) + out_shape, dtype=np.int32)
|
|
1312
|
+
out_wht = np.zeros(out_shape, dtype=np.float32)
|
|
1313
|
+
|
|
1314
|
+
driz = resample.Drizzle(
|
|
1315
|
+
kernel='square',
|
|
1316
|
+
out_shape=out_shape,
|
|
1317
|
+
fillval="indef",
|
|
1318
|
+
exptime=0.0,
|
|
1319
|
+
)
|
|
1320
|
+
|
|
1321
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.0, pixmap=pixmap)
|
|
1322
|
+
assert np.isnan(driz.out_img[0, 0])
|
|
1323
|
+
assert driz.out_img[int(y0) + 50, int(x0) + 50] > 0.0
|
|
1324
|
+
|
|
1325
|
+
driz = resample.Drizzle(
|
|
1326
|
+
kernel='square',
|
|
1327
|
+
out_shape=out_shape,
|
|
1328
|
+
fillval="-1.11",
|
|
1329
|
+
out_img=out_img.copy(),
|
|
1330
|
+
out_ctx=out_ctx.copy(),
|
|
1331
|
+
out_wht=out_wht.copy(),
|
|
1332
|
+
exptime=0.0,
|
|
1333
|
+
)
|
|
1334
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.0, pixmap=pixmap)
|
|
1335
|
+
assert np.allclose(driz.out_img[0, 0], -1.11, rtol=0.0, atol=1.0e-7)
|
|
1336
|
+
assert driz.out_img[int(y0) + 50, int(x0) + 50] > 0.0
|
|
1337
|
+
assert set(driz.out_ctx.ravel().tolist()) == {0, 1}
|
|
1338
|
+
|
|
1339
|
+
# test same with numeric fillval:
|
|
1340
|
+
driz = resample.Drizzle(
|
|
1341
|
+
kernel='square',
|
|
1342
|
+
out_shape=out_shape,
|
|
1343
|
+
fillval=-1.11,
|
|
1344
|
+
out_img=out_img.copy(),
|
|
1345
|
+
out_ctx=out_ctx.copy(),
|
|
1346
|
+
out_wht=out_wht.copy(),
|
|
1347
|
+
exptime=0.0,
|
|
1348
|
+
)
|
|
1349
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.0, pixmap=pixmap)
|
|
1350
|
+
assert np.allclose(driz.out_img[0, 0], -1.11, rtol=0.0, atol=1.0e-7)
|
|
1351
|
+
assert np.allclose(float(driz.fillval), -1.11, rtol=0.0, atol=np.finfo(float).eps)
|
|
1352
|
+
|
|
1353
|
+
# make sure code raises exception for unsuported fillval:
|
|
1354
|
+
with pytest.raises(ValueError) as err_info:
|
|
1355
|
+
resample.Drizzle(
|
|
1356
|
+
kernel='square',
|
|
1357
|
+
out_shape=out_shape,
|
|
1358
|
+
fillval="fillval",
|
|
1359
|
+
exptime=0.0,
|
|
1360
|
+
)
|
|
1361
|
+
assert str(err_info.value) == "could not convert string to float: 'fillval'"
|
|
1362
|
+
|
|
1363
|
+
|
|
1364
|
+
def test_resample_get_shape_from_pixmap():
|
|
1365
|
+
n = 200
|
|
1366
|
+
in_shape = (n, n)
|
|
1367
|
+
|
|
1368
|
+
# input coordinate grid:
|
|
1369
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1370
|
+
|
|
1371
|
+
# simulate constant data:
|
|
1372
|
+
in_sci = np.ones(in_shape, dtype=np.float32)
|
|
1373
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1374
|
+
|
|
1375
|
+
pixmap = np.dstack([x, y])
|
|
1376
|
+
|
|
1377
|
+
driz = resample.Drizzle(
|
|
1378
|
+
kernel='point',
|
|
1379
|
+
exptime=0.0,
|
|
1380
|
+
)
|
|
1381
|
+
|
|
1382
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.0, pixmap=pixmap)
|
|
1383
|
+
assert driz.out_img.shape == in_shape
|
|
1384
|
+
|
|
1385
|
+
|
|
1386
|
+
def test_resample_counts_units():
|
|
1387
|
+
n = 200
|
|
1388
|
+
in_shape = (n, n)
|
|
1389
|
+
|
|
1390
|
+
# input coordinate grid:
|
|
1391
|
+
y, x = np.indices(in_shape, dtype=np.float64)
|
|
1392
|
+
pixmap = np.dstack([x, y])
|
|
1393
|
+
|
|
1394
|
+
# simulate constant data:
|
|
1395
|
+
in_sci = np.ones(in_shape, dtype=np.float32)
|
|
1396
|
+
in_wht = np.ones(in_shape, dtype=np.float32)
|
|
1397
|
+
|
|
1398
|
+
driz = resample.Drizzle()
|
|
1399
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=1.0, pixmap=pixmap, in_units='cps')
|
|
1400
|
+
cps_max_val = driz.out_img.max()
|
|
1401
|
+
|
|
1402
|
+
driz = resample.Drizzle()
|
|
1403
|
+
driz.add_image(in_sci, weight_map=in_wht, exptime=2.0, pixmap=pixmap, in_units='counts')
|
|
1404
|
+
counts_max_val = driz.out_img.max()
|
|
1405
|
+
|
|
1406
|
+
assert abs(counts_max_val - cps_max_val / 2.0) < 1.0e-14
|
|
1407
|
+
|
|
1408
|
+
|
|
1409
|
+
def test_resample_inconsistent_output():
|
|
1410
|
+
n = 200
|
|
1411
|
+
out_shape = (n, n)
|
|
1412
|
+
|
|
1413
|
+
# different shapes:
|
|
1414
|
+
out_img = np.zeros((n, n), dtype=np.float32)
|
|
1415
|
+
out_ctx = np.zeros((1, n, n + 1), dtype=np.int32)
|
|
1416
|
+
out_wht = np.zeros((n + 1, n + 1), dtype=np.float32)
|
|
1417
|
+
|
|
1418
|
+
# shape from out_img:
|
|
1419
|
+
driz = resample.Drizzle(
|
|
1420
|
+
kernel='point',
|
|
1421
|
+
exptime=0.0,
|
|
1422
|
+
out_img=out_img,
|
|
1423
|
+
)
|
|
1424
|
+
assert driz.out_img.shape == out_shape
|
|
1425
|
+
|
|
1426
|
+
# inconsistent shapes:
|
|
1427
|
+
out_shape = (n + 1, n)
|
|
1428
|
+
with pytest.raises(ValueError) as err_info:
|
|
1429
|
+
resample.Drizzle(
|
|
1430
|
+
kernel='point',
|
|
1431
|
+
exptime=0.0,
|
|
1432
|
+
out_shape=out_shape,
|
|
1433
|
+
out_img=out_img,
|
|
1434
|
+
out_ctx=out_ctx,
|
|
1435
|
+
out_wht=out_wht,
|
|
1436
|
+
)
|
|
1437
|
+
assert str(err_info.value).startswith("Inconsistent data shapes specified")
|