dragon-ml-toolbox 6.1.1__py3-none-any.whl → 6.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 6.1.1
3
+ Version: 6.1.2
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-6.1.1.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-6.1.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
1
+ dragon_ml_toolbox-6.1.2.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-6.1.2.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
3
  ml_tools/ETL_engineering.py,sha256=4wwZXi9_U7xfCY70jGBaKniOeZ0m75ppxWpQBd_DmLc,39369
4
4
  ml_tools/GUI_tools.py,sha256=n4ZZ5kEjwK5rkOCFJE41HeLFfjhpJVLUSzk9Kd9Kr_0,45410
5
5
  ml_tools/MICE_imputation.py,sha256=oFHg-OytOzPYTzBR_wIRHhP71cMn3aupDeT59ABsXlQ,11576
@@ -8,7 +8,7 @@ ml_tools/ML_datasetmaster.py,sha256=bbKCNA_b_uDIfxP9YIYKZm-VSfUSD15LvegFxpE9DIQ,
8
8
  ml_tools/ML_evaluation.py,sha256=-Z5fXQi2ou6l5Oyir06bO90SZIZVrjQfgoVAqKgSjks,13800
9
9
  ml_tools/ML_inference.py,sha256=blEDgzvDqatxbfloBKsyNPacRwoq9g6WTpIKQ3zoTak,5758
10
10
  ml_tools/ML_models.py,sha256=SJhKHGAN2VTBqzcHUOpFWuVZ2Y7U1M4P_axG_LNYWcI,6460
11
- ml_tools/ML_optimization.py,sha256=0kRkjcAHbbx6EINUjzKfibL5h0DV39wghjcjzN0syNI,13406
11
+ ml_tools/ML_optimization.py,sha256=BWwaco2IiYgvQbD-WoTMKtlHGh94zHBpeGHKtN51pFs,13475
12
12
  ml_tools/ML_trainer.py,sha256=1q_CDXuMfndRsPuNofUn2mg2TlhG6MYuGqjWxTDgN9c,15112
13
13
  ml_tools/PSO_optimization.py,sha256=9Y074d-B5h4Wvp9YPiy6KAeXM-Yv6Il3gWalKvOLVgo,22705
14
14
  ml_tools/RNN_forecast.py,sha256=2CyjBLSYYc3xLHxwLXUmP5Qv8AmV1OB_EndETNX1IBk,1956
@@ -27,7 +27,7 @@ ml_tools/keys.py,sha256=HtPG8-MWh89C32A7eIlfuuA-DLwkxGkoDfwR2TGN9CQ,1074
27
27
  ml_tools/optimization_tools.py,sha256=MuT4OG7_r1QqLUti-yYix7QeCpglezD0oe9BDCq0QXk,5086
28
28
  ml_tools/path_manager.py,sha256=Z8e7w3MPqQaN8xmTnKuXZS6CIW59BFwwqGhGc00sdp4,13692
29
29
  ml_tools/utilities.py,sha256=LqXXTovaHbA5AOKRk6Ru6DgAPAM0wPfYU70kUjYBryo,19231
30
- dragon_ml_toolbox-6.1.1.dist-info/METADATA,sha256=qrfNT_c9zH8iYfbe_QBoxpRJNLvrhm-ZKQyMeVwDu9w,6698
31
- dragon_ml_toolbox-6.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
- dragon_ml_toolbox-6.1.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
33
- dragon_ml_toolbox-6.1.1.dist-info/RECORD,,
30
+ dragon_ml_toolbox-6.1.2.dist-info/METADATA,sha256=97hB43rYNc9a-iCnyxzfRvXfo6jdpgDmnBEvthYqv1M,6698
31
+ dragon_ml_toolbox-6.1.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
+ dragon_ml_toolbox-6.1.2.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
33
+ dragon_ml_toolbox-6.1.2.dist-info/RECORD,,
@@ -240,7 +240,7 @@ def run_optimization(
240
240
 
241
241
  # Process logger
242
242
  if verbose:
243
- _handle_pandas_log(pandas_logger, save_path=save_path)
243
+ _handle_pandas_log(pandas_logger, save_path=save_path, target_name=target_name)
244
244
 
245
245
  _LOGGER.info(f"✅ Optimization complete. Best solution saved to '{csv_path.name}'")
246
246
  return result_dict
@@ -293,15 +293,15 @@ def run_optimization(
293
293
 
294
294
  # Process logger
295
295
  if pandas_logger is not None:
296
- _handle_pandas_log(pandas_logger, save_path=save_path)
296
+ _handle_pandas_log(pandas_logger, save_path=save_path, target_name=target_name)
297
297
 
298
298
  _LOGGER.info(f"✅ Optimal solution space complete. Results saved to '{save_path}'")
299
299
  return None
300
300
 
301
301
 
302
- def _handle_pandas_log(logger: PandasLogger, save_path: Path):
302
+ def _handle_pandas_log(logger: PandasLogger, save_path: Path, target_name: str):
303
303
  log_dataframe = logger.to_dataframe()
304
- save_dataframe(df=log_dataframe, save_dir=save_path / "EvolutionLog", filename="evolution")
304
+ save_dataframe(df=log_dataframe, save_dir=save_path / "EvolutionLogs", filename=target_name)
305
305
 
306
306
 
307
307
  def info():